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Abstract—This paper describes a new hierarchical approach to content-based
image retrieval called the “customized-queries” approach (CQA). Contrary to the
single feature vector approach which tries to classify the query and retrieve similar
images in one step, CQA uses multiple feature sets and a two-step approach to
retrieval. The first step classifies the query according to the class labels of the
images using the features that best discriminate the classes. The second step
then retrieves the most similar images within the predicted class using the features
customized to distinguish “subclasses” within that class. Needing to find the
customized feature subset for each class led us to investigate feature selection for
unsupervised learning. As a result, we developed a new algorithm called FSSEM
(feature subset selection using expectation-maximization clustering). We applied
our approach to a database of high resolution computed tomography lung images
and show that CQA radically improves the retrieval precision over the single
feature vector approach. To determine whether our CBIR system is helpful to
physicians, we conducted an evaluation trial with eight radiologists. The results
show that our system using CQA retrieval doubled the doctors’ diagnostic
accuracy.

Index Terms—Image retrieval, feature selection, clustering, expectation-
maximization, unsupervised learning.
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1 INTRODUCTION

CONTENT-BASED image retrieval (CBIR) refers to the ability to
retrieve images on the basis of image content, as opposed to on the
basis of some textual description. In radiology, diagnosis of high
resolution computed tomography (HRCT) images of the lungs is
particularly well placed to benefit from CBIR. There are two
reasons. First, there is often a substantial difference in the ability of
specialists and nonspecialists to diagnose lung disease. Second, for
radiologists who do not frequently interpret HRCT scans, common
practice is to use a reference text such as [35] to find images that
are similar to the query image. Because the images in the text have
known diagnoses, the radiologist can base diagnosis on their
similarity to the images of the patient at hand. In the medical
domain, the goal of a CBIR system is to aid doctors to diagnose a
patient by retrieving images with known pathologies that are
similar to the patient’s image(s).

The traditional approach to CBIR represents each image in the
database by a vector of feature values [12], [20], [23], [28], [31], [32].
During retrieval, the images that are most similar to the query in
terms of some distance measure (e.g., Euclidean distance) are then
retrieved. We call this approach to CBIR the single feature vector
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approach. For this approach, the choice of similarity metric and
features to include for characterizing the images are critical factors
in its ability to achieve high retrieval precision.

This raises the question of how to define similarity. Two images
are similar if they are judged similar by the human user. Defining a
similarity metric is difficult because human perception is difficult
to model. Furthermore, similarity varies from user to user and
from one context to another. However, in medical domains and
HRCT of the lungs in particular, similarity means images that
correspond to the same disease type, stage, severity, and treatment.
We observed that the single feature vector approach will not
perform well for this domain because the features that are most
effective in discriminating among images from different classes may not
be the most effective for retrieval of images belonging to the same subclass
within a class. This occurs for domains in which not all pairs of
images within one class have equivalent perceptual similarity (i.e.,
a hierarchy of classes exists).

In HRCT of the lungs, a query image may differ from other
images within the same disease class on account of the severity of
disease and other such factors. Fig. 1 illustrates this point. Notice
that, within the class Centrilobular Emphysema (CE), Fig. 1d is
visually dissimilar to Figs. 1b and 1c. This dissimilarity corre-
sponds to differences in disease severity. Furthermore, the features
that best discriminate among disease classes are different from the
features that best discriminate between subclasses within a disease
class. For example, a feature that distinguishes Paraseptal
Emphysema from CE is the distance of the “pathology bearing
region (PBR)”' from the boundary of the lung, whereas the
features that best discriminate the images within class CE are those
that measure the gray level intensity of the PBR.

To handle this problem, we have designed, implemented, and
evaluated an approach called the “customized-queries” approach
(CQA) that uses a two-level approach to retrieval. First, it classifies
the query according to disease class labels using the features that
best discriminate the classes. Then, it retrieves the most similar
images using the features customized to distinguish “subclasses”
within a disease class. Because we are not provided with labels
indicating the subclasses within a disease, we must learn them by
applying unsupervised learning methods. Ideally, our clustering
algorithm would find clusters within a disease class corresponding
to disease stage, severity, and/or treatment. In practice, we will
seek clusters that define homogenous groupings with respect to
the features chosen to calculate visual similarity.

Forming a hierarchy of features for retrieval and storage has
been explored by other researchers, but their end goals for doing so
differ from ours. For example, in the FourEyes system [19], highly
structured objects in images, such as buildings and trees, are
represented hierarchically to facilitate structural comparisons with
a query image. Ma and Manjunath [17] built a hybrid neural
network classifier to classify the query as one of the given classes
and, then, select the n most similar images within that class cluster
using Euclidean distance. Note that the same feature set is used
both for classification and for retrieval after classification. Chen
and Bouman [3] developed an approach that organizes images in
“similarity pyramids” by grouping together images that are closest
in L1 distance. The resulting organization is used for indexing and
browsing purposes. CQA differs from these approaches because it
uses different feature sets for comparing similarity at each level
and for each class. Our approach is not limited in applicability to
medical domains, but can be applied to any domain where the
features that best discriminate the given classes are different from
those that characterize subclasses within a class.

1. The PBR is the region marked by the physician as the region of interest
or diseased region. The PBR’s are encircled by a white boundary as shown
in Fig. 1.
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Fig. 1. (a) Paraseptal Emphysema image. (b) Centrilobular Emphysema (CE) image in subclass 1. (c) CE image in subclass 1. (d) CE image in subclass 2.

2 THE CusTOMIZED-QUERIES APPROACH (CQA)

We refer to our approach as the customized-queries approach
because it allows the system to “customize” the feature set to the
query image’s class. By customization, we mean that only those
features that retrieve the most similar images within a disease class
are used. CQA, applied to our HRCT-lung domain, has two levels
of similarity. The first level addresses the similarity of the query
image to each disease class. The second level addresses similarity
in terms of disease severity, stage, treatment, structure, and/or
visual appearance. Section 2.1 describes how we customize the
Level 1 features, and Section 2.2 describes customization of Level 2
features.

During retrieval, a radiologist selects a query image and then
marks the suspected diseased region (PBR). CQA, then, classifies
the query into one of the disease categories using our Level 1
features and classifier. Next, CQA retrieves n (default four) similar
images within the query’s class, utilizing the Level 2 feature subset
customized to the query’s classified disease class. We apply
Euclidean distance as our dissimilarity metric for retrieval with
each customized feature standardized to variance one.

2.1 Level 1: Feature Selection for Classification

The first step in CQA is to classify the query into one of the given
disease classes. These pathology class labels are confirmed
diagnoses obtained from medical records, hence, we can consider
them as ground truth labels. We would like to find the features that
most accurately discriminate among the disease classes and will
yield the highest classification accuracy. To this end, we compared
several classifiers and found that the most accurate was formed by
C5.0, an algorithm for forming boosted rule sets from decision
trees [21]. Boosting is an algorithm that improves classification
accuracy by utilizing multiple classifiers [13], [25].

2.2 Level 2: Feature Selection for Unsupervised Learning

For the first level of CQA, disease classes are available to guide the
search for the features that best discriminate among the disease
classes. For the second level, we wish to find the features that best
define similarity within a single disease class. Because we are not
provided with subclass labels within each disease class, we are
faced with the problem of feature selection for unsupervised
(unlabeled) data.

Although research in feature selection for supervised learning
has a long history [1], [2], [14], [16], research in feature selection for
unsupervised learning (clustering) is relatively new. Devaney and
Ram [5] and Talavera [30] developed feature selection algorithms
for COBWEB [11] (a hierarchical clustering algorithm). Vaithya-
nathan and Dom [34] formulated an objective function for choosing
the feature subset and finding the optimal number of clusters for a
document clustering problem using a Bayesian statistical estima-
tion framework with each cluster modeled as a multinomial. These
methods are not suitable for our application because we prefer a
partitional clustering algorithm instead of hierarchical, and the
multinomial model used by Vaithyanathan and Dom [34] is not
ideal for our type of real-valued features.

Here, our goal in feature selection is to find a minimum set of
features that best discriminates the subclasses. Since the subclasses
are unknown, we need to find the features and uncover the
subclasses simultaneously. We introduce our method, FSSEM
(feature subset selection using EM clustering), which is inspired by
the wrapper approach to feature subset selection for supervised
learning [16]. Instead of using feature subset selection wrapped
around a classifier, we wrap it around a clustering algorithm. The
basic idea of our approach is to search through feature subset
space, evaluating each subset F}, by first clustering in space F;
using EM clustering and, then, evaluating the resulting clusters in
space F; using our chosen feature selection criterion. The result of
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Fig. 2. The number of cluster components varies with dimension.

this search is the feature subset that optimizes our chosen criterion
function. In [7], we illustrated that FSSEM is an effective feature
selection for unsupervised learning algorithm and evaluated
various choices for how to implement unsupervised feature
selection within the wrapper framework. In the remainder of this
section, we introduce our design choices for the domain of
clustering HRCT images of the lungs.

Search Method. Because there are 2¢ feature subsets, where d is
the number of available features, exhaustive search is intractable.
Our current implementation applies sequential forward selection
(SFS) [14] to search the features. One could choose other search
methods in the wrapper framework such as sequential backward
elimination, forward-backward, sequential floating searches, or
genetic algorithms [15], [24]. SFS is a greedy search algorithm that
adds one feature at a time. This method adds the feature that,
when combined with the current chosen set, yields the largest
improvement to our feature selection criterion. SFS does not
guarantee an optimal solution, but it is simple with O(d?)
complexity and is sufficient for our purpose.

Clustering Algorithm. Clustering aims to find the natural
groupings of the data. In our application, we assume that each
subclass grouping is Gaussian and use EM clustering. We define
EM clustering as the expectation-maximization (EM) [4] of a finite
multivariate Gaussian mixture [33], [36]. We apply the
EM algorithm to estimate the maximum likelihood mixture model
parameters and the cluster probabilities of each data point.
EM clustering results in “soft” clusters (i.e., each data point
belongs to every cluster with some probability). See [18] for a
complete description of the EM algorithm applied to clustering.

In the EM algorithm, we start with an initial estimate of our
parameters and, then, iterate using the update equations until
convergence. Note that EM is initialized for each new feature subset.
The EM algorithm can get stuck at a local maximum far from the
actual solution, hence, the initialization values are important. To
initialize EM, we used the subsampling initialization algorithm
proposed by Fayyad et al. [10] (with 10 percent subsampling and
J = 10 subsampling iterations). We then iterate until convergence
(likelihood does not change by 0.0001) or up to n (default 500)
iterations; whichever comes first. EM estimation is constrained
away from singular solutions in the parameter space by limiting
the diagonal elements of the component covariance matrices X; to
be greater than § = 0.0000010%, where o? is the average of the
variances of the unclustered data. Adding the identity matrix
multiplied by a small scalar (o) to a matrix where a > 0 makes the
final matrix positive definite (i.e., all eigenvalues are greater than
zero and hence nonsingular).

Feature Evaluation Criterion. We evaluate the clusters dis-
covered by our candidate feature subset with our feature
evaluation criterion. We would like this criterion to measure how
well the candidate feature subset separates the clusters (i.e.,
subclasses). One measure is the trace(S;'S,) criterion used in
discriminant analysis [14]. S,, measures how scattered the samples
are from their cluster means (compactness). S, measures how
scattered the cluster means are from the total mean (separability).

We would like the distance between each pair of samples in a
particular cluster to be as small as possible and the cluster means
to be as far apart as possible with respect to the chosen similarity
metric. S, 'S, is S, normalized by the average cluster covariance.
Hence, the larger the value of trace(S,'S,) is, the larger the
normalized distance between clusters is, which results in better
cluster discrimination. S,, and S, are defined as follows:

S =D EamB{(X — m)(X = )T i} = 3 i
Sb = Zf‘:l'fri(ﬂj - A[")(.ul _ A/[(/)T
M, = B{X} = Zf:ﬂiuh

where 7; is the probability of class w;, X is a random feature vector
representing the image, y; is the mean vector of class w;, M, is the
total mean across all data points or images in the database, w; is the
class w;, X; is the covariance matrix of class w;, and E{-} is the
expected value operator. Among the many possible separability
criteria, we choose trace(S,'S,) as our criterion because it is
invariant under any nonsingular linear transformation [14].

Issue 1: Finding the Number of Clusters. We tackle two issues
that arise in applying our wrapper approach to feature selection
for unsupervised learning: the need to 1) find the number of
clusters and 2) normalize the feature selection criteria with respect
to dimension. In [6] and [7], these issues are discussed in detail.

The number of clusters, k, depends on the feature subset. Fig. 2
illustrates this point. In two dimensions (shown on the left), there
are three clusters, whereas in one-dimension (shown on the right),
there are only two clusters. It is not a good idea to use a fixed & in
feature search, because different feature subsets require different
numbers of clusters. And, using a fixed number of clusters for all
subspaces does not model the data in each respective subspace
correctly. Thus, we need to find the number of clusters while
clustering each candidate feature subset. To search for k for a given
feature subset, we add a minimum description length [22] penalty
term to the log-likelihood criterion. Our new objective function
becomes: F(k, ®) = log(f(X|®)) —iLlog(Nd), where N is the
number of data points, d is the dimension, L is the number of
real numbers needed to specify the parameters ®, and log(f(X|®))
is the log-likelihood of our observed data X given the parameters
®. Note that L and ® vary with k. A penalty term is needed
because the maximum likelihood estimate increases as more
clusters are used. Without the penalty, the likelihood is at a
maximum when each data point is considered as an individual
cluster. There are myriad ways to find the “optimal” number of
clusters k with EM clustering (see Smyth [29] for an overview).

Issue 2: Criterion Normalization. In order to compare feature
subsets of different dimensionality, we need to normalize our
feature selection criterion. The separability criterion is biased
toward higher dimensions. The criterion value monotonically
increases as features are added assuming equal clustering assign-
ments [14]. This is not desirable because we would like to keep the
minimum number of features needed. To normalize our criterion
function, we project the clusters found to the two feature subspaces
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we are comparing. For example, we would like to see whether
subset Sy leads to better clusters than subset S;. We refer to the
clusters found in S, as C5, and those found in S; as C;. We
normalize the criterion value for S; as:

normalizedValue(S1) = CRIT(Sy,C1) - CRIT(S,, CY).
And, the criterion value for S as:

normalizedValue(S2) = CRIT(S,,Cs) - CRIT(Sy, Cs).

If normalizedValue(S1) > normalizedV alue(Ss), we choose feature
subset S;. When the normalized criterion values are equal for S;
and S;, we favor the lower dimensional feature subset.
CRIT(S,,C5) is the ordinary criterion value. And, CRIT(S:,C>)
is the criterion value of C, projected to Si. CRIT(S:,C:) is the
criterion value of C) in its original feature space. CRIT(S,,C)) is
the criterion value of the projection of C; on S;. Since we project
our clustering assignments to the two feature subsets we are
comparing, after normalization, we are now comparing criteria in
the same dimensions.

Complexity. The overall complexity of FSSEM is O(d*'k*ne),
where d is the number of features, k is the maximum number of
clusters, n is the number of data points, and e is the average
number of EM iterations. Note that finding Level 1 and Level 2
features is performed offline. These preselected feature subsets are
available to the system during online retrieval.

3 EXPERIMENTS

We present the results of two experiments. In the first experiment,
we investigated whether CQA achieves better retrieval precision
than the single feature vector approach. In the second experiment,
we performed an evaluation trial with eight doctors to determine
whether our system helped improve their diagnostic accuracy.

3.1 Experiment 1: CQA versus the Single Feature Vector
Approach

In this experiment (conducted in Fall of 1999), the database consists
of 312 HRCT lung images from 62 patients [8]. These images yield
615 pathology bearing regions (PBR’s) [26], which are local image
regions marked by the physician as pathological. A single image
may have several PBR’s and these PBR’s may have different
diagnoses. Throughout the experiment, we considered each PBR as
a data point (i.e., a single image with three PBR’s gives us three
data points). We used 125 implemented features as our set of
candidate features. A complete description of the full set of
features is given in [9], [26]. The features include measures of
geometric properties (centroid, area, distance from boundary),
gray-level mean, standard deviation, gray-level histogram, area
histogram, texture, and edginess measures of the local pathology
bearing regions and of the global lung image [26]. Compared to the
list of features in [9], [26], some features were removed because
they were redundant. During our searches for the Level 2 features,
we excluded the PBR location and size features that may capture
systematic effects of the PBR markings made by our physician.
Although these features cluster the images well, the resulting
clustering does not group the PBR’s according to visual similarity.
This cuts down our initial feature space to 110 features. Our
experiments compare the following two methods:

The single feature vector approach. The customized Level 1
features are used for retrieval across the entire database using
Euclidean distance.

The customized-queries approach. The customized Level 1
features classify the query image as one of the Level 1 classes.
CQA then retrieves the nearest neighbors within that class as
measured by Euclidean distance over the customized Level 2
features corresponding to the predicted class.

In assessing the performance of CQA, we assumed an ideal
classifier was used to classify the query as a Level 1 class. We did
this to isolate the effect of the Level 1 classifier on using the
appropriate Level 2 features in retrieving the images. This way,
whenever a different Level 1 classifier is applied, the approximate
effective retrieval precision can be computed as: Level 1 classifier
accuracy times Level 2 retrieval precision.

In this experiment, we customize our Level 1 features by
applying a wrapper approach that uses SFS to search the feature
space wrapped around a one nearest-neighbor (1-NN) classifier
[14]. We use a nearest-neighbor classifier because this is the
classifier /retriever of the single feature vector approach. That
way, we optimize the features for this approach. We chose 1-NN
because, in a comparison to 2, 3, 4, and 5-NN, 1-NN yielded the
smallest classification error. To estimate the classification error, we
apply 10-fold cross-validation, which randomly partitions the data
set into 10 mutually exclusive subsets. Classification error is
computed with each partition (or fold) as the test set and the rest
as the training set. The wrapper approach chose 11 Level 1 features,
which is a substantial reduction from using all of 125 possible
features. Table 1 presents a list of the selected Level 1 features, Level
2 features, and the number of clusters found for each disease class.

To determine which method is better, a radiologist in our team
(Dr. Lynn Broderick) who specializes in lung pathology, was asked
to evaluate the retrieval results of the two methods. Throughout
the test, the radiologist was not informed as to which method
produced the retrieved images. We used randomly selected images
with the following class distribution: 18 from the C-Emphysema
class, three from P-Emphysema, two from IPF, and one from each
of EG, Bronchiectasis, Sarcoid, and Aspergillus as test query
images. This test set is designed to have similar distribution
proportions as our training data. Our database disease class
distribution is available in [9]. The four images ranked most similar
to the query image were retrieved for each method. Note that all
images of the query patient are excluded from the search. The
radiologist can choose from five responses: strongly-agree (SA),
agree (A), not sure (NS), disagree (D), and strongly-disagree (SD)
for each retrieved image. To measure the performance of each
method, the following scoring system was used: 2 for strongly
agree, 1 for agree, 0 for not sure, -1 for disagree, and -2 for strongly
disagree. The results are summarized in Table 2.

The single vector approach received a total of -37 points, and CQA
garnered 178 points. To evaluate the performance of the different
methods, we report their retrieval precision in addition to our
scoring system. Retrieval precision is the number of relevant
retrievals divided by the total number of images retrieved. We
cannot measure recall because we do not have the subclass labels. We
considered SA and A as positive retrievals and NS, D, and SD as
negative retrievals. The single vector approach resulted in 38.89 per-
centretrieval precision. There were many cases where the radiologist
did not mark SA or A even though the retrieved images had the same
diagnosis as the query image. Although those images belong to the
same disease class, they have different disease severity, structure,
and/or visual appearance. CQA resulted in 90.74 percent precision
for an ideal Level 1 classifier. The Level 1 test accuracy for a 1-NN
classifier is 80.65 percent. This leads to an approximate effective
retrieval precision of 73.18 percent for CQA. From these results, we
can see that customized queries dramatically improve retrieval
precision compared to the single feature vector approach.

Our results show that it is not sufficient to retrieve images
based on just the disease class. In addition, we need to find the best
image within that class on the basis of visual similarity. Moreover,
as shown in Table 1, the feature set that best discriminates the
disease classes is different from the feature set that best
discriminates between similar subclasses within each disease class.
Hence, there exists a need for customized queries.

3.2 Experiment 2: Diagnosis with and without CBIR

We performed an evaluation trial in the Fall of 2000 to determine
whether our CBIR system helps doctors (experts and nonexperts)
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TABLE 1
The Level 1 Features, Level 2 Features, and the Number of Clusters Found

Level 1 Features

global gray level mean, global area, 2 global histogram features,
closest fissure, distance from fissure, 2 texture constrast features,
edge feature, local histogram feature, texture homogeneity

Level 2 Features

C-Emphysema
texture correlation

Disease Class Feature Set Clusters
Aspergillus 2 local gray histogram features 5
Bronchiectasis global histogram, local gray mean, 2 local area histogram, | 2

2 area histogram, 3 local histogram, 2 texture energy,
texture correlation at distance 3
area histogram, local histogram, 2 texture energy,

EG global histogram, local histogram

P global histogram, arca histogram, 3 texture homogencity
P-Emphysema global histogram, texture homogeneity

Sarcoid mean - global mean

&2}

diagnose new patients. The trial employed a custom coded Web-
based interface which participants can access from any Internet-
attached computer using a standard Java-enabled browser. The
trial consisted of two phases:

Phase A. For each patient, we presented the doctor with one lung
image (chosen to be representative of the disease by our lung
specialist, Dr. Lynn Broderick) and with a list of diagnoses
(including the choices “normal” and “other”). The physician
was required to choose one and only one diagnosis, which the
system records. It should be noted that the nature of the
presentation was such that even an expert cannot achieve a
“perfect” score. Only one image was presented for each patient,
and the image was displayed showing a lung window only; the
window and level could not be adjusted. No demographic or
clinical data was provided. Furthermore, there was overlap in
the list of possible diagnoses, that even an expert could not be
expected to resolve without additional information.

Phase B. One week later we ran the same trial, but this time we
allowed the doctors to use our system to assist with diagnosis.
In this phase, the images displayed in phase A were again
presented, one case at a time, and in a random order. The
doctor now used the computer mouse to mark a suspected
pathology bearing region in the query image. The system then
retrieved the four most similar images with their corresponding
disease labels. The system used the customized queries method
for retrieval. The doctor was informed about the operation of
the system and understood that the matching images chosen by

the computer may or may not be correct; it was up to the
physician to determine whether or not to accept the diagnosis
presented by the computer. After viewing the displayed
matching images, the physician chose the single “best”
diagnosis from the same pull down list as in phase A.

Eight doctors participated in this trial: two lung experts, one
liver expert, three general practitioners, one resident, and one
fellow. We divided the data into train and test sets. Our retrieval
method, CQA, was trained offline with 874 images from
149 patients resulting in 1,545 pathology bearing regions. A
separate test set from 23 patients and 29 images was used as the
query database. We designed our test set to have similar disease
class proportion as the training data. The actual patients/images
were selected randomly. In this experiment, we have a total of 210
base features (the original 125 plus Shyu’s perceptual features
[27]). In this experiment, we used C5.0, described in Section 2.1, as
our Level 1 classifier.

The results of the trial show that our CBIR system improved the
diagnosis accuracy for all types of physicians in our experiment,
and helped nonspecialists more than specialists. Overall, our
system improved diagnosis accuracy from 30.2 percent in phase A
to 63.4 percent in phase B. The number of diagnoses that changed
from wrong to right is 80, from right to wrong is three, and from
wrong to wrong is 46. The low diagnosis accuracy in phase A can
be attributed to the following four factors:

1. Doctors are used to looking at HRCT images through film.
2. Typically they have several image slices to view.

TABLE 2
Experiment 1: Results

Disease

Single Vector

CQA

Class A | NS

D

SD

Z
)
w
d

CE
PE 0
e 5
G 0
Sar. 0
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0

5

Asper.
Bron.
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—
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total

e occ oo oy

Gl o e o
slococ o
DS D === DL

[S1%
©
N

score =37

—
-1

8

ret. precision 38.89%

90.74%
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3. The patient’s medical history is available.
4. Many of the doctors that participated are not lung
specialists.
Nevertheless, provided with only a single HRCT image slice
displayed on the computer, our system enabled the physicians to
double their diagnostic accuracy.

4 SUMMARY

We introduced the customized-queries approach to CBIR, which
first classifies a query using the features that best differentiate the
Level 1 classes and, then, customizes the query to that class by
using the features that best distinguish the subclasses (the Level 2
classes) within the chosen Level 1 class. The two-level approach
was motivated by the hierarchical similarity structure of our lung
database. Retrieval of images from the same disease class as the
query image was not sufficiently accurate; the retrieved images
should belong to the same subclass according to image structure,
disease stage, and/or severity. Moreover, we observed that the
image features that work best to discriminate among different
classes are different from the features needed to retrieve “similar”
images (i.e., images belonging to the same subclass) within each
class. Thus, we customize our features accordingly. The Level 2
step in CQA required that we solve the feature selection for
unsupervised data problem (our Level 2 subclasses were un-
labeled). We presented our method for performing feature
selection and clustering simultaneously (FSSEM). FSSEM wraps
feature subset search around EM clustering. EM clustering applies
the expectation-maximization algorithm to approximate the max-
imum likelihood parameter estimate of a finite multivariate
Gaussian mixture. Our first experiment on HRCT images of the
lungs shows that CQA yields 73.18 percent effective retrieval
precision, whereas the single feature vector approach yields only
38.89 percent retrieval precision. Moreover, an evaluation trial
with eight radiologists showed that our system, using
CQA retrieval, increased our doctors’ diagnostic accuracy from
30.2 percent to 63.4 percent.

In the future, it would be interesting to investigate applying
CQA on other domains and on extending CQA to more than two
hierarchical levels. Currently, CQA returns images from a single
major class. Future research would extend CQA to return images
from the next most probable major class allowing our system to
provide second and third guesses as desired by the user. This
would address the central limitation of CQA: the dependency of
CQA'’s retrieved results on the accuracy of the Level 1 classifier.
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