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ABSTRACT
The problem of feature selection has raised considerable in-
terests in the past decade. Traditional unsupervised meth-
ods select the features which can faithfully preserve the in-
trinsic structures of data, where the intrinsic structures are
estimated using all the input features of data. However,
the estimated intrinsic structures are unreliable/inaccurate
when the redundant and noisy features are not removed.
Therefore, we face a dilemma here: one need the true struc-
tures of data to identify the informative features, and one
need the informative features to accurately estimate the true
structures of data. To address this, we propose a unified
learning framework which performs structure learning and
feature selection simultaneously. The structures are adap-
tively learned from the results of feature selection, and the
informative features are reselected to preserve the refined
structures of data. By leveraging the interactions between
these two essential tasks, we are able to capture accurate
structures and select more informative features. Experi-
mental results on many benchmark data sets demonstrate
that the proposed method outperforms many state of the
art unsupervised feature selection methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms
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Real world applications usually involve big data with high
dimensionality, presenting great challenges such as the curse
of dimensionality, huge computation and storage cost. To
tackle these difficulties, feature selection techniques are de-
veloped to keep a few relevant and informative features. Ac-
cording to the availability of label information, these algo-
rithms can be categorized into supervised [25], [22], [20],
[17], semi-supervised [33], [27] and unsupervised algorithms
[6], [4]. Compared to supervised or semi-supervised counter-
parts, unsupervised feature selection is generally more chal-
lenging due to the lack of supervised information to guild
the search of relevant features.

Unsupervised feature selection has attracted much atten-
tion in recent years and a number of algorithms have been
proposed [8, 4, 36, 28, 16]. Without class label, unsuper-
vised feature selection chooses features that can effectively
reveal or maintain the underlying structure of data. Recent
research on feature selection and dimension reduction has
witnessed that several important structures should be pre-
served by the selected features. These important structures
include, but not limited to, the global structure [36, 16], the
local manifold structure [9, 10] and the discriminative infor-
mation [28, 14]. And these structures can be captured by
widely used models in the form of graph, such as, the sample
pairwise similarity graph [36], the k-nn graph [8], the glob-
al integration of local discriminant model [28, 31], the local
linear embedding (LLE) [16].

Clearly, many of existing unsupervised feature selection
methods rely on the structure characterization through some
kind of graph, which can be computed within the original
feature space. And once the graph is determined, it is fixed
in the next procedures, such as sparse spectral regression [3],
to guide the search of informative features. Consequently,
the performance of feature selection is largely determined by
the effectiveness of graph construction. Ideally, such graph-
s should be constructed only using the informative feature
subset rather than all candidate features. Unfortunately, the
desired subset of features is unknown in advance, and the
irrelevant or noisy features would be inevitably introduced
in many real applications. As a result, unrelated or noisy
features will have an adverse effect on the characterization
of the structures and henceforth hurt the following feature
selection performance.

In unsupervised scenario, this is actually the chicken-and-
egg problem between structure characterization and feature
selection. Facing with such dilemma, we propose to perform
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Figure 1: An illustration of unsupervised filter methods and four type embedded methods.

feature selection and structure learning in a unified frame-
work, where each sub task can be iteratively boosted by us-
ing the result of the other one. Concretely, the global struc-
ture of data is captured within the sparse representation
framework, where the reconstruction coefficient is learned
from the selected features. The local manifold structure is
revealed by a probabilistic neighborhood graph, where the
pairwise relationship is also determined by the selected fea-
tures. When the global and local structures are given in the
form of graph Laplacians, we seek the relevant features via
sparse spectral regression with the help of graph embedding
for cluster analysis. In this way, both the global and local
structure of data can be better captured by only using the s-
elected features; Moreover, with the refined characterization
of the structure, a better search of the informative features
could also be expected.

It is worthwhile to highlight several aspects of the pro-
posed approach here

1. Based on the different learning paradigms for unsuper-
vised feature selection, we investigate most of existing
unsupervised embedded methods and further classi-
fy them into four closely related but different types.
These analyses provide more insight into what should
be further emphasized on the development of more es-
sential unsupervised feature selection algorithm.

2. We propose a novel unified learning framework, called
unsupervised Feature Selection with Adaptive Struc-
ture Learning (FSASL in short), to fulfil the gap be-
tween two essential sub tasks, i.e. structure learning
and feature learning. In this way, these two tasks can
be mutually improved.

3. Comprehensive experiments on benchmark data sets
show that our method achieves statistically significan-
t improvement over state-of-the-art feature selection
methods, suggesting the effectiveness of the proposed
method.

2. RELATED WORKS
In this section, we mainly review most existing unsuper-

vised feature selection methods, i.e. filter and embedded

methods. Unsupervised filter methods pick the features one
by one based on certain evaluation criteria, where no learn-
ing algorithm is involved. The typical methods include:
max variance (MaxVar) [12], Laplacian score (LapScore) [8],
spectral feature selection (SPEC) [34], feature selection via
eigenvalue sensitive criterion (EVSC) [4]. A common limi-
tation of these approaches is the correlation among features
is neglected [1].

Unsupervised embedded approaches are developed to per-
form feature selection and fit a learning model simultaneous-
ly. Based on the different sub-steps involved in the feature
selection procedure, these embedded methods can be further
divided into four different types as illustrated in Figure 1.

The first type of embedded methods first detect the struc-
ture of the data and then directly select those features which
is used to best preserve the enclosed structure. The typical
methods include: trace ratio (TraceRatio) [19] and unsu-
pervised discriminative feature selection (UDFS) [28]. Trac-
eRatio is prone to select redundant features [16] and the
learning model of UDFS is often too restrictive [21].

The second type of embedded methods first construct vari-
ous graph Laplacians to capture the data structure, then flat
the cluster structure via graph embedding, and finally use
the sparse spectral regression [3] to select those features that
are best aligned to the embedding. Instead of directly select-
ing features as the first type, these approaches resorted to an
intermediate cluster analysis sub-step to reveal the cluster
structure for guiding the selection of features. The cluster
structure discovered by either the graph spectral embedding
or other clustering module can be seen as an approximation
of the unseen labels. The typical methods include: multi-
cluster feature selection (MCFS) [4], minimum redundancy
spectral feature selection (MRSF) [35], similarity preserv-
ing feature selection (SPFS) [36], and joint feature selection
and subspace learning (FSSL) [7], global and local structure
preserving feature selection (GLSPFS) [16].

Unlike the second type methods, the clustering analysis
in the third type of embedded methods is co-determined
by the embedding of the graph Laplacian and the adap-
tive discriminative regularization [29], [31], which can be
obtained from the result of sparse spectral regression. By
using the feedback from feature selection, the whole learn-
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ing procedure can provide better cluster analysis, and vice
versa. The typical methods include: joint embedding learn-
ing and spectral regression (JELSR) [11], [10], nonnegative
discriminative feature selection (NDFS) [14], robust unsu-
pervised feature selection (RUFS) [21], feature selection via
clustering-guided sparse structural learning (CGSSL) [13].

The fourth type of embedded methods try to feed the
result of feature selection into the structure learning proce-
dure for improving the quality of structure learning. In [32],
a feature selection method is proposed for local learning-
based clustering (LLCFS), which incorporates the relevance
of each feature into the built-in regularization of the local
learning model, where the induced graph Laplacian can be
iteratively updated. However, LLCFS uses the discrete k-
nearest neighbor graph and does not optimize the same ob-
jective function in structure learning and feature search.

It can be seen that all these above methods (except LL-
CFS) share a common drawback: they use all features to
estimate the underlying structures of data. Since the re-
dundant and noisy features are unavoidable in real world
applications, that is also why we need feature selection, the
learned structures using all features will also be contaminat-
ed, which would degrade the performance of feature selec-
tion. By leveraging the coherent interactions between struc-
ture learning and feature selection, our proposed method
seamlessly integrates them into a unified framework, where
the result of one task is used to improve the other one.

3. UNSUPERVISED FEATURE SELECTION
WITH ADAPTIVE STRUCTURE LEARN-
ING

Let X = {x1, ...,xn} ∈ Rd×n denotes the data matrix,
whose columns correspond to data instances and rows to
features. The generic problem of unsupervised feature s-
election is to find the most informative features. With the
absence of class label to guild the search of relevant features,
the data represented with the selected features should well
preserve the intrinsic structure as the data represented by
all the original features.

To achieve this goal, we propose to jointly perform unsu-
pervised feature selection and data structure learning simul-
taneously, where both global and local structure are adap-
tively updated using the result of current feature selection.

We first summarize some notations used throughout this
paper. We use bold uppercase characters to denote matrices,
bold lowercase characters to denote vectors. For an arbitrary
matrix A ∈ Rr×t, ai means the i-th column vector of A
and aTj means the j-th row vector of A, Aij denotes the
(i, j)-th entry of A. The `2,1-norm is defined as ||A||21 =∑r
i=1

√∑t
j=1 A

2
ij .

3.1 Adaptive Global Structure Learning
Over the past decades, a large number of algorithms have

been proposed based on the analysis of the global structure
of data, such as the Principal Component Analysis (PCA)
and the Maximum Variance (MaxVar). Recently, the global
pairwise similarity (e.g., with a Gaussian kernel) between
high-dimensional samples has demonstrated promising per-
formance for unsupervised feature selection [36, 16]. Howev-
er, such dense similarity becomes less discriminative for high

dimension data, especially when there are many unfavorable
features in the original high dimensional space.

Inspired by the recent development on compressed sensing
and sparse representation [26], we use the sparse reconstruc-
tion coefficients to extract the global structure of data. In
sparse representation, each data sample xi can be approxi-
mated as a linear combination of all the other samples, and
the optimal sparse combination weight matrix S ∈ Rn×n
can be obtained by solving the following problem

min
S

n∑
i=1

(
||xi −Xsi||2 + α||si||1

)
s.t. Sii = 0 (1)

where α is used to balancing the sparsity and the recon-
struction error. Compared with the pairwise similarity, the
sparse representation is naturally discriminative: among all
the candidates samples, it selects the samples which most
compactly expresses the target and rejects all other possible
but less compact candidates [26].

Clearly, the selected features should preserve such global
and sparse reconstruction structure. To achieve this, we
introduce a row sparse feature selection and transformation
matrix W ∈ Rd×c to the reconstruction process, and get

min
S,W

n∑
i=1

||WTxi −WTXsi||2 + α||S||1 + γ||W||21 (2)

s.t. Sii = 0,WTXXTW = I

where γ is regularization parameter. Compared with the
Eq.(1), the benefits of Eq.(2) are two folds: 1) The global
structure captured by S can be used to guide the search of
relevant features; 2) By largely eliminating the adverse effect
of noisy and unfavorable features, the global structure can
also be better estimated.

3.2 Adaptive Local Structure Learning
The importance of preserving local manifold structure has

been well recognized in the recent development of unsu-
pervised feature selection algorithms, especially considering
that high-dimensional data often presents a low-dimensional
manifold structure [8, 4, 16]. To detect the underlying lo-
cal manifold structure, these algorithms usually first con-
struct a k-nearest neighbor graph and then compute the
graph Laplacian with different models. Clearly, both the k-
nn graph and the graph Laplacian are determined by all the
relevant and irrelevant features. As a result, the manifold
structure captured by such graph Laplacian would be in-
evitably affected by the redundant and noisy features. More-
over, the iterative updating of discrete neighborhood rela-
tionship using the result of feature selection still suffers from
the lack of theoretical guarantee of its convergence [32, 24].

Instead of using the graph Laplacian with the determinate
neighborhood relationship, we introduce to directly learn a
euclidean distance induced probabilistic neighborhood ma-
trix [18]. For each data sample xi, all the data points
{xj}nj=1 are considered as the neighborhood of xi with prob-
ability Pij , where P ∈ Rn×n can be determined by solving
the following problem:

min
P

∑
i,j

(||xi − xj ||22Pij + µP2
ij), s.t. P1n = 1n,P ≥ 0 (3)

where µ is the regularization parameter. The regularization
term is used to 1) avoid the trivial solution; 2) add a prior
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of uniform distribution. It can be found that a large dis-
tance ||xi − xj ||22 will lead to a small probability Pij . With
such nice property, the estimated weight matrix P and the
induced Laplacian LP = DP − (P + PT )/2 can be used
for local manifold characterization, where DP is a diagonal
matrix whose i-th diagonal element is

∑
j(Pij + Pji)/2.

To leverage the result of feature selection and iteratively
improve the probabilistic neighborhood relationship, we also
introduce the feature selection and transformation matrix
W as used in global structure adaptive learning, and we get

min
P,W

n∑
i,j

(||WTxi −WTxj ||22Pij + µP2
ij) + γ||W||21 (4)

s.t. P1n = 1n,P ≥ 0,WTXXTW = I

With the sparsity on W, the irrelevant and noisy features
can be largely removed, thus we can learn a better prob-
abilistic neighborhood graph for local structure characteri-
zation based on the result of feature selection, i.e. WTX.
Moreover, we aim to seek those features to preserve the local
structure encoded by P. Thus, the optimization problem in
Eq. (4) can be used to perform feature selection and local
structure learning, simultaneously.

3.3 Unsupervised Feature Selection with Adap-
tive Structure Learning

Based on the two adaptive structure learning models p-
resented in Eq. (2) and Eq. (4), we propose a novel unsu-
pervised feature selection method by solving the following
optimization problem,

min
W,S,P

(
||WTX−WTXS||2 + α||S||1

)
(5)

+ β

n∑
i,j

(
||WTxi −WTxj ||2Pij + µP2

ij

)
+ γ||W||21

s.t. Sii = 0,P1n = 1n,P ≥ 0,WTXXTW = I

where β and γ are regularization parameters balancing the
fitting error of global and local structure learning in the first
and second group and the sparsity of the feature selection
matrix in the third group.

It can be seen that when both S and P are given, our
method selects those features to well respect both the glob-
al and local structure of data. When the feature selection
matrix W is given, our method learns the global and local
structure of data in a transformed space, i.e. WTX, where
the adverse effect of noisy features is largely alleviated with
sparse regularization. In this way, these two essential tasks
can be boosted by the other one within a unified learning
framework. Since both the global and local structure can
be adaptively refined according to the result of feature se-
lection, we call Eq. (5) unsupervised Feature Selection with
Adaptive Structure Learning (FSASL).

3.4 Optimization Algorithm
Because the optimization problem in Eq. (5) comprises

three different variables with different regularizations and
constraints, it is hard to derive its closed solution directly.
Thus we derive an alternative iterative algorithm to solve
the problem, which converts the problem with a couple of
variables (S, P and WT ) into a series of sub problems where
only one variable is involved.

First, when W and P are fixed, we need to solve n decou-
pled sub problems in the following form:

min
si

||x
′
i −X

′
si||2 + α|si|, s.t. Sii = 0 (6)

where X
′

is the new transformed data by projecting the rel-

evant features into a low dimension space, and X
′

= WTX.
The above LASSO problem can be efficiently solved by rou-
tine optimization tools, e.g. proximal methods [2, 15].

Next, when WT and S are fixed, we need to solve n de-
coupled sub problems in the following form:

min
pT
i

n∑
j=1

||x
′
i − x

′
j ||2Pij + µ||Pij ||2, (7)

s.t. 1Tnpi = 1,Pij ≥ 0

Denote A ∈ Rn×n be a square matrix with Aij = − 1
2µ
||x

′
i−

x
′
j ||2, then the above problem can be written as follows

min
pT
i

1

2
||pTi − aTi ||2, s.t. pTi 1n = 1, 0 ≤ pTij ≤ 1 (8)

where pTi is the i-th row of P. The above euclidean projec-
tion of a vector onto the probability simplex can be efficient-
ly solved by Algorithm 1 without iterations. More details
can be found in Eq. (19).

Algorithm 1 The optimization algorithm of Eq. (8)

Input: a
sort a into b where b1 ≥ b2 ≥, ..., bn
find ρ = max{1 ≤ j ≤ n : bj + 1

j
(1−

∑j
i=1 bi) > 0}

define z = 1
ρ
(1−

∑ρ
i=1 bi)

Output: p with pj = max{aj + z, 0}, j = 1, ..., n

Next, when S and P are fixed, we need to solve the fol-
lowing problem:

min
W

||WTX−WTXS||2 + β

n∑
i,j

||WTxi −WTxj ||2Pij + γ||W||21

s.t. WTXXTW = I (9)

Using LS = (I − S)(I − S)T , LP = DP − (P + PT )/2 and
let L = LS + βLP, the above problem can be rewritten as

min
W

Tr(WTXLXTWT ) + γ||W||21 (10)

s.t. WTXXTW = I

Due to the non-smooth regularization, it is hard to obtain
the close form solution. We solve it in an iterative way.
Given the t-th estimation Wt and denote DWt be a diagonal
matrix with the i-th diagonal element as 1

2||wt
i ||

2 , Eq. (10)

can be rewritten as:

min
W

Tr
(
WTX(L + γDWt)XTW

)
(11)

s.t. WTXXTW = I

The optimal solution of W are the eigenvectors correspond-
ing to the c smallest eigenvalues of generalized eigen-problem:

X(L + γDWt)XTW = ΛXXTW (12)
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where Λ is a diagonal matrix whose diagonal elements are
eigenvalues. To get a stable solution of this eigen-problem,
the matrices XXT is required to be non-singular which is not
true when the number of features is larger than the number
of samples. Moreover, the computational complexity of this
approach scales as O(d3 + nd2), which is costly for high
dimensional data. Thus, such solution is less attractive in
real world applications. To improve the effectiveness and
the efficiency to optimize Eq. (10), we further resort to a
two steps procedure inspired from [3].

Theorem 1. Let Y ∈ Rn×c be a matrix of which each
column is an eigenvector of eigen-problem Ly = λy. If
there exists a matrix W ∈ Rd×c such that XTW = Y, then
each column of W is an eigenvector of the generalized eigen-
problem XLXTw = λXXTw with the same eigenvalue λ.

Proof. With XTW = Y, the following equation holds

XLXTw = XLy = Xλy = λXy = λXXTw (13)

Thus, y is the eigenvector of the generalized eigen-problem
XLXTw = λXXTw with the same eigenvalue λ.

Theorem 1 shows that instead of solving the generalized
eigen-problem in Eq. (12), W can be obtained by the fol-
lowing two steps:

1. Solve the eigen-problem LY = ΛY to get Y corre-
sponding to the c smallest eigenvalues;

2. Find W which satisfies XTW = Y. Since such W
may not exist in real applications, we resort to solve
the following optimization problem:

min
W

||Y −XTW||2 + γ||W||21 (14)

The optimal solution of Eq. (14) can also be obtained
from routine optimization tools, such as the iterative
re-weighted method and the proximal method [15].

The complete algorithm to solve FSASL is summarized in
algorithm 2.

Algorithm 2 The optimization algorithm of FSASL

Input: The data matrix X ∈ Rd×n, the regularization pa-
rameters α, β, γ, µ, the dimension of the transformed
data c.
repeat

For each i, update the i-th column of S by solving the
problem in Eq. (6);
For each i, update the i-th row of P using Algorithm 1;
Compute the overall graph Laplacian L = LS + βLP;
Compute W by Eq. (12) or Eq. (14);

until Converges
Output: Sort all the d features according to ||wi||2(i =

1, ..., d) in descending order and select the top m ranked
features.

3.5 Convergence Analysis
FSASL is solved in an alternative way, the optimization

procedure will monotonically decrease the objective of the
problem in Eq. (5) in each iteration. Since the objective
function has lower bounds, such as zero, the above iteration
converges. Besides, the experimental results show that it
converges fast, the time of iteration is often less than 20.

3.6 The determination of parameter µ

Since the parameter µ is used to control the trade off be-
tween the trivial solution (µ = 0) and the uniform distribu-
tion (µ =∞), we would like to keep only top-k neighbors for
local manifold structure characterization as the k-nn graph
[18]. Inspired by recent work on adaptive clustering in [18],
we provide an effective method to achieve this. For each sub
problem in Eq. (8), the Lagrangian function is

1

2
||pTi − aTi ||2 − τ(pTi 1n − 1)− ηTi pi (15)

where τ and ηi are the Lagrangian multipliers. According
to KKT condition, the optimal value can be obtained by

Pij = (Aij + τ)+ (16)

By sorting each row of A into B with ascending order, the
following inequality holds{

Bik′ + τ > 0 for k′ = 1, ..., k

Bik′ + τ ≤ 0 for k′ = k + 1, ..., n
(17)

Considering the simplex constraint on pTi , we further get

τ =
1

k
(1−

k∑
k′=1

Bik′) (18)

By replacing Eq. (18) into Eq. (16), the optimal value of P
can be obtained by

Pij = (Aij −
1

k
(1−

k∑
k′=1

Bik′))+ (19)

Since Bik′ = − 1
2µ
||Wxi−Wxk′ ||2 = dWik′ , for each subprob-

lem we have

k

2
dWik −

1

2

k∑
k′=1

dWik′ < µ ≤ k

2
dWi,k′+1 −

1

2

k∑
k′=1

dWik′ (20)

When µ satisfies the above inequality for i-th example, the
corresponding pTi has k non-zero component. Therefore the
average non-zero elements in each row of P is close to k
when we set

µ =
1

n

n∑
i=1

(
k

2
dWi,k′+1 −

1

2

k∑
k′=1

dWik′

)
(21)

In this way, the search of parameter µ can be better handled
by searching the neighborhood size k, which is more intuitive
and easy to tune.

4. DISCUSSION
In this section, we discuss some approaches which are

closely related to our method.
Zeng and Cheung [32] proposed to integrate feature selec-

tion within the regularization of local learning-based clus-
tering (LLCFS), which involves two sub steps:

1. It constructs the k-nearest neighbor graph in the weight-
ed feature space.
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2. It performs joint clustering and feature weight learning
by solving the following problem

min
Y,{Wi,bi}ni=1,z

n∑
i=1

c∑
c′=1

 ∑
xj∈Nxi

β(Yic′ − xTj W
i
c′ − bic′)

2

+ (Wi
c′)

Tdiag(z−1)Wi
c′

]
(22)

s.t. 1Td z = 1, z ≥ 0

where z is the feature weight vector and Nxi is the
k-nearest neighbor of xi based on z weighted features.

Compared with LLCFS, FSASL performs both the global
and local structure learning in an adaptive manner, where
only local structure is explored by LLCFS. Moreover, LL-
CFS uses the discrete k-nearest graph and does not optimize
the same objective function in structure learning and feature
search, while FSASL is optimized within a unified framework
with the probabilistic neighborhood relationship.

Hou et al. [10] proposed the joint embedding learning and
sparse regression (JELSR) method, which can be formulated
as follows:

min
W,YTY=I

tr(YTL2Y) + λ1(||Y −XTW||2 + λ2||W||21)

(23)

Comparing the formulation in Eq. (5) and Eq. (23), the
main differences between FSASL and JELSR include: 1) F-
SASL selects those features to respect both the global and
local manifold structure, while JELSR only incorporates the
local manifold structure; 2) The local structure in JELSR
is based on k-nearest neighbor graph, while FSASL learn-
s a probabilistic neighborhood graph, which can be easily
refined according the result of feature selection. 3)JELSR
iteratively perform spectral embedding for clustering and s-
parse spectral regression for feature selection as illustrated
in Fig. (1). However, the local structure itself (i.e. L2) is
not changed during iterations. FSASL can adaptively im-
prove both the global and local structure characterization
using selected features.

Most recently, Liu et al. [16] proposed a global and lo-
cal structure preservation framework for feature selection
(GLSPFS). It first constructs the pairwise sample similari-
ty matrix K with Gaussian kernel function to capture the
global structure of data, then decompose K = YYT . Us-
ing Y as the regression target, GLSPFS solve the following
problem:

min
W
||Y −XTW||2 + λ1tr(WTXL3X

TW) + λ2||W||21
(24)

The main differences between FSASL and GLSPFS include:
1) GLSPFS uses the Gaussian kernel, while FSASL captures
the global structure within sparse representation, which is
more discriminant; 2) Both the global and local structures
(i.e. K and L3) in GLSPFS are based on all features, while
FSASL refines these structures with selected features.

5. EXPERIMENTS
In this section, we conduct extensive experiments to eval-

uate the performance of the proposed FSASL for the task of
unsupervised feature selection.

5.1 Data Sets
The experiments are conducted on 8 publicly available

datasets, including handwritten and spoken digit/letter recog-
nition data sets (i.e., MFEA from UCI reporsitory and USP-
S49 [32] which is a two class subset of USPS), three face im-
age data sets (i.e., UMIST [10], JAFFE [14, 23], AR [30]),
one object data set (i.e. COIL [4, 5]) and one biomedi-
cal data sets (i.e., LUNG [17], TOX). The details of these
benchmark data sets are summarized in Table 3.

Table 3: Summary of the benchmark data sets and the num-
ber of selected features

Data Sets sample feature class selected features

MFEA 2000 240 10 [5, 10, . . . , 50]
USPS49 1673 256 2 [5, 10, . . . , 50]
UMIST 575 644 20 [5, 10, . . . , 50]
JAFFE 213 676 10 [5, 10, . . . , 50]

AR 840 768 120 [5, 10, . . . , 50]
COIL 1440 1024 20 [5, 10, . . . , 50]
LUNG 203 3312 5 [10, 20, . . . , 150]
TOX 171 5748 4 [10, 20, . . . , 150]

5.2 Experiment Setup
To validate the effectiveness of our proposed FSASL1 , we

compare it with one baseline (i.e., AllFea) and states-of-the-
art unsupervised feature selection methods,

• LapScore2 [8], which evaluates the features according
to their ability of locality preserving of the data man-
ifold structure.

• MCFS3 [4], which selects the features by adopting spec-
tral regression with `1-norm regularization.

• LLCFS [32], which incorporates the relevance of each
feature into the built-in regularization of the local learning-
based clustering algorithm.

• UDFS4 [28], which exploits local discriminative infor-
mation and feature correlations simultaneously.

• NDFS5 [14], which selects features by a joint frame-
work of nonnegative spectral analysis and `2,1-norm
regularized regression.

• SPFS6 [36], which selects a feature subset with which
the pairwise similarity between high dimensional sam-
ples can be maximally preserved.

• RUFS7 [21], which performs robust clustering and ro-
bust feature selection simultaneously to select the most
important and discriminative features.

1For the purpose of reproducibility, we provide the code at
https://github.com/csliangdu/FSASL
2http://www.cad.zju.edu.cn/home/dengcai/Data/code/
LaplacianScore.m
3http://www.cad.zju.edu.cn/home/dengcai/Data/code/
MCFS_p.m
4http://www.cs.cmu.edu/~yiyang/UDFS.rar
5https://sites.google.com/site/zcliustc
6https://sites.google.com/site/alanzhao
7https://sites.google.com/site/qianmingjie

214



Table 1: Aggregated clustering results measured by Accuracy (%) of the compared methods.

Data Sets AllFea LapScore MCFS LLCFS UDFS NDFS SPFS RUFS JELSR GLSPFS FSASL

MFEA 68.73
51.78
± 5.51
0.00

51.04
± 8.13
0.00

60.38
± 8.58
0.00

48.94
± 3.32
0.00

67.13
± 7.53
0.01

68.20
± 9.43
0.22

64.58
± 7.99
0.00

67.01
± 8.37
0.01

61.00
± 8.70
0.00

69.94
± 7.19
1.00

USPS49 77.70
69.21
± 8.95
0.00

53.74
± 3.50
0.00

94.96
± 1.44
0.03

94.05
± 1.13
0.00

68.12
± 8.18
0.00

83.43
± 6.66
0.00

85.86
± 2.58
0.00

95.16
± 0.55
0.00

94.75
± 0.61
0.00

95.95
± 0.48
1.00

UMIST 42.40
36.73
± 1.18
0.00

44.46
± 3.26
0.00

47.31
± 0.83
0.00

48.04
± 1.92
0.00

52.80
± 2.26
0.00

46.72
± 1.70
0.00

50.87
± 1.95
0.00

53.52
± 1.54
0.01

50.53
± 0.59
0.00

54.92
± 1.89
1.00

JAFFE 71.57
67.62
± 8.49
0.00

73.56
± 4.83
0.00

64.79
± 4.08
0.00

75.48
± 1.63
0.00

74.98
± 2.15
0.00

73.93
± 2.85
0.00

75.75
± 2.53
0.00

77.77
± 1.87
0.00

75.46
± 1.61
0.00

79.29
± 2.24
1.00

AR 30.26
25.29
± 2.89
0.00

29.05
± 1.19
0.00

34.22
± 2.70
0.05

30.87
± 0.35
0.00

32.34
± 1.52
0.00

31.06
± 2.14
0.00

34.84
± 1.90
0.04

34.19
± 2.52
0.02

34.12
± 1.60
0.00

36.11
± 0.75
1.00

COIL 59.17
45.60
± 6.16
0.00

51.50
± 5.38
0.00

50.84
± 3.76
0.00

31.40
± 16.89

0.00

44.22
± 6.33
0.00

56.94
± 3.43
0.00

59.20
± 3.28
0.00

59.53
± 4.01
0.03

57.96
± 2.27
0.00

60.93
± 2.50
1.00

LUNG 72.46
58.97
± 5.24
0.00

70.42
± 3.41
0.00

71.58
± 5.85
0.00

65.46
± 3.88
0.00

75.52
± 1.57
0.00

73.49
± 3.43
0.00

77.35
± 2.62
0.00

77.86
± 3.12
0.00

77.83
± 2.70
0.00

81.93
± 1.63
1.00

TOX 43.65
40.25
± 0.65
0.00

43.10
± 1.86
0.00

39.28
± 0.49
0.00

47.14
± 0.75
0.00

38.28
± 1.64
0.00

39.93
± 1.13
0.00

47.67
± 0.83
0.00

43.96
± 1.56
0.00

47.38
± 1.93
0.00

49.17
± 0.67
1.00

Average 58.24 49.43 52.11 57.92 55.17 56.67 59.21 62.02 63.63 62.38 66.03

• JELSR8 [11, 10], which joins embedding learning with
sparse regression to perform feature selection.

• GLSPFS9 [16], which integrates both global pairwise
sample similarity and local geometric data structure
to conduct feature selection.

There are some parameters to be set in advance. For all
the feature selection algorithms except SPFS, we set k = 5
for all the datasets to specify the size of neighborhoods [4,
13]. The weight of k-nn graph for LapScore and MCFS, and
the pairwise similarity for SPFS and GLSPFS is based on
the Gaussian kernel, where the kernel width is searched from
the grid {2−3, 2−2, . . . , 23}δ0, where δ0 is the mean distance
between any two data examples. For GLSPFS, we report the
best results among three local manifold models, that is lo-
cality preserving projection (LPP), LLE and local tangent s-
pace alignment (LTSA) as in [16]. For LLCFS, UDFS, NDF-
S, RUFS, JELSR, GLSPFS and FSASL, the regularization
parameters are searched from the grid {10−5, 10−4, . . . , 105}.
And the regularization parameter for γ is searched from the
grid {0.001, 0.005, 0.01, 0.05, 0.1}γmax, where γmax is auto-
matically computed from SLEP [15]. For FSASL, µ is de-
termined by Eq. (21) with k = 5 and c is set to be the true
number of classes. To fairly compare different unsupervised
feature selection algorithms, we tune the parameters for all
methods by the grid-search strategy [21, 16, 5].

With the selected features, we evaluate the performance
in terms of k-means clustering by two widely used metrics,
i.e., Accuracy (ACC) and Normalized Mutual Information

8http://www.escience.cn/people/chenpinghou
9We also use the implementation provided by the authors.

(NMI). The results of k-means clustering depend on the ini-
tialization. For all the compared algorithms with different
parameters and different number of selected features, we first
repeat the clustering 20 times with random initialization and
record the average results.

5.3 Clustering with Selected Features
Since the optimal number of selected features is unknown

in advance, to better evaluate the performance of unsuper-
vised feature selection algorithms, we finally report the av-
eraged results over different number of selected features (the
range of selected features for each data set can be found in
Table 3) with standard derivation. For all the algorithms
(except for AllFea), we also report its p-value by the paired
t-test against the best results. The best one and those hav-
ing no significant difference (p > 0.05) from the best one are
marked in bold.

The clustering results in terms of ACC and NMI are re-
ported in Table 1 and Table 2, respectively. For different
feature selection algorithms, the results in each cell of Table
1 and 2 are the mean ± standard deviation and the p-value.
The last row of Table 1 and Table 2 shows the averaged
results of all the algorithms over the 8 datasets.

Compared with clustering using all features, these unsu-
pervised feature selection algorithms not only can largely
reduce the number of features facilitating the latter learning
process, but can also often improve the clustering perfor-
mance. In particular, our method FSASL achieves 11.8%
and 15.04% improvement in terms of accuracy and NMI re-
spectively with less than 10% features. These results can
well demonstrate the effectiveness and efficiency of unsuper-
vised feature selection algorithm. It can also be observed
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Table 2: Aggregated clustering results measured by Normalized Mutual Information (%) of the compared methods.

Data Sets AllFea LapScore MCFS LLCFS UDFS NDFS SPFS RUFS JELSR GLSPFS FSASL

MFEA 70.33
53.74
± 4.77
0.00

54.72
± 9.14
0.00

52.77
± 9.76
0.00

49.19
± 3.83
0.00

64.97
± 7.54
0.03

64.92
± 8.27
0.11

63.98
± 7.22
0.00

64.51
± 9.07
0.06

59.26
± 7.59
0.00

66.70
± 6.71
1.00

USPS49 23.51
15.88
± 17.98

0.00

4.60
± 2.57
0.00

72.03
± 5.56
0.03

68.12
± 4.46
0.00

12.27
± 9.62
0.00

38.10
± 16.66

0.00

41.73
± 7.23
0.00

72.28
± 2.24
0.00

70.43
± 2.57
0.00

75.88
± 2.28
1.00

UMIST 64.15
55.57
± 2.32
0.00

63.46
± 4.93
0.00

63.42
± 1.42
0.00

65.19
± 2.96
0.00

71.19
± 2.77
0.01

64.90
± 3.06
0.00

68.19
± 2.61
0.00

71.33
± 2.06
0.00

69.16
± 0.97
0.00

72.39
± 2.39
1.00

JAFFE 81.52
77.28
± 8.98
0.00

79.04
± 5.88
0.00

66.97
± 3.47
0.00

84.25
± 1.74
0.00

82.53
± 3.49
0.00

80.01
± 3.06
0.00

82.00
± 3.56
0.00

85.23
± 3.31
0.00

83.20
± 3.17
0.00

86.42
± 3.34
1.00

AR 65.48
63.59
± 2.36
0.00

66.41
± 0.85
0.00

69.01
± 1.45
0.01

67.49
± 0.27
0.00

67.89
± 0.89
0.00

66.94
± 1.11
0.00

69.54
± 1.10
0.01

69.02
± 1.32
0.00

69.44
± 0.84
0.00

70.78
± 0.63
1.00

COIL 75.58
62.21
± 4.98
0.00

66.19
± 6.78
0.00

64.04
± 4.34
0.00

44.27
± 12.61

0.00

56.29
± 6.91
0.00

69.91
± 4.38
0.00

70.54
± 4.48
0.00

71.37
± 4.97
0.00

69.89
± 4.00
0.00

72.93
± 4.44
1.00

LUNG 60.37
50.14
± 4.13
0.00

55.68
± 2.31
0.00

60.12
± 4.65
0.00

54.88
± 4.21
0.00

60.57
± 1.54
0.00

61.75
± 3.32
0.00

65.47
± 1.87
0.00

63.54
± 2.94
0.00

63.50
± 2.99
0.00

66.78
± 1.72
1.00

TOX 15.87
10.92
± 0.68
0.00

16.53
± 2.68
0.00

9.68
± 0.75
0.00

22.16
± 1.36
0.00

9.07
± 1.87
0.00

10.13
± 1.03
0.00

23.58
± 1.60
0.00

17.46
± 3.36
0.00

23.49
± 2.77
0.00

25.79
± 1.62
1.00

Average 57.10 48.67 50.83 57.26 56.94 53.10 57.08 60.63 64.34 63.55 67.21

that FSASL consistently produces better performance than
the other nine feature selection algorithms, and the improve-
ment is in the range from 3.63% to 25.14% in terms of clus-
tering accuracy and from 4.27% to 27.59% in terms of N-
MI. This can be mainly explained by the following reasons.
First, both global and local structure are used to guide the
search of relevant features. Second, the structure learning
and feature selection are integrated into a unified frame-
work. Third, both the global and local structures can be
adaptively updated using the results of selected features.

5.4 Effect of Adaptive Structure Learning
Here, we investigate the effect of adaptive structure learn-

ing by empirically answering the following questions:

1. What kind of structure should be captured and pre-
served by the selected features, either global or local
or both of these structures?

2. Does the adaptive structure learning lead to select
more informative features?

We conduct different settings of FSASL on USPS200, which
consists the first 100 samples in USPS49. We solve the opti-
mization problem in Eq. (2), Eq. (4) and Eq. (5), which us-
es global, local, and both global and local structures, respec-
tively. We also distinguish these problems with and without
adaptive structure learning. Thus, we have 6 settings in to-
tal. Figure 3 and Figure 4 show the results of these different
settings with different number of selected features. The ag-
gregated result over different number of selected features is
also provided in Table 4.

From these results, we can see that: 1) The exploitation
of both global and local structures (i.e., Eq. (5) + W) out-

Figure 3: Clustering accuracy w.r.t. 6 different settings of
FSASL on USPS200.

perform another two alternatives with only global (i.e., Eq.
(2) + W) or local (i.e., Eq. (4) + W) structure. It vali-
dates that the integration of both global and local structure
is better than the single one. 2) With the update of struc-
ture learning (i.e., Eq. (2) + W,S, Eq. (4) + W,P and
Eq. (5) + W,S,P ) is better than their counterparts with-
out adaptive structure learning respectively. It shows that
the adaptive learning in either global and/or local structure
learning can further improve the result of feature selection.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Clustering accuracy w.r.t. different parameters on JAFFE (a-c) and TOX (d-f).

Figure 4: Clustering NMI w.r.t. 6 different settings of F-
SASL on USPS200.

In the next, we investigate the sensitivity with respect to
the regularization parameters α, β and γ.

5.5 Parameter Sensitivity
When we vary the value of one parameter, we keep the

other parameters fixed at the optimal value. We plot the
clustering accuracy with respect to these parameters on JAFFE
and TOX in Figure 2. The experimental results show that
our method is not very sensitive to α, β and γ with wide
ranges. However, the performance is relatively sensitive to

Table 4: Aggregated clustering results (%) of 6 different
settings of FSASL on USPS200.

Problem Variables ACC NMI

Eq. (2) W 89.17 ± 3.22 52.01 ± 9.69
Eq. (2) W,S 91.90 ± 2.51 61.95 ± 7.21

Eq. (4) W 91.48 ± 2.62 59.10 ± 9.31
Eq. (4) W,P 92.86 ± 2.53 64.65 ± 8.30

Eq. (5) W 94.65 ± 1.24 69.94 ± 4.22
Eq. (5) W,S,P 95.53 ± 1.10 74.20 ± 4.83

the number of selected features, which is still an open prob-
lem.

6. CONCLUSION
In this paper, we proposed a novel unsupervised feature s-

election method to simultaneously perform feature selection
and the structure learning. In our new method, the global
structure learning and feature selection are integrated with-
in the framework of sparse representation; the local struc-
ture learning and feature selection are incorporated into the
probabilistic neighborhood relationship learning framework.
By combining both the global and local structure learning
and feature selection, our method can boost both these two
essential tasks, i.e., structure learning and feature selection,
by using the result of the other task. We derive an efficient
algorithm to optimize the proposed method and discuss the
connections between our method and other feature selection
methods. Extensive experiments have been conducted on
real-world benchmark data sets to demonstrate the superior
performance of our method.
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