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Abstract. Brain image registration aims at reducing anatomical vari-
ability across subjects to create a common space for group analysis.
Multi-modal approaches intend to minimize cortex shape variations along
with internal structures, such as fiber bundles. A difficulty is that it re-
quires a prior identification of these structures, which remains a chal-
lenging task in the absence of a complete reference atlas. We propose an
extension of the log-Geometric Demons for jointly registering images and
fiber bundles without the need of point or fiber correspondences. By rep-
resenting fiber bundles as Weighted Measures we can register subjects
with different numbers of fiber bundles. The efficacy of our algorithm
is demonstrated by registering simultaneously T1 images and between
37 and 88 fiber bundles depending on each of the ten subject used. We
compare results with a multi-modal T1 + Fractional Anisotropy (FA) and
a tensor-based registration algorithms and obtain superior performance
with our approach.

Keywords: Registration, neural fibers, diffeomorphism, Demons Algo-
rithm, multi-modal registration, image, geometry, log-domain.

1 Introduction

In medical image analysis, non-linear image registration intends to reduce anatom-
ical variability across subjects in order to ease subsequent subjects or population
comparisons. Over the last decades the availability of different image modali-
ties has increased, bringing hope for more accurate registration procedures. T1

weighted image (T1 image in the sequel) registration is mainly driven by the
contrast of the the grey matter and ventricles. In these images, the white matter
appears uniform, giving no relevant information about its internal structures,
which are composed of neural fibers connecting cortical areas. However Diffu-
sion Tensor Imaging (DTI) can be used to reveal the microscopic structure of
the white matter. Aligning white matter structures can help to increase the sen-
sitivity of fMRI activation detection as shown in [1], and in [4] a group analysis
on DWI was performed for early detection of schizophrenia. Tensor-based regis-
tration has recently been proposed to improve white matter alignment [14,13].

http://parietal.saclay.inria.fr
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Nevertheless, mis-registration may persist in regions where the tensor field ap-
pears uniform [5].

Multi-modal registration combines information from different image modali-
ties to provide more anatomical details. For instance, the registration algorithm
in [3] uses T1 images and FA from DTI to better align grey and white matter.
Geometric registration specifically targets the alignment of Structures of Interest
(SOIs), such as in [12] for cortical surfaces, or [5] for fiber bundles. While those
clearly improve SOI registration, they may not be suitable for aligning other
structures than those used specifically during registration.

Hybrid techniques propose to jointly consider SOIs and images during reg-
istration. For instance, in [2,7] the mathematical framework of Measures and
Currents respectively, were used to simultaneously register images and geomet-
ric descriptors such as sulcal lines or surfaces, while [9] proposed a Markovian
solution to the same problem.

In the log-Geometric Demons with Currents (CGD) [8] an hybrid multi-
modal registration of iconic and geometric descriptors has been proposed that
uses Currents to model fibers but relies on a one-to-one fiber bundles corre-
spondences across subjects. Correspondences across subjects are hard or even
impossible to obtain. Individual fiber bundles show important differences in com-
pactness, length and density. These characteristics might depend on the subject,
tractography parameters and on the quality of the images. Furthermore, in some
cases bundles may be cut, fused or absent in some subjects.

We propose to represent our geometric descriptors of fiber bundles as Weighted
Measures to relax the hypothesis of explicit fiber correspondences across sub-
jects. We define a flexible framework in which subjects can have different number
of bundles, and no assumption is made about the bundle size.

The rest of the paper is organized as follows. First, we propose a mathemat-
ically sound extension of the log-Geometric Demons, the Weighted Measures
Geometric Demons (WMGD), that relies on the log-domain daemons frame-
work for computation purposes and handles geometric constraints as Weighted
Measures. Then, we evaluate the WMGD T1 + bundles constraints registration
on a dataset of 10 subjects and compare them with a tensor-based [13], and
ANTS [3] a T1 + FA multi-modal registration. We also study the sensitivity of
the results with respect to the various parameters.

2 Weighted Measures Geometric Demons (WMGD)

WMGD is a multi-modal algorithm that jointly registers image and geomet-
ric descriptors. We shortly describe in Section 2.1 the T1 diffeomorphic demons
registration, for then explain in Section 2.2 the extension to the geometric reg-
istration and the modeling of our constraints as Weighted Measures.

2.1 Image Registration: The Diffeomorphic Demons

The goal of image registration is to find the displacement field s that aligns as
accurately as possible the corresponding structures from a moving image M , to
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the structures in the fixed image F . Ideally the displacement field s minimizes a
distance between the fixed and the moving image, while holding some properties
such as being diffeomorphic.

In the Demons framework[10] a correspondence field c was introduced to
make the minimization of the functional energy tractable: E(c, s) = 1

σ2
i

Sim(F,M◦

c)+ 1
σ2
x
dist(s, c)2+ 1

σ2
T

Reg(s), where Sim is a similarity measure between images

defined by the sum of square differences (SSD) and Reg(s) a regularization term
chosen to be the harmonic energy ‖∇s‖2. The amount of regularization is con-
trolled with σT while σi accounts for the image noise.

The term dist(s, c)2 imposes the displacement field s to be close to the cor-
respondence field c. And σx weights the spatial uncertainty on the deformation.
The energy minimization is performed by alternating minimization w.r.t. c and
s. In [11], small deformations are parametrized by a dense displacement field u:
c← s◦exp(u), exp() being the exponential map in the Lie group sense, which en-
sures that the result is diffeomorphic. In the log-domain demons s is encoded with
the exponential map as s = exp(v) and the inverse of s can be easily computed
as s−1 = exp(−v); then dist(s, c) = ‖log(s−1 ◦ c)‖ and Reg(s) = ‖∇log(s)‖2

where log = exp−1.

2.2 T1+ Geometric Registration

We build on the extension of the Demons framework proposed in [8], that in-
cludes geometric descriptors into the variational formulation. The definition of
c carries information coming from both image and geometry. Let GF be the
fixed geometric descriptors and GM the moving one, we aim at minimizing the
following energy:

E(c, s) =
1

σ2
i

[

SimI(F,M ◦ c) + SimG(c ⋆ G
F ,GM )

]

+

1

σ2
x

dist(s, c)2 +
1

σT

Reg(s), (1)

where SimI is the image similarity criterion, SimG the geometric similarity crite-
rion, and c ⋆GF denotes the action of c on the geometry. Then c is parametrized
by an update field of image and geometry which is described at the end of this
section. Note that s goes from F to M , thus the inverse of s gives the geometric
deformation.

2.3 Fiber Bundles Representation

In the Currents GD fiber bundles were represented in the space of currents as
it provides a pose and shape-sensitive measure, independent of the number of
fibers per bundle. The main issue with this metric is the need for corresponding
bundles, hence requiring prior identification. Currents could in theory be used to
represent a set of geometric objects without explicit correspondences, but they



4 Viviana Siless et al.

require an orientation to be chosen for each fiber: given a curve L and a sequence
of points L = x1, ..., xn a current is defined as

∑

i τiδci , where ci =
xi+xi+1

2 , τi =
xi − xi+1, in other words, a set of positions and tangent vectors. A current can
thus be seen as a sum of oriented segments. Therefore it is important to find
a consistent orientation, otherwise the same fiber with the opposite orientation
cannot be registered properly. It is extremely hard to find a consistent orientation
on a large number of one-dimensional objects in 3D without a prior segmentation
and labeling in each subject. As subject variability is high and –in the absence
of complete fiber atlas– correspondence mistakes can lead to poor solutions, we
propose to relax this hypothesis and represent the geometry using Weighted
Measures.

2.4 Compression of the tractography output

Depending on the resolution of the diffusion images the number of fibers can
go from few thousands to few millions, generally leading to high computational
cost. For this reason we want to reduce the fibers to a set of few representatives,
and give these representatives a weight corresponding to the number of fibers
that they represent. For registration purposes we need bundles to be highly
homogeneous so that each representative summarizes the bundle accurately. To
obtain low variance bundles we require many of them (typically 500) among
which the small ones are considered as outliers and discarded.

For registration we take the largest (i.e. more than 50 fibers) and the longest
ones (i.e. more than 50mm) as we believe they can better lead the alignment of
the white matter. Ideally this yields to 50-100 fiber bundles. Large bundles have
higher probability of being well defined, hence detected across subjects. Short
fibers, specifically U-shape fibers are accumulated around the cortex and it is
hard to distinguish one from the others because of their resemblance on position
and shape. In consequence, they can easily mislead the registration close to the
cortical foldings.

2.5 Weighted Measures

Having a set of bundles from the fixed fibers CF (and moving CM ), we define
the set of points in GF as xi,j , i ∈ [1..|CF |], j ∈ [1..|CF

i |], where xi,j the j-
th point of the representative from the i-th bundle in CF . We can associate
with this sequence a specific measure as a sum of weighted Dirac Measures:

µF
G =

∑|CF |
i=1

∑|CF
i |

j=1 wi,jδxi
where wi,j =

|CF
i |

∑|CF |
i=0

|CF
i |
, which weights measures

according to the number of fibers that the bundle of CF
i represents. From now

on, to simplify notations, we refer to points from the geometry in GF as xi and
to points from GM as yi, and we assume that wx

i (resp. wy
i ) is the weight of the

xi (resp. yi) given by the corresponding bundle size. We define the geometry

in the fixed subject as GF =
∑N

i=0 w
x
i δxi

and for the moving subject as GM =
∑M

j=0 w
y
j δyj

.
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Let GF = (x1, ..., xN ) and GM = (y1, ..., yM ) be the fixed and a moving geo-
metric descriptor and N,M being the number of objects. Let Kβ be a Gaussian
kernel of size β. Then the scalar product between two sums of Weighed Measures
can be expressed conveniently with a pre-defined kernel Kβ :

〈GF ,GM 〉β = 〈

N
∑

i=1

wx
i δxi

,

M
∑

j=1

wy
j δyj
〉β =

N
∑

i=1

M
∑

j=1

Kβ(xi, yj)w
x
i .w

y
j (2)

Then the distance between Weighted Measures is defined as follows:

d2β(G
F ,GM ) = ||GF ||2 + ||GM ||2 − 2〈GF ,GM 〉β (3)

The distance captures misalignment and shape dissimilarities at the resolu-
tion β. Distances much larger than β do not influence the metric, while smaller
ones are considered as noise and thanks to the smoothing effect of the kernel
they are not taken into account.

Given the current deformation s, we define the action of the correspondence
field c on G as: c ⋆ G = {s ◦ exp(uG)(xi)}i∈[1,N ] ≈ s(xi) + uG(s(xi))}i∈[1,N ].

Since we deal with a discrete set of points, we choose to parametrize the
dense update field uG by a finite set of vectors uG,i using radial basis function

extrapolation: uG(x) =
∑N

i=1 h(‖x − xi‖)λi, where h(x) = e
− x2

γ2 , λi are the
interpolation coefficients and γ > 0 is the interpolation scale. λi are calculated
such that uG(xi) = uG,i∀i. Let us define the matrix A such that [A]i,j = h(‖xi−
xj‖) ([A]i,j denotes the (i, j) entry of A), Λ = [λ1, ..., λN ] the vector of λs, H(x)
the vector such that [H(x)]i = h(‖x − xi‖) and U = [uG,1, ..., uG,N ]. We can
write: uG(x) = H(x)A−1U . Minimizing ∇EG(s, uG) = 0 w.r.t. uG via gradient
descent yields to the following update field equation:

uG,i = −ǫ[−
2

β2

N
∑

l=0

wx
l w

x
i Kβ(s(xi), s(xl))(s(xi)− s(xl))

+
2

β2

M
∑

j=0

wx
i w

y
jKβ(s(xi), yj)(s(xi)− yj)], (4)

where ǫ ∈ [0, 1], and γ ∈ [1, 4]mm.
Finally, a new update field is defined by the additive combination of the

image update field uI described in [11], and the geometric update field uG in
eq. (4): u = uI + uG. The algorithm follows as in [11] where a regularization
is applied and the transformation s is updated. In [8] non-intersecting domains
where assumed between the image and the geometry of the fibers. However, this
contradicts the minimization procedure, thus we do not use such a splitting here.

3 Joint T1 MRI and Brain Bundle Registration

In this section we describe the experiments of the extended joint T1 MRI and
brain fibers bundles registration. We first analyse the behaviour of the method
itself, and we later compare it against other methods.
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3.1 Data Description

We used ten healthy volunteers from the Imagen database scanned with a 3T
Siemens Tim Trio scanner acquisitions were MPRAGE for T1 weighted ( 240×
256×160, 1.09375×1.09375×1.1mm) and DW-MRI (128×128×60, 2.4×2.4×
2.4mm3) TR = 15000 ms, TE = 104 ms, flip angle = 90o, 36 gradient directions,
and b-value = 1300s/mm2.

For each subject we obtained the linear transformation from the non-weighted
image B = 0 to T1 to align bundles with T1 images. Eddy currents correction
were applied to DTI data, and skull and neck were removed from T1 images
using the FSL software.

We used MedInria for fiber tractography, and splines to extrapolate for uni-
formly distributed points. Fibers shorter than 50mm were discarded in order to
discard U-shape fibers. Within U-shape brain fibers variability is high and mis-
match across subjects can be easily introduced during registration. We rather
trust the image for those regions around the cortex.

As discussed in section 2.4 we are not interested in using the whole fiber track-
tography output, but rather the bundles representatives. We use QuickBundles
algorithm [6] to obtain a clustering of the fibers, and used the representatives
given by the algorithm for registration. The threshold value for the bundles
spread width was set to 10mm, which gives a trade-off between low cluster vari-
ability and number of fibers per cluster. This yielded an average of 600 bundles
per subject (range: [323, 927]), where a bundle contains at least one fiber. Select-
ing bundles with more than 50 fibers leads to an average of 63 bundles (range:
[37, 88]). In the sequel we refer to this subset as the Training Set, and bundles
with less than 50 fibers as the Test Set.

Before registering with WMGD we apply a T1 affine transformation using the
MedInria software to take subjects to the target space, and apply the inverse to
the fibers.

After running WMGD we obtained a deformation field that we applied to
the moving T1 and the inverse of the deformation to the fibers.

The rest of this section explains the experiments performed. To assess the
sensitivity to parameters we arbitrary choose a subject as target to register the
rest of the dataset. Then, for performance comparison with other algorithms, we
register the subjects to one another, and average the pairwise distances.

3.2 Weighted Measures kernel size

To analyze the impact the β parameter we register the whole dataset to an
arbitrary subject chosen as target by using the Training Set of bundles. Typically
large kernels would be able to capture large misalignment and handle details as
noise.

We run Weighted Measures Geometric Demons with the following parameters
fixed ǫ = 0.3, γ = 3mm,σT = 2, σi = 1, σx = 1 with a 3-steps multi-scale
approach with 15, 10 and 5 iterations at each scale (from small to large).
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We vary β from 0 to 30mm and show results in Figure 1 for fibers (a) and
for image (b). However, we believe that decreasing β through iterations might
avoid local minima for fiber registration and improve the accuracy of image
registration. We decrease it 0.5% at each iteration and results are shown in
Figure 1 for fibers (c) and for image (d).

3.3 Regularization

To analyze the smoothness of the deformation field, we run experiments with
values of σT varying from 0 to 3.0 and analyze the impact over the results.
Analogous to Section 3.2 we register the dataset to an arbitrary subject chosen
as target, and we use the Training Set of fibers for registration. We use the same
parameter setting with β = 20mm. In Figure 2 results are shown for fibers (a),
image (b) and the regularization term (c).

3.4 Performance comparison

We conducted a cross-validation experiment by performing registration on the
Training Set, and validating results over the Test Set (bundles left out for con-
taining less than 50 fibers). To validate the robustness of the results we register
subjects dataset to one another and plot the average pairwise distance.

We run Weighted Measures Geometric Demons with the following parameters
ǫ = 0.3, γ = 3mm,β = 10mm,σT = 2, σi = 1, σx = 1. β was decreased by 0.5%
at each iteration of the algorithm. Symmetric Tensor Demons (STD) was run
with its defaults parameters. For ANTS we used recommended parameters from
documentation except for the weight of T1 and FA where different combinations
were tested. We finally show results with both equal to 1, which we found to be
a fair trade-off. Each algorithm was tested on the 3-steps multi-scale approach
with 15, 10 and 5 iterations at each scale (from small to large).

We recall that for WMGD we first apply a T1 affine transformation using the
MedInria software to take subjects to the target space, and apply the inverse to
the fibers. After running WMGD we obtained a deformation field that we applied
to the moving T1 and the inverse of the deformation to the fibers. We compare our
results to those of ANTS, a multi-modal image registration combining T1 image
and FA, and Symmetric Tensor Demons, a tensor-based registration algorithm.
Before running ANTS, corresponding FA and T1 were aligned using a linear
transformation. The resulting affine transformation and deformation field were
applied to the moving T1 image, and their inverse to the fibers. For tensor-based
registration, tensor images were taken to the target T1 space using an affine
transformation for the moving subjects, but preserving original resolution. The
resulting deformation field was up-sampled to the T1 resolution for application
to the image and then inverted for application to the geometry.
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4 Results and Discussion

4.1 Weighted Measure: β value

As expected, Figure 1 shows that higher β values give better scores for fiber
registration, while loosing accuracy on the image registration. Each curve in
Figure 1 has been normalized by its maximum value in order to analyze the
impact of the parameter in each subject. However minimum values across figures
are not comparable as they depend on the maximum value achieved. When
defining a fixed β though the iteration we quickly lose accuracy for the image
registration. When decreasing iteratively β, we can see that with an initial values
between 10 and 15, we improve fiber alignment while still holding the image one.

4.2 Regularization

In Figure 2 we see that as we increase the regularization, the image accuracy
decreases. However, low regularization will result in sharp deformations, which
are often undesirable for the purposes of registration. As for the fiber accuracy
we find the impact is low, nevertheless, a fair compromise with the harmonic
energy can be found for σT between 1.5 and 2. The difference of regularization
impact over the image and the fibers are related to the resolution differences.

4.3 Performance Comparison

The aim of WMGD is to align T1 images and neural fibers simultaneously by
only using a set of bundles that represent well the white matter structure. We
compare our results to a tensor-based registration (Symmetric Tensor Demons)
and a multi-modal registration of T1 + FA (ANTS).

Average results for registering the individual datasets to each other are shown
in Fig. 3 for training set (a), test set (b) and image (c). The WMGD method
outperforms the others on the bundles used in the registration as shown in (a),
which is expected, given that the minimized energy considered those specific
bundles. For a fair comparison we tested our metric on the remaining bundles;
the corresponding results are shown in (b). For the left aside bundles, results
are similar but generally improved by our method. These results suggest that a
sparse bundle selection according to their importance can be sufficient and that
there is no need to require datasets to have the same number of bundles. Last,
in (c) we compare the methods with respect to image registration accuracy. It
is important to mention that diffusion images had a lower resolution than the
T1 images, giving advantage to ANTS and our algorithm in accuracy. WMGD
yields better performance than ANTS, proving that improvements on bundles
registration was not obtained at the expense of image accuracy.

In Fig. 4 we can see the result of registering the dataset to an arbitrary chosen
as target. In (d) we see the fibers even before applying an affine registration, and
in (g) we can see some improvements with respect to (e) and (f) regarding the
borders of the image, and a better alignment of the corpus callosum.
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(a) (b)

(c) (d)

Fig. 1. Registration of the dataset to an arbitrary subject chosen as target. Each
curve encodes one subject registration to the target. β varies in the x-axis. Figures (a)
and (b) show the metric for fiber and image respectively at each β value fixed through
iterations. Figures (c) and (d) show respectively the metric for fibers and image at each
initial value of β, and with a 0.5% decrease at each iteration. Curves were normalized
by their maximal value.
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(a) (b) (c)

Fig. 2. Registration of the dataset to an arbitrary chosen as target with varying σT .
Each curve encodes one subject registration to the target. Weighted Measures metric is
shown in (a) for increasing σT , Sum of Squared Diff. of the image in (b) and in (c) we
show the harmonic energy results. Curves were scaled using min-max normalization.

(a) (b) (c)

Fig. 3. Registration of the dataset to each subject. STD, ANTS, and WMGD show
the average accuracy of the registration to each subject for the corresponding method.
Original corresponds to the original distances between the dataset and the chosen
target subject. Values were scaled using min-max normalization.
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(d) Original (e) STD (f) ANTS (g) WMGD

Fig. 4. Overlapping of fiber bundle representatives from all subjects registered to an
arbitrary one chosen as target. Colors encode the different subjects. Behind we see the
3D T1 image of the target subject.

We time all algorithms with an Intel Xeon 8proc. 2.53GHz, 11.8Gb and
obtained: STD=5.11min, Ants=29.43min, WMGD=44.0min.

5 Conclusion

We presented a novel approach of hybrid multi-modal registration based on T1

images and representative fiber bundles. Our algorithm does not require to have
the same number of fiber bundles per subject, neither does it require them to
be oriented, which makes it usable in much more general and realistic situations
than previous approaches.

We have compared our algorithm to other well-known available registration
algorithms with different modalities (T1 +FA and Tensors) to show the benefits
of using geometric descriptors. We obtain very good results for training fiber
bundles, and improvements on test fibers and image alignment can be seen.

We also show that using fiber bundles instead of tensor information or FA
adds relevant features, which amounts to include some priors: Tractography
algorithms have to deal with uncertain regions on DTI images and use prior
knowledge to overcome this difficulties. We strongly believe that this informa-
tion should not be discarded. Also, keeping only long fibers introduces prior
knowledge into the registration process.

Future extensions of the present work could include a joint labeling/registration
framework. One can expect that including fiber classification across the itera-
tions of the registration will improve accuracy and also give relevant information
for posterior analyses of groups of subjects.

In addition, the high performance of the algorithm makes it worthwhile for
validating results on diseases where the white matter is degenerated.

Since neural fibers contains information about connected regions, we also
conjecture that this methodology will increase sensitivity in fMRI activation
detection experiments.
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las estimation and variability analysis of white matter fiber bundles modeled as
currents. NeuroImage 55(3), 1073–1090 (2011)

6. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.:
Quickbundles, a method for tractography simplification. Frontiers in Neuroscience
6(175) (2012)

7. Ha, L.K., Prastawa, M., Gerig, G., Gilmore, J.H., Silva, C.T., Joshi, S.C.: Im-
age registration driven by combined probabilistic and geometric descriptors. In:
MICCAI. pp. 602–609 (2010)

8. Siless, V., Glaunés, J., Guevara, P., Mangin, J.F., Poupon, C., Bihan, D., Thirion,
B., Fillard, P.: Joint t1 and brain fiber log-demons registration using currents to
model geometry. In: MICCAI 2012, LNCS, vol. 7511 (2012)

9. Sotiras, A., Ou, Y., Glocker, B., Davatzikos, C., Paragios, N.: Simultaneous
geometric–iconic registration. In: MICCAI. vol. 13, pp. 676–683 (2010)

10. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s
demons. Medical Image Analysis 2(3), 243–260 (Sep 1998)

11. Vercauteren, T., , Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain
Diffeomorphic Registration: A Demons-Based Approach. In: MICCAI, LNCS, vol.
5241, chap. 90, pp. 754–761 (2008)

12. Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spher-
ical demons: Fast diffeomorphic landmark-free surface registration. IEEE Trans
Med Imaging 29(3), 650–668 (2010)

13. Yeo, B., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ay-
ache, N., Clatz, O.: Dt-refind: Diffusion tensor registration with exact finite-strain
differential. IEEE Trans Med Imaging 28(12), 1914–1928 (2009)

14. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration
of diffusion tensor mr images with explicit orientation optimization. Medical Image
Analysis 10(5), 764–785 (2006)




