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Abstract In this paper, we show that the way internal estimates are used to measure vari-
able importance in Random Forests are also applicable to feature selection in unsupervised
learning. We propose a new method called Random Cluster Ensemble (RCE for short),
that estimates the out-of-bag feature importance from an ensemble of partitions. Each par-
tition is constructed using a different bootstrap sample and a random subset of the fea-
tures. We provide empirical results on nineteen benchmark data sets indicating that RCE,
boosted with a recursive feature elimination scheme (RFE) (Guyon and Elisseeff, Jour-
nal of Machine Learning Research, 3:1157–1182, 2003), can lead to significant improve-
ment in terms of clustering accuracy, over several state-of-the-art supervised and unsuper-
vised algorithms, with a very limited subset of features. The method shows promise to deal
with very large domains. All results, datasets and algorithms are available on line (http://
perso.univ-lyon1.fr/haytham.elghazel/RCE.zip).

Keywords Unsupervised learning · Feature selection · Ensemble methods · Random forest

1 Introduction

Feature selection is an essential component of quantitative modeling, data-driven con-
struction of decision support models or even computer-assisted discovery. The identifi-
cation of relevant subsets of random variables among thousands of potentially irrelevant
and redundant variables is a challenging topic of pattern recognition research that has
attracted much attention over the last few years (Hua et al. 2009; Ghaemi et al. 2009;
Morais and Aussem 2010; Saeys et al. 2007; Tuv et al. 2009). In supervised learning, feature
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selection algorithms maximize some function of predictive accuracy. The relevant subsets
of variables at those that conjunctively prove useful to construct an efficient classifier from
data. It enables the classification model to achieve good or even better solutions than with
the whole set of features. But in unsupervised learning, we are not given class labels. It
becomes unclear which features we should keep as there are no obvious criteria to guide
the search. Intuitively, all features are not equally important. Some of the features may be
redundant, some may be irrelevant, and some can even misguide clustering results. Broadly
speaking, the feature selection in unsupervised learning aims at finding relevant subsets of
variables that produce “natural groupings” by grouping “similar” objects together based on
some similarity measure (Dy and Brodley 2004). Reducing the number of features increases
comprehensibility and ameliorates the problem that some unsupervised learning algorithms
break down with high dimensional data.

Databases have increased many fold in recent years. Important recent problems (i.e.,
DNA data in biology) often have the property that there are hundreds or thousands of vari-
ables, with each one containing only a small amount of information. A single clustering
model is known to produce very bad groupings as the learning algorithms break down with
high dimensional data. Clustering ensemble is an effective solution to overcome the dimen-
sionality problem and to improve the robustness of the clustering (Fred and Jain 2002, 2005;
Strehl and Ghosh 2002; Topchy et al. 2005; Ghaemi et al. 2009). The idea is to combine the
results of multiple clusterings into a single data partition without accessing the original fea-
tures. The strategy follows a split-and-merge approach: (1) construct a diverse and accurate
ensemble committee of clusterings, and (2) combine the clustering results of the committee
using a consensus function. Although considerable attention has been given on the problem
of constructing accurate and diverse ensemble committee of clusterings, little attention has
been given to exploiting the multiple clusterings of the ensemble with a view to identify and
remove the irrelevant features.

The framework pursued in this article attempts to bridge the gap between supervised and
unsupervised feature selection approaches in ensemble learning. The way internal estimates
are used to measure variable importance in the Random Forests (RF) paradigm (Breiman
2001) have been influential in our thinking. In this study, we show that these ideas are also
applicable to unsupervised feature selection. We extend the RF paradigm to unlabeled data
by introducing a clustering ensemble termed as RCE (for Random Cluster Ensemble). RCE
combines both data resampling (bagging) and random selection of features (random sub-
spaces) strategies for generating an ensemble of component clusterings. A combination of
these two main strategies for producing clustering ensembles leads to exploration of distinct
views of inter-pattern relationships. Many approaches can be used to combine the multiple
obtained partitions (Ghaemi et al. 2009). For sake of simplicity, we use the evidence accumu-
lation technique proposed in Fred and Jain (2005) in our experiments. The method consists
of taking the co-occurrences of pairs of patterns in the same cluster as votes for their asso-
ciation. The co-association matrix of patterns represents a new similarity measure between
patterns. The final (consensus) clustering is obtained by running a traditional average-link
hierarchical agglomerative algorithm on this matrix. Once the consensus clustering is ob-
tained, we select the relevant features locally in each final cluster based on the RF-based
out-of-bag importance measure discussed by Breiman (2001). Finally, RCE is boosted with
a more standard recursive feature elimination scheme (Guyon and Elisseeff 2003) which re-
cursively removes the features with the lowest importance measure. It is important to men-
tion that RCE is not aiming at discovering multiple solutions. It should be viewed as another
feature weighting method for subspace clustering, as the Entropy weighted k-means for sub-
space clustering algorithm (EWKM) (Hong et al. 2008a) and the feature group weighting
k-means for subspace clustering algorithm (FGKM) (Jing et al. 2007). Therefore, we believe
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our contribution is closely related to the topic “summarizing multiple clustering solutions”
as our method outputs a consensus clustering by aggregating many partitions constructed on
random subspaces.

Empirical results on nineteen UCI labeled data sets will be presented to address the fol-
lowing questions: (1) Is our feature selection for unsupervised learning algorithm better than
clustering on all features? (2) Is it competitive with other state-of-the-art supervised and un-
supervised feature selection methods? (3) How does the performance vary as more irrelevant
variables are included in the feature set?

The rest of the paper is organized as follow: Section 2 reviews recent studies on unsu-
pervised feature selection and consensus clustering methods. Section 3 introduces the RCE
framework and describes how variable importance used in RF can be extended in unsuper-
vised context by using ensemble clustering diversity with RCE. Experiments using relevant
benchmarks data sets are presented in Sect. 4. Finally, we would like to mention that this
paper is an extension of our earlier work that appeared in Elghazel and Aussem (2010). In
this paper, RCE is boosted with the Recursive Feature Elimination (RFE) scheme to improve
the final feature ranking and additional experiments are conducted to support the relevance
of our approach.

2 Background

This section provides an overview of the methods proposed so far for feature selection in
the unsupervised learning setting and discusses the major consensus clustering methods that
appeared in the literature.

2.1 Unsupervised feature selection

The problem of unsupervised feature selection has attracted a great deal of interest recently.
Like in supervised FS, the methods can be divided into three categories, depending on how
they interact with the clustering algorithm: wrapper, embedded and filter approaches.

Wrapper methods perform a search in the space of feature subsets, guided by the outcome
of the clustering model, by wrapping the unsupervised feature selection process around a
clustering algorithm. Typically, a criterion is firstly defined for evaluating the quality of a
candidate feature subset. Wrapper approaches aim to identify a feature subset such that the
clustering algorithm trained on this feature subset achieve the optimal value of the predefined
criterion, such as the normalized scatter separability (for k-means) (Dy and Brodley 2004)
or the normalized likelihood (for EM clustering) (Dy and Brodley 2004) or the DB-index
(Morita et al. 2003). Another example is given by the algorithm CEFS described in Hong
et al. (2008a). It searches for a subset of all features such that the clustering algorithm
trained on this feature subset can achieve the most similar clustering solution to the one
obtained by an ensemble learning algorithm. RF has been also extended to unlabeled data
leading to unsupervised learning (Breiman and Cutler 2003; Shi and Horvath 2006). The
approach in RF is to consider the original data as class 1 and to create a synthetic second
class of the same size that will be labeled as class 2. The synthetic second class is created
by sampling at random from the univariate distributions of the original data. Thus, class 2
has the distribution of independent random variables, each one having the same univariate
distribution as the corresponding variable in the original data. Class 2 thus destroys the
dependency structure in the original data. This artificial two-class problem is run through
RF. If the oob misclassification rate in the two-class problem is significantly lower than
50 % then the dependencies are playing an important role, otherwise the dependencies do
not have a large role and not much discrimination is taking place. Formulating it as a two
class problem has a number of payoffs (e.g., missing value imputation outlier detection etc.).
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But the most important payoff—in our context—is the possibility of estimating the variable
importance.

A major shortcoming of the aforementioned methods is that they output a single feature
subset. To remedy this situation, Yuanhong et al. (2008) proposed a localized feature selec-
tion algorithm for clustering. The proposed method first computes adjusted and normalized
scatter separability values for each individual cluster and then proceeds to a sequential back-
ward search to search for the optimal feature subsets for each cluster. However, the method
has high computational overhead that prohibits its use with high-dimensional data.

A number of other studies are based on the embedded formalism for weighting the vari-
ables (Frigui and Nasraoui 2004; Huang et al. 2005; Grozavu et al. 2009). In these ap-
proaches, the search for an optimal subset of features is built into the clustering construction
making these techniques specific to a given learning algorithm, not to mention the prob-
lem known as the “curse of dimensionality” that arises when dealing with high-dimensional
data spaces. A number of subspace clustering methods are dedicated to high dimension
data sets, as for instance the Entropy weighted k-means for subspace clustering algorithm
(EWKM) (Hong et al. 2008a) and the feature group weighting k-means for subspace clus-
tering algorithm (FGKM) (Jing et al. 2007). Co-clustering methods may also be viewed as
unsupervised feature selection appraoches, see for instance Wang et al. (2011), Gullo et al.
(2012), Kluger et al. (2003).

Finally, filter methods discover the relevant and redundant features through analyzing
the correlation and dependence among features without involving any clustering algorithms
(Mitra et al. 2002; Dash et al. 2002). The most common filter strategies are based on feature
ranking. In this context, two opposite strategies have been proposed in the literature: those
that aim at the removal of redundant features and those that focus on the removal of irrel-
evant features. Recently, Hong et al. (2008b) proposed a consensus unsupervised feature
ranking approach that combines multiple rankings of the full set of features into a single
consensus one. The ranking of features is obtained using their relevance measured by the
linear correlation coefficient and symmetrical uncertainty. Unfortunately, the authors only
report experimental results on very low-dimensional data sets.

2.2 Consensus clustering

Consensus clustering has emerged as a powerful method to improve both the robustness and
the stability of unsupervised classification solutions. As in the supervised setting, consensus
clustering comprises two phases: the production of multiple clusterings and their combina-
tion. The way the individual clusterings are combined is often referred to as the consensus
function. Methods for constructing ensembles include: manipulation of the samples such as
resampling (bagging) (Dudoit and Fridlyand 2003) or random subspaces techniques (Strehl
and Ghosh 2002; Topchy et al. 2005); injection of some randomness into the learning algo-
rithm (Fred and Jain 2002, 2005); applying different clustering algorithms (Strehl and Ghosh
2002) or their relaxed versions (Topchy et al. 2005). Resampling methods build a group of
clustering models based on bootstrapped replicates of the dataset; the consensus partition
is obtained using a consensus function over the set of partitions of each single clustering
model. Strehl and Ghosh (2002) proposed an Object Distributed Clustering (ODC) scenario
for which individual clusterers have a limited selection of the object population but have
access to all of the features. They define the optimal combined clustering as the one max-
imizing the average mutual information with all other individual clustering and introduced
three heuristic (CSPA, HGPA and MCLA) to solve this problem. Dudoit and Fridlyand
(2003) used bagging to improve accuracy of clustering in reducing the variability of PAM
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(Partitioning Around Medoids) results. Two bagged clustering procedures were proposed.
In the first approach, the clustering procedure is repeatedly applied to each bootstrap sample
and the final partition is obtained by plurality voting. The second bagging procedure forms
a new similarity matrix by recording, for each pair of observations, the proportion of times
they are clustered together in the bootstrap clusters. This new similarity matrix is then used
as the input to a clustering procedure.

The random subspace method is another source of clustering diversity that provides dif-
ferent views of the data, thereby improving the quality of unsupervised classification solu-
tions. Topchy et al. (2005) showed that the combination of clusterings in projected random
1-dimensional subspaces, using an average-link consensus function, outperforms the com-
bination of clusterings in the original multidimensional space. Similarly, Strehl and Ghosh
(2002) proposed a method called Feature-Distributed Clustering to combine a set of cluster-
ings obtained from partial views of the data. The same clustering algorithm is used to form
the committee. The cluster labels are afterwards retrieved and combined using one of three
heuristic mentioned above to form the consensus clustering.

3 RCE: Random Cluster Ensemble

In this section, we discuss our unsupervised Random Cluster Ensemble (RCE) algorithm
aimed at estimating the feature’s importance.

3.1 Constructing and combining multiple clustering solutions

Formulating the unsupervised learning problem as an ensemble learning problem has a
number of payoffs: missing values can be replaced effectively, outliers can be found, and
more importantly, the way variable importance is estimated in RF can be transposed rather
easily in the unsupervised framework, provided some care is taken over the way in which
the importance values are estimated, as we will see. We propose to combine both bagging
and random subspaces for producing an ensemble of component clusterings (Elghazel and
Aussem 2010). Our approach operates as follows: a new data set is drawn with replacement
from the original data set; then m features are randomly selected from the entire feature set
(leading to a partial view of the bootstrap data set) and a clustering solution is obtained by
running a “base” clustering algorithm on the selected features. The same steps are repeated
T times. This yields T partitions, where T is the size of ensemble committee. There are
many reasons for using bagging in tandem with random feature subspaces. First, bagging
can be used to give estimates of both the variable importance and the example proximities
that will serve to build the final consensus clustering from the ensemble of clusterings. Sec-
ond, this technique for combining many weak learners in an attempt to produce a strong
learner has proven to be very effective in supervised ensemble learning. Third, clustering
in the projected subspace not only reduces the computational burden, but also allows us to
mitigate the curse of dimensionality. We give a brief outline of the key steps involved: given
a specific data set D = {x1, . . . , xn} with M input variables, form T bootstrap data sets Dk

(k ∈ {1, . . . , T }) in a random feature subspace (a mD view of the bootstrap data set where
m = √

M), and construct several clusterings Ck = h(x, Dk) using a method h. The way
these Ck (k ∈ {1, . . . , T }) should be combined together is called the cluster ensemble prob-
lem. Several approaches have been introduced in the literature to solve the cluster ensemble
problem. In this study, we adopt the average-link consensus function proposed in Fred and
Jain (2005), based on co-association values between data. The proximity between pair of
cases simply counts the fraction of clusters shared by these objects in the initial partitions. It
is worth noting that numerous similarity-based clustering algorithms could also be applied
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to the proximity (or similarity) matrix to obtain the final partition. Interestingly, the overall
framework is sufficiently generic to allow any feasible consensus clustering procedure.

3.2 Out-of-bag estimates to measure variable importance

As described in Dy and Brodley (2004), the goal of unsupervised feature selection is to find
the smallest feature subset that best uncovers “interesting” clusters from data according to
a predefined criterion. However, it is often difficult to define a good criterion for evaluating
the “interestingness” of obtained clusters and to understand the interaction of variables that
is providing the groupings. As mentioned before, many criteria have been proposed in this
context. However, all these criteria are only effective for some data sets and may be ineffec-
tive for other data sets. In this study, we introduce the RCE algorithm to address the problem
of feature relevance evaluation. In RCE, bagging is used in tandem with feature subspace to
give ongoing estimates of the feature importance of the combined ensemble of clusterings.
These estimates are done out-of-bag, exactly as done in RF. For any given clustering in RCE
there is a subset of the learning set left aside during learning, because each clustering was
grown only on a bootstrap sample. These subsets, called out-of-bag (oob for short), can be
used to give unbiased measures of feature importance. RCE estimates the relevance of fea-
tures entering the clustering in the following way. After each clustering is constructed, one
at a time, each feature f = 1,2, . . . ,M is shuffled (randomly permuted) in the oob examples
and the oob data are re-assigned into clusters. At the end of the run, the oob cluster assign-
ments for x with the f th variable noised up is compared with the original cluster assignment
of x.1 Intuitively, irrelevant features will not change the classification of x when altered in
this way. The relative difference in classification between the original and shuffled data sets
is therefore related to the relevance of the shuffled feature. More formally, the average num-
ber of times the variable-f -permuted oob example x is misclassified divided by the number
of clusterings in the ensemble T is the importance score for variable f for this example.
Finally, the importance of the f th variable for a given cluster (local) in the final consensus
clustering is calculated as the sum of all the importance values over all the patterns that fall
into this particular cluster.

Our feature importance measure has several advantages when compared to other existing
unsupervised feature selection algorithms: First, as mentioned in Hong et al. (2008a), most
existing unsupervised feature selection algorithms are dimensionality-biased. For example,
if the scatter separability based feature selection algorithm is adopted, high-dimensional fea-
ture subsets are selected more easily (Dy and Brodley 2004; Hong et al. 2008a). The prob-
lem should be circumvented as our feature ranking approach operates on low-dimensional
feature spaces. Second, as our approach leverages different clustering solutions to measure
feature importance, it is expected to improve the robustness and stability of the feature sub-
set compared to feature selection algorithms based on a single clustering method. Third,
the estimates of variable importance are obtained from the oob examples only. As note by
Breiman, it should therefore be as accurate as using a test set of the same size as the data
set. Therefore, using the oob error estimate removes the need for a set aside test set. In each
bootstrap data set, about one-third of the instances are left out. Therefore, the oob estimates
are based on combining only about one-third as many clustering models as in the ongoing
main combination. Finally, the local feature selection allows us to characterize each individ-
ual cluster. The clusters can therefore be more easily understood and interpreted by human
experts.

1An oob instance x is assigned to the closest cluster, where the distance from an instance to one cluster C is
given by the distance between the instance and the centroid of C.
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input : A data set D = {x1, . . . , xn} with M input features F = {f1, . . . , fM}, h:
a base clustering procedure, T : number of committee members

output: A list of estimated local feature’s importance imp(f )

Initialize an n × M matrix I to zero;
Initialize an n × n co-association matrix A to zero;
for k ← 1 to T do

Dk = {x1
k , . . . , x

n
k } ← form the kth bootstrap sample from D;

Doob = {x1
oob, . . . , x

noob

oob } ← D \ Dk ;
Fk = {f 1

k , . . . , f m
k } ← randomly select m = √

M features from F ;
Project Dk and Doob onto feature subset Fk where Dk = Dk|Fk

and Doob = Doob|Fk
;

Ck ← partition the data set Dk using h;

for each pair of observations (xi
k, x

j

k ) ∈ Dk × Dk do
if Ck(xi

k) = Ck(x
j

k ) then
A(xi

k, x
j

k ) ← A(xi
k, x

j

k ) + 1
T

end
end
Classify each xi

oob ∈ Doob into Ck and obtain its label Ck(xi
oob);

for each feature f ∈ Fk do
randomly permute the values of f in oob data Doob;
re-assign each xi

oob ∈ Doob to a new label Ck
new(xi

oob);

if Ck
new(xi

oob) �= Ck(xi
oob) then

I(xi
oob, f ) ← I(xi

oob, f ) + 1
T

end
end

end
C ← cluster the n original observations in D on the basis of the co-association matrix
A using the average-link hierarchical agglomerative algorithm;
for each feature f ∈ F and each cluster ck in C do

imp(f, ck) ← ∑n

i=1;xi∈ck
I(xi, v);

end

Algorithm 1: The RCE algorithm

Let D = {x1, . . . , xn} be the data set and let M be the total number of input features
F = {f1, . . . , fM}. The overall proposed RCE framework for unsupervised feature selection
is summarized in Algorithm 1. It is worth mentioning that various methods can be employed
to select the most important local variables in view of their importance estimates, including:
(1) statistical tests (e.g., the Scree test Cattell 1966), (2) selecting a predefined percentage or
number of variables (Saeys et al. 2008), (3) selecting the features whose importance exceeds
a user-defined cutoff-threshold.

3.3 Complexity of RCE

In order to analyze the computational complexity of RCE, we identify three phases: (1) Con-
structing multiple clustering solutions on random subspaces, (2) Out-of-bag estimates to
measure variable importance, and (3) ranking and selection of the best features. The first
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step depends on the “base” clustering algorithm that is adopted. Most of the time is spent on
computing vector distances. One such operation costs O(

√
M). Here, the number of boot-

strap data set is T , the number of clusters is K , and the number of patterns is n. At each
iteration, the overall complexity is O(nKT

√
M) for both k-means and SOM. It is worth

noting that the random cluster ensemble construction process can easily be parallelized.
In second phase,

√
M features are shuffled (randomly permuted) in the T oob samples

and the O(n) oob data are re-assigned into clusters after computing the component-wise
differences with the centroids. The complexity of the second phase is O(nKT

√
M). The

evidence accumulation technique proposed in Fred and Jain (2005) is then used to com-
bine the multiple obtained partitions. The method consists of taking the co-occurrences of
pairs of patterns in the same cluster as votes for their association. The co-association ma-
trix takes O(n2T ) to compute. The final (consensus) clustering is obtained by running a
traditional average-link hierarchical agglomerative algorithm on this matrix. Average-link
clustering merges in each iteration the pair of clusters with the highest cohesion. We first
compute all O(n2) similarities for the singleton clusters, and sort them for each cluster.
Each iteration thus takes O(n log (n)). Overall, the time complexity of average-link cluster-
ing is O(n2 log(n)). Once the dendogram and the final consensus clustering is obtained, the
Scree test (Cattell 1966) selects the top-ranked features locally in each final cluster based
on the RF-based oob importance measure in O(KM log(M)). Overall, the computational
complexity is O(n2 log(n) + KM log(M)) which makes RCE scalable to high-dimensional
data.

4 Experiments

In order to empirically test the proposed non-supervised feature selection method as im-
plemented by our generic RCE algorithm, we ran a number of experiments on several UCI
data sets (Blake and Merz 1998) and compared RCE against several state-of-art methods.
The evaluation of the performance of RCE was conducted as follows: (A) quality of the
selected features using k-means as the “base” clustering algorithm, (B) quality of the se-
lected features using Self-Organizing Map (SOM) (Kohonen 2001) as the “base” clustering
algorithm, (C) quality of selected features with RCE “boosted” by Recursive Feature Elim-
ination (RCE-RFE for short) using k-means as the “base” clustering, and (D) robustness of
RCE-RFE in the presence of many noisy features.

In experiments A and B, we used the Scree test to select the “optimal” number of features
in view of their importance (see Cattell 1966 for details). The variables are ordered by im-
portance, and the importance is plotted against the variable number. The important variables
are the ones above the “elbow” in the plot. It’s called a scree test because the graph usually
looks a bit like where a cliff meets the plain. The Scree tells us where the cliff stops and the
plain begins. The Scree test was applied locally in each cluster of the consensus partition
obtained by RCE and the union of these features was taken as the overall selected feature
subset.

In experiments C and D, the performance of RCE was boosted using the Recursive Fea-
ture Elimination (RFE) scheme (Guyon and Elisseeff 2003). We chose the RFE scheme for
its simplicity and efficiency despite the computational expense incurred in running RCE sev-
eral times. The RFE selection method (Guyon and Elisseeff 2003) is basically a recursive
process that ranks features according to some measure of importance in decreasing order.
At each iteration, the last feature importances (and hopefully the less relevant) is removed.
Another possibility is to remove a percentage of the least important features each time in
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Table 1 The data sets used in
Sects. 4.1, 4.2, 4.3 and 4.4 Data sets #instances #features #labels Section

Breast Tissue 106 9 6 [4.1, 4.3]

Glass 214 9 7 [4.1, 4.1]

Ionosphere 351 34 2 [4.1, 4.3]

Isolet 1559 617 26 [4.1, 4.3]

Leukemia 73 7129 2 [4.1, 4.3]

Lung 32 56 3 [4.1, 4.3]

Madelon 2600 500 2 [4.1, 4.3]

Multiple Features 2000 216 10 [4.1, 4.3]

Ovarian 54 1536 2 [4.1, 4.3]

Parkinson 195 22 2 [4.1, 4.3]

Pima 768 8 2 [4.1, 4.3]

Promoters 106 57 2 [4.1, 4.3]

Robot 88 90 4 [4.1, 4.3]

Segmentation 2310 19 7 [4.1, 4.3]

Soybean 266 35 15 [4.1, 4.3]

Spect 267 22 2 [4.1, 4.3]

Wdbc 569 30 2 [4.1, 4.3]

Wine 178 13 3 [4.1, 4.3]

Wisconsin 699 9 2 [4.1, 4.3]

Wave 5000 40 3 [4.2]

Wdbc 569 30 2 [4.2]

Spamb 4601 57 2 [4.2]

Madelon 2600 500 2 [4.2]

Isolet 1559 617 26 [4.2]

Iris 150 4 3 [4.4]

order to speed up the process. The recursion is necessary because the feature ranking may
change substantially during the stepwise elimination process (in particular for large data sets
and also highly correlated features). We stopped the RCE scheme once the same number of
features as the competing methods was obtained in order to make fair comparisons.

Nineteen benchmark (UCI) labelled data sets (Blake and Merz 1998) were selected in
experiments A and C to test the performance of RCE. They are described in Table 1. We
selected these datasets as they are either well understood in terms of feature relevance (e.g.,
Wave and Iris), or they contain thousands features with comparatively much smaller sample
size (e.g., Ovarian Schummer et al. 1999 and Leukemia Golub et al. 1999) and are thus
good candidates for feature selection. Most of these data sets have already been used by
other authors for testing the performance of their unsupervised feature selection algorithms
(Hong et al. 2008a, 2008b; Grozavu et al. 2009; Morita et al. 2003; Dy and Brodley 2004).
Note that, in experiments B, we had no other choice than using the same data sets used
in Grozavu et al. (2009) for comparison purposes as their code (methods lwd-SOM and
lwo-SOM) is not freely available. Also, the performance measures reported in Sect. 4.2 are
directly taken from Grozavu et al. (2009).
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The standard principle to assess the quality of our unsupervised feature selection is to
monitor the quality of the clustering by computing an external criterion that evaluates how
well the clustering matches the known class labels. The quality of the clustering on a val-
idation test set is indicative of whether the selected features are relevant. For sake of con-
venience, let us recall the definition of the two external criteria of clustering quality used
in our experiments: the Normalized Mutual Information index (NMI) (Meila 2005) and the
Purity index.

The normalized mutual information (NMI) between two partitions P a and P b is may be
written, after simplification, as:

NMI(P a,P b) =
∑

i,j nij log
( nab

ij
n

na
i
nb
j

)

√
(∑

i n
a
i log

( na
i

n

)) × (∑
j nb

j log
( nb

i

n

))

with nab
ij denoting the number of shared patterns between clusters Ca

i and Cb
j in partitions

P a and P b respectively.
To compute purity, each cluster is assigned to the class which is most frequent in the

cluster, and then the accuracy of this assignment is measured by counting the number of
correctly assigned samples and dividing by N . Formally:

purity(Ω,C) = 1

N

∑

k

max
j

|ωk ∩ cj |

where Ω = {ω1,ω2, . . . ,ωK} is the set of clusters and C = {c1, c2, . . . , cJ } is the set of
classes. We interpret ωk as the set of samples in ωk and cj as the set of samples in cj .

Alternatively, we may view the clustering as a series of decisions, one for each of the
(
N

2

)

pairs of data samples, and we assign two samples to the same cluster if and only if they are
similar. A true positive (TP) decision assigns two similar samples to the same cluster, a true
negative (TN) decision assigns two dissimilar samples to different clusters.

In the sequel, either the NMI Index or the Purity will be taken as our accuracy measure,
depending on context.

4.1 RCE using k-means as the base clustering algorithm

First, the k-means clustering algorithm was adopted as the “base” clustering algorithm. The
latter is known to be unstable and often yields to a good ensemble committee of multiple
clustering solutions with many diversities (Fred and Jain 2005; Hong et al. 2008a). The size
of the clustering ensemble, r , was arbitrary set to 200 in our experiments. In these experi-
ments, the number and the quality of the features selected by RCE was studied and compared
with those obtained by several state-of-the-art unsupervised FS algorithms, namely the DB-
index wrapper unsupervised FS algorithm (Morita et al. 2003) (DBI), the clustering ensem-
ble guided FS algorithm (CEFS) (Hong et al. 2008a), the unsupervised RF feature selection
(URF) algorithm (Breiman and Cutler 2003),2 the Entropy weighted k-means for subspace
clustering algorithm (EWKM) (Hong et al. 2008a), the feature group weighting k-means for
subspace clustering algorithm (FGKM) (Jing et al. 2007)3 and the spectral bicluster algo-

2The number of trees in the RF classifier was set to 500.
3For fair comparisons, the same experimental settings in Chen et al. (2012) was adopted here for EWKM and
FGKM, i.e., λ = 5 for EWKM and λ = 6, η = 30 for FGKM. The R “weightedKmeans” package is used for
the implementation of both methods.
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rithm (SBI) (Kluger et al. 2003).4 To make fair comparisons, the same experimental protocol
in Hong et al. (2008a) was adopted here and the quality assessment was based on the NMI
rate. Then, the number of clusters was set to the true number of labels.

We used the Scree test to select the “optimal” number of features with RCE, URF,
EWKM and FGKM. CEFS and DBI use their own heuristic to select the features. The se-
lected feature subset for SBI approach is given by the union of local features obtained in each
bicluster. The quality of the selected feature subset obtained from each approach on the 19
data sets in Table 1 was evaluated by running k-means on this feature subset and the cluster-
ing accuracy was calculated by the NMI Index. The algorithm was also ran on the original
feature set (all features). Results were averaged over 20 independent runs as k-means is very
unstable. The average NMI and the standard deviations are shown in Tables 2 and 3.

In this study, we adopt the methodology proposed by Demsar (2006) for the comparison
of several classifiers over multiple datasets. In this methodology, the non-parametric Fried-
man test is used to evaluate the rejection of the hypothesis that all the classifiers perform
equally well for a given risk level. It ranks the algorithms for each data set separately, the
best performing algorithm getting the rank of 1, the second best rank 2 etc. It then checks
whether the measured average ranks are significantly different from the mean rank (here
4.5) expected under the null-hypothesis. From Tables 2 and 3, we observe that the results
using RCE dominate those obtained using the EWKM, FGKM, DBI, SBI, URF, CEFS and
using the original set of features (column “All Features”). RCE ranks the first with rank
2.34 on average as shown in the last row. CEFS, FGKM and ‘all features’ seem to perform
equally well while DBI, SBI, EWKM and URF perform the worst. The Friedman test re-
veals statistically significant differences (p < 0.0005) in accuracy for the partitions obtained
with the selected features. As we intend to compare our single control method, RCE, with
seven other methods, we compute the critical difference with the Bonferroni-Dunn test (see
Demsar 2006 for details). The performance of RCE against the seven other classifiers is
significantly different if the corresponding average ranks differ by at least 1.95 at p = 0.1.
So the post-hoc test reveals statistically significant improvements in accuracy for RCE over
FGKM (and EWKM, URF, DBI, SBI) as 4.47 − 2.34 > 1.95 at p = 0.1, while we did not
detect any significant improvement between the group of algorithms RCE, CEFS and ‘all
features’. Nevertheless, the high computational complexity of CEFS is a major drawback
when one wants to select the best features among a large number of features. Table 4 reports
the runtime on four representative data sets. As observed, the RCE is significantly faster
than RCE, up to 500 on Leukemia.

For sake of completeness, we also give the significance t-test results at the bottom row of
the Tables 2 and 3. The analogous trend between RCE and other features selection methods
can be observed and it is important to note in this regard that feature selection with RCE
never significantly degraded accuracy in any of the datasets tested. A closer inspection of
the accuracy values reported in Table 2 shows that employing ‘all features’ is simply in-
adequate for obtaining good accuracies in all cases (e.g., Ovarian and Promoters). Finally,
the significant gain in accuracy (expressed as the NMI index) on these data sets confirms
the ability of the RCE approach to improve the quality of the clustering and to generate
meaningful clusters.

Also instructive is the fact that, in high dimensional feature space, RCE (using the Scree
test) can make dramatic reductions in the feature space and consequently improve running
time performance as well. It is reasonable to conjecture that the better the variable impor-
tances are estimated, the more effective will be the Scree test (i.e., the estimation of the

4The R “biclust” Package is used for the implementation of this method.
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Table 2 Experimental results
using k-means, averaged other 20
independent runs, on 19 test data
sets (the numbers in the brackets
represent the optimal number of
features). Bottom rows of the
table present average rank of
NMI mean used in the
computation of the Friedman test
and the Win-Tie-Loss
comparisons between RCE
against other approaches after
t -tests at 95 % significance level

+ RCE is significantly better
after t -tests at 95 % significance
level
− RCE is significantly worse
after t -tests at 95 % significance
level

Data sets All features FGKM

Breast Tissu 51.18±1.38+ 55.69±4.22(6)=
Glass 32.80±3.61+ 28.00±2.58(6)+
Ionosphere 12.62±2.37= 12.95±2.44(32)=
Isolet 69.83±1.74− 69.83±1.74(617)−
Leukemia 6.85±5.00+ 6.85±5.00(7129)+
Lung 22.51±5.58+ 16.28±6.82(25)+
Madelon 0.36±0.86+ 1.11±1.38(495)+
Multiple 67.64±3.93= 67.64±3.93(216)=
Ovarian 51.46±11.25+ 52.73±11.24(735)+
Parkinson 23.35±0.19+ 18.13±4.32(21)+
Pima 2.97±0.00− 1.39±0.86(6)−
Promoters 8.65±6.98+ 9.80±10.45(54)+
Robot 31.20±8.34+ 24.23±2.32(44)+
Segmentation 60.73±1.71= 62.34±2.21(17)=
Soybean 65.87±1.84+ 66.59±2.57(30)+
Spect 10.72±1.58− 2.99±0.00(3)+
Wdbc 62.32±0.00− 62.92±0.00(14)−
Wine 81.99±8.28= 78.51±0.57(5)+
Wisconsin 73.61±0.00− 72.24±0.00(6)+

Average rank 4.05 4.47

(Win/Tie/Loss) (10/4/5) (12/4/3)

Data sets URF DBI

Breast Tissu 54.78±2.02(5)+ 27.46±1.70(1)+
Glass 33.57±2.44(5)+ 18.25±1.47(2)+
Ionosphere 12.38±3.14(30)= 7.93±0.00(3)+
Isolet 58.39±0.29(1)+ 71.38±1.13(278)−
Leukemia 7.91±5.33(3431)+ 9.01±3.44(3510)+
Lung 1.56±0.50(1)+ 21.25±9.33(7)+
Madelon 0.34±0.81(19)+ 1.87±0.05(152)+
Multiple 67.29±3.42(209)+ 67.97±2.16(97)=
Ovarian 49.27±15.49(1374)+ 54.84±2.38(714)+
Parkinson 17.31±0.11(13)+ 25.58±0.00(1)+
Pima 1.89±1.02(3)− 0.07±0.02(1)−
Promoters 18.19±0.00(1)+ 17.66±9.37(2)+
Robot 31.52±7.10(87)+ 34.41±9.24(28)+
Segmentation 48.42±0.85(3)+ 53.42±3.26(5)+
Soybean 68.56±2.57(11)= 55.42±1.63(7)+
Spect 4.80±1.52(18)+ 7.92±0.00(1)+
Wdbc 61.47±0.00(12)+ 52.77±0.39(1)+
Wine 79.04±1.59(4)= 39.91±0.24(1)+
Wisconsin 57.37±1.00(2)+ 50.56±0.00(1)+

Average rank 5.42 5.16

(Win/Tie/Loss) (15/3/1) (16/1/2)
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Table 3 Experimental results
using k-means, averaged other 20
independent runs, on 19 test data
sets (the numbers in the brackets
represent the optimal number of
features). Bottom rows of the
table present average rank of
NMI mean used in the
computation of the Friedman test
and the Win-Tie-Loss
comparisons between RCE
against other approaches after
t -tests at 95 % significance level

+ RCE is significantly better
after t -tests at 95 % significance
level
− RCE is significantly worse
after t -tests at 95 % significance
level

Data sets EWKM CEFS

Breast Tissu 51.18±1.38(9)+ 53.81±2.18(7)+
Glass 32.80±3.61(9)+ 28.44±3.05(4)+
Ionosphere 11.46±2.40(27)+ 14.00±0.00(22)−
Isolet 69.83±1.74(617)− 69.80±1.30(331)−
Leukemia 6.85±5.00(7129)+ 7.57±3.51(3561)+
Lung 22.51±5.58(56)+ 25.81±3.60(19)+
Madelon 0.47±0.95(498)+ 1.85±0.05(267)+
Multiple 67.64±3.93(216)= 68.83±2.75(112)=
Ovarian 51.46±11.25(1536)+ 50.33±5.90(754)+
Parkinson 22.48±4.04(21)+ 21.57±0.95(9)+
Pima 0.01±0.00(5)= 0.55±0.55(4)−
Promoters 5.52±7.59(2)+ 33.88±9.59(21)=
Robot 29.71±11.72(89)+ 37.00±10.93(39)+
Segmentation 60.73±1.71(19)= 60.80±1.89(13)=
Soybean 65.87±1.84(35)+ 62.65±3.07(21)+
Spect 10.75±1.28(18)− 4.99±1.19(15)+
Wdbc 60.73±0.91(28)+ 50.42±0.50(9)+
Wine 77.99±1.95(10)+ 79.97±7.67(10)=
Wisconsin 71.60±0.00(8)= 73.55±0.00(6)−

Average rank 5.16 3.95

(Win/Tie/Loss) (13/4/2) (11/4/4)

Data sets SBI RCE

Breast Tissu 51.18±1.38(9)+ 57.19±2.14(3)

Glass 25.63±2.46(6)+ 36.73±2.21(4)

Ionosphere 12.62±2.37(34)= 12.93±0.25(7)

Isolet 69.83±1.74(617)− 66.91±0.20(3)

Leukemia 6.85±5.00(7129)+ 10.69±3.10(479)

Lung 22.51±5.58(56)+ 29.05±3.64(3)

Madelon 0.03±0.04(248)+ 3.14±0.00(4)

Multiple 67.88±4.16(215)= 68.75±0.94(125)

Ovarian 51.46±11.25(1536)+ 68.28±1.50(1)

Parkinson 23.92±4.12(20)+ 28.67±0.87(2)

Pima 2.28±0.00(6)− 0.01±0.01(2)

Promoters 3.44±4.84(46)+ 36.05±5.70(14)

Robot 20.19±4.29(75)+ 46.42±1.92(11)

Segmentation 60.33±1.20(17)+ 61.72±1.40(9)

Soybean 60.19±1.31(4)+ 69.02±1.84(15)

Spect 10.49±1.49(5)= 8.99±1.26(3)

Wdbc 60.14±0.39(27)+ 62.15±0.00(5)

Wine 68.46±1.00(6)+ 79.06±0.47(6)

Wisconsin 65.71±0.00(5)+ 72.42±0.00(6)

Average rank 5.5 2.34

(Win/Tie/Loss) (14/3/2)
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Table 4 Runtime (in seconds)
comparison of RCE and CEFS on
four representative data sets

Data sets CEFS RCE

Ionosphere 11.66 3.41
Isolet 10523.47 123.58
Leukemia 7539.03 12.98
Multiple Features 8251.70 49.57

Table 5 Experimental results using the SOM on a test data set. The Purity rate and the number of selected
features in parenthesis are shown. Results for lwd-SOM and lwo-SOM are taken from Grozavu et al. (2009).
Bold highlights the best results over all five algorithms

Data sets All features lwd-SOM lwo-SOM Unsupervised RF RCE

Wave 61.00(3) 53.47(3) 54.16(3) 55.74(3) 66.24(3)
Wdbc 84.71(2) 62.74(9) 86.82(9) 84.71(2) 88.40(2)
Spamb 63.51(2) 61.03(2) 64.13(2) 65.07(2) 66.64(2)
Madelon 55.89(2) 52.42(2) 53.47(2) 52.35(2) 58.78(2)
Isolet 50.67(26) 52.42(13) 52.61(13) 21.36(26) 55.68(30)

cutting point where the cliff stops and the plain begins in the graph). In large dimensions,
RCE reduced the feature set down be nearly 1/15 its original size on Leukemia for instance,
and by nearly 1/7 compared to CEFS without any expense in terms of accuracy (RCE still
performs best). More surprising, is the fact that RCE ended up with a single feature on Ovar-
ian compared to 754 features with CEFS and RCE still performs best. Clearly, RCE method
shows promise for scaling to larger domains.

4.2 RCE using the SOM as the base clustering algorithm

In this section, the SOM (Kohonen 2001) was applied to generate the partitions for the com-
bination. For the map clustering, we used the ward-link hierarchical classification. Again,
the size of the clustering ensemble r was set to 200. To evaluate the quality of our feature se-
lection procedure, we compared the clusters found with the SOM on the features selected by
RCE to the clusters returned by (1) the SOM on all the features, (2) the SOM on the features
selected by the unsupervised RF algorithm (Breiman and Cutler 2003) and (3) two recently
embedded unsupervised feature selection methods based on the SOM, called lwd-SOM and
lwo-SOM (Grozavu et al. 2009) in which the feature weights are adjusted in the course of the
learning process. The results presented here for lwd-SOM and lwo-SOM are directly taken
from Grozavu et al. (2009) as their code is not freely available. The comparison is restricted
to the five data sets that were used in their study, namely: (Wave, Wdbc, Spamb, Madelon
and Isolet). As in Grozavu et al. (2009), the Davies Bouldin index was used to choose the
optimal number of clusters and the quality assessment was based on the Purity rate as the
NMI index was not given in their work.

Accuracy results are reported in Table 5. As may be observed, RCE clearly outperforms
lwd-SOM and lwo-SOM by a noticeable margin in respect of the Purity rate, on all four
data sets. RCE is significantly better then all four approaches (p < 0.05) according to the
two-tailed sign test (insufficient number of data sets for the Freidman test) (Demsar 2006).
These experiments with another standard “base” clustering algorithm confirm the effective-
ness of the RCE framework for unsupervised learning, and the usefulness of the consensus
clustering combined with oob feature importance. As may be observed, the purity of the
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Fig. 1 Clustering accuracies (NMI) as a function of the features ranked in decreasing order of importance
with RCE, RCE-RFE, FRMV and RF

SOM clustering on the features selected by RCE was always better than those obtained by
lwd-SOM, lwo-SOM and unsupervised RF.

4.3 RCE-RFE using k-means as the base clustering algorithm

In this section, we boosted the performance of RCE using the RFE strategy, as discussed
before, and monitored the behavior of the clustering against the features in decreasing order
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Fig. 1 (Continued)

of importance. We applied again the k-means clustering algorithm as the “base” clustering
algorithm. The number of clusters was set to the true number of labels and the size of
clustering ensemble T was set to 200 again. The data sets used in these experiments are
exactly those used in Sect. 4.1. The quality of the feature ranking given by RCE-RFE was
compared against three two unsupervised feature ranking algorithms and one gold standard
supervised feature ranking algorithm:

1. Unsupervised feature ranking from multiple views (FRMV) based on symmetrical un-
certainty (Hong et al. 2008b). The number of feature rankings for FRMV was equal to
100 as suggested by their paper.

2. Unsupervised Random Forest (URF) (Breiman and Cutler 2003).
3. Random Forest (RF) (Breiman 2001) taken as our gold standard ensemble supervised

feature ranking approach. The number of trees was set to 500.

To make fair comparisons, the same experimental approach (protocol and evaluation
measure) in Hong et al. (2008a, 2008b) was adopted here. We plotted the NMI values of
the above four approaches against the features in decreasing order of importance. The NMI
Index was averaged over 20 independent runs. Experimental results are reported in Figs. 1, 2
and 3. As may be seen, RCE-RFE works consistently better than the other two unsupervised
feature ranking algorithms URF and FRMV. A closer inspection of the plots reveals that
the accuracy of k-means on the features selected by RCE-RFE generally increases swiftly
at the beginning (the number of selected feature is small) and slows down afterwards. This
suggests that RCE-RFE ranks the most relevant features first. We also computed the average
gain in clustering accuracy of RCE-RFE versus URF and FRMV computed as the number
of features is varied from 1 to 33 % of the total features to get another point of view. Re-
sults are depicted in Table 6. As may be observed, the RCE-RFE generally dominates URF
and FRMV. The Friedman test and the Bonferroni-Dunn post-hoc test reveal statistically
significant improvements (p < 0.05) in NMI for RCE-RFE.

Another interesting phenomenon observed from Figs. 1, 2 and 3 is that RCE-RFE and
the supervised feature ranking approach (RF) have a tendency to work comparatively well
on most data sets, except Ionosphere, Isolet, Leukemia, Pima, Multiple Features. More im-
portantly, RCE-RFE performs very well with very few features as shown for instance on
Segmentation. On this data set, RCE-RFE identified thee features {f2, f12, f17} that yield
meaningful clusters with an NMI of 65.01 %, while supervised RF yields only 37.21 % for
the same number of features. The same tendency can also be observed with Ovarian, Spect
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Fig. 2 Clustering accuracies (NMI) as a function of the features ranked in decreasing order of importance
with RCE, RCE-RFE, FRMV and RF

and Segmentation. With Ovarian, the feature {f9} is the most important feature selected by
RCE-RFE, and yields a clustering of 68.28 % which is far better off the 40.20 % accuracy
obtained with the most important feature selected by supervised RF. The same remark holds
for Robot, Parkinson and Spect data sets.

We also compare RCE-RFE against the Clustering Ensemble guided FS algorithm
(CEFS) (Hong et al. 2008a) and RCE. In CEFS, the underlying principle is to search for
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Fig. 2 (Continued)

Fig. 3 Clustering accuracies (NMI) as a function of the features ranked in decreasing order of importance
with RCE, RCE-RFE, FRMV and RF

the feature subset such that the clustering algorithm trained on this feature subset achieves
the most similar clustering solution to the one obtained by an ensemble learning algorithm.
It returns directly a subset of features. The Scree Test was used to selected the best features
output by RCE. We used the parameter settings used in Hong et al. (2008a) in these ex-
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Table 6 Comparison of the
average gain in NMI between
RCE-RFE versus URF and
FRMV computed as the number
of features is varied from 1 to
33 % of the total features

Data sets URF FRMV

Breast Tissue +0.0148 +0.0185
Glass −0.0020 +0.0165
Ionosphere −0.0200 −0.0080
Isolet +0.0919 +0.0935
Leukemia +0.0274 −0.0023
Lung +0.1570 −0.0130
Madelon +0.0064 +0.0141
Multiple Features +0.0698 +0.0194
Ovarian +0.1161 +0.0564
Parkinson +0.1266 +0.1275
Pima +0.0375 +0.0444
Promoters +0.0971 +0.2075
Robot +0.1026 +0.1574
Segmentation +0.0324 +0.0335
Soybean −0.1171 −0.0909
Spect +0.0710 +0.0343
Wdbc +0.0804 +0.0373
Wine +0.0298 +0.0675
Wisconsin +0.0318 +0.1106

Average +0.0502 +0.0486

Table 7 Comparison of NMI
values (%) of RCE-RFE and
CEFS on different data sets,
averaged over 20 independent
runs. The number of selected
features is determined by CEFS
unsupervised feature selection
algorithm. Bold highlights the
best results over the two
algorithms

Data sets Number of features CEFS RCE-RFE

Breast Tissue 7 53.81 54.22
Glass 4 28.44 38.33
Ionosphere 22 14.00 13.49
Isolet 331 69.80 69.83
Leukemia 3561 7.57 11.80
Lung 19 25.81 29.63
Madelon 267 1.85 2.12
Multiple Features 112 68.83 69.79
Ovarian 754 50.33 54.84
Parkinson 9 21.57 24.44
Pima 4 0.55 5.42
Promoters 21 33.88 38.23
Robot 39 37.00 39.98
Segmentation 13 60.80 62.27
Soybean 21 62.65 70.82
Spect 15 4.99 10.35
Wdbc 9 50.42 63.20
Wine 10 79.97 80.78
Wisconsin 6 73.55 75.69

periments. In order to make fair comparisons, we compared RCE-RFE and CEFS based on
the same number of features returned by CEFS. The results are shown in Tables 7. Simi-
larly, we compared RCE-RFE and RCE based on the same number of features returned by
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Table 8 Comparison of NMI
values (%) of RCE-RFE and
RCE on different data sets,
averaged 20 independent runs.
The number of selected features
is determined by RCE
unsupervised feature selection
algorithm. Bold highlights the
best results over the two
algorithms

Data sets Number of features RCE RCE-RFE

Breast Tissue 3 57.19 57.57

Glass 4 36.73 38.33

Ionosphere 7 12.93 12.93

Isolet 3 66.91 69.05

Leukemia 479 10.69 11.89

Lung 3 29.05 30.85

Madelon 4 3.14 3.88

Multiple Features 125 68.75 69.11

Ovarian 1 68.28 68.28

Parkinson 2 28.67 28.67

Pima 2 0.01 5.45

Promoters 14 36.05 38.47

Robot 11 46.42 46.65

Segmentation 9 61.72 62.98

Soybean 15 69.02 69.90

Spect 3 8.99 12.10

Wdbc 5 62.15 65.67

Wine 6 79.06 88.31

Wisconsin 6 72.42 75.69

RCE and the Scree test. Results are shown in Table 8. In both cases, a two-tailed sign test
reveals statistically significant improvements (p < 0.0001) in accuracy for RCE with the
selected features. The improvement obtained with RCE-RFE over RCE shows that the rel-
ative importance of each feature varies as the stepwise elimination process progresses. This
is particularly true for high dimensional data sets such as Isolet, Leukemia, Lung, Promoters
and Spect.

4.4 Effect of noisy features on RCE-RFE performances

In this Section, we investigated the robustness of RCE-RFE as many irrelevant features
are added to the original feature set. The k-means algorithm was used again as the base
clustering algorithm. We consider the well known Iris dataset as it is well understood in
terms of feature relevance. This dataset has three classes, 150 instances, and 4 features. As
reported in Yuanhong et al. (2008), Hong et al. (2008a) and illustrated in Fig. 4, among these
4 features, features f3 and f4 suffice to differentiate the three original classes very well.
We conducted several experiments on this data set in order to study the impact of adding
noisy features on the performance of RCE-RFE. We first performed a feature ranking on the
original data set; then 10i (i ∈ {1,2,3,4,5}) normally distributed variables with mean 0 and
variance 1 were added sequentially to the feature set and RCE-RFE was ran again.

To gauge the practical relevance of RCE-RFE feature selection method in high dimen-
sion, the quality of the two most important features were evaluate at each time step i. The
NMI index of the clustering obtained by k-means was indicative of the quality of selected
features. The performance of RCE-RFE was compared to (1) Unsupervised feature ranking
from multiple views (FRMV) based on symmetrical uncertainty, (2) Unsupervised Random
Forest (URF), and (3) Random Forest (RF). The clustering accuracy is plotted against the
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Fig. 4 Scatterplots on iris data
using features 1 and 2 (top), and
using features 3 and 4 (bottom).
Data from different classes are
marked with different colors
(Color figure online)

number of noisy variables, up to 100000 features, in Fig. 5 for each method. As may be
seen, the performance of FRMV and URF deteriorated markedly with an increasing number
of noisy features. Surprisingly, RCE-RFE performed as well as the supervised RF feature
ranking that has access to the class labels, on this data set. Indeed, we found that RCE-
RFE was able to remove all irrelevant features and ranked first the two most relevant fea-
tures {f3, f4} that yields a meaningful clustering with a NMI index of 86.42 %. Therefore,
RCE-RFE shows promise to deal with very large domains. In our opinion, this is the most
interesting result of this study.

5 Conclusion

In this paper, we proposed a generic framework called RCE for estimating the feature im-
portance in unsupervised learning, using an ensemble of clustering algorithms. We assessed
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Fig. 5 Clustering accuracy as a
function of the number of
irrelevant variables in the input

the accuracy of the feature selection procedure on nineteen UCI data sets and compared its
effectiveness against powerful unsupervised and supervised feature selection methods. The
significant gain in accuracy on these data sets, expressed as the NMI index and the purity
index, confirmed the ability of RCE to generate meaningful clusters with a very few fea-
tures. Also instructive was the fact that, in high dimensional feature space, RCE reduced the
feature set down by nearly 1/100 its original size without any expense in terms of clustering
accuracy. RCE “wrapped around” with the Recursive Filter Elimination scheme was shown
to significantly outperform several unsupervised feature selection procedures that appeared
recently in the literature. More importantly, RCE-RFE was shown to perform as well as
Random Forest on the Iris data set to which we increasely added up to 100000 noisy fea-
tures. The method shows promise to deal with very large domains. Future substantiation
through more experiments on biological databases containing several thousands of variables
are currently being undertaken.

While the emphasis in this paper was on estimating feature importance in unsupervised
learning, it is worth mentioning that the idea underlying the permutation-based out-of-bag
feature importance measure may also be extended to semi-supervised learning feature im-
portance evaluation as shown recently (Bellal et al. 2012; Barkia et al. 2011).
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