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Abstract The selection of an appropriate feature set is cru-
cial for the efficient analysis of any media collection. In
general, feature selection strongly depends on the data and
commonly requires expert knowledge and previous experi-
ments in related application scenarios. Current unsupervised
feature selection methods usually ignore existing relation-
ships among components of multi-dimensional features
(group features) and operate on single feature components.
In most applications, features carry little semantics. Thus,
it is less relevant if a feature set consists of complete fea-
tures or a selection of single feature components. However, in
somedomains, such as content-based audio retrieval, features
are designed in a way that they, as a whole, have consider-
able semantic meaning. The disruption of a group feature
in such application scenarios impedes the interpretability of
the results. In this paper, we propose an unsupervised group
feature selection algorithm based on canonical correlation
analysis (CCA). Experiments with different audio and video
classification scenarios demonstrate the outstanding perfor-
mance of the proposed approach and its robustness across
different datasets.
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1 Introduction

The selection of an appropriate feature set is a crucial
step in the development of any approach for content-based
media classification. The decision commonly depends on
the specific characteristics of the underlying data, the tar-
get application scenario, and the application domain. In the
context of media classification, usually a large number of
features are employed to cope with the simple and usually
rather syntactic nature of individual features. This is based
on the assumption that different features describe different
and complementary (orthogonal) qualities of the underlying
data. Such feature sets commonly include features that are
dependent on each other and features that are not at all rel-
evant, which induces unnecessary computational costs and
may lead to overfitting. Additionally, the high dimension
may cause further problems, usually referred to as the curse
of dimensionality.

Numerous methods have been developed to reduce the
dimension and at the same time to reveal the same degree
of class discrimination. Such methods can be grouped into
dimension reduction and feature subset selection approaches.
The most widely used linear dimension reduction method
is principal component analysis (PCA), which in general
transforms a set of highly correlated features into a smaller
set of linearly uncorrelated variables called principal com-
ponents. Usually, these components cannot be directly or
easily interpreted. Feature selection tries to identify the most
important and, additionally, less redundant features from a
set of potential features. Existing approaches fall into four
main categories based on the evaluation criterion applied:
embedded, wrapper, filter, and hybrid methods [28,54]. In
our approach, we employ a filter-basedmethod, whichmeans
that the properties of the data are used as a criterion for the
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feature selection and the selected features can be passed on
to any classifier.

In this paper, we introduce a group feature selection
approach based on canonical correlation analysis (CCA). In
general, CCA coefficients indicate the correlation between
two features of varying dimensionality [20]. Large coeffi-
cients signify high correlations and, therefore, such coef-
ficients can be indicators for redundant features. On the
opposite end of the scale, low-correlated features provide
additional information which can improve the descriptive
power of the feature set. In previous work, we explored the
correlation-based ranking of feature pairs in order to per-
form feature selection [45,46]. In contrast to our previous
approach, in this work we investigate each feature separately
with respect to the currently selected feature set, improving
both the quality and the classification performance of the
selected features.

In general, differences in the objectives of a feature selec-
tion process can be found in related work [7]. Improving the
performance (efficiency) and providing faster and more cost-
effective (effectiveness) predictors are commonly addressed
goals. Similar to some other authors [15], we add a third
goal that we consider central to our approach: a better under-
standing of the underlying data. Most approaches for feature
selection and dimensionality reduction do not differentiate
whether or not a feature consists of several components.
Thesemethods usually do not aim at selecting entire features,
but aim at the selection of components only. Features selected
are then (linear) combinations of input features which makes
the interpretation of data more complex. In the presence
of multi-dimensional features that carry significant seman-
tics, we therefore require input feature components to be
kept together. We use the term group feature to emphasize
this fact. The consideration of group features offers various
advantages: First and most important, features consisting of
several components and especially, when carrying significant
meaning, should not be torn apart. Second, group features are
less at risk of overfitting and show less sensitivity to differ-
ent datasets and application scenarios. Third, the approach
is more cost-effective, since group features are usually com-
puted at once.

Most of the existing feature selection approaches aim
at the optimization for a specific application scenario. In
such a context, feature selection is usually based on previ-
ous experiments in related application scenarios. The major
drawback of such a strategy is the use of prior information
about the content, such as the existence of different con-
tent elements for audio-based classification (e.g., speech,
music) that may lead to a bias in the selection process. It
seems to be general knowledge that in some cases even
a slight alteration of the application scenario, such as the
consideration of an additional genre for a genre recognition
approach, may lead to questioning the appropriateness of the

previously employed features. Potentially, this results in the
(partly resource-demanding) calculation of features that may
not even contribute to the classification performance of the
underlying approach.

Therefore, we add as a fourth and last objective for our
feature selection approach robustness (stability). Robustness
measures the number of commonly selected features in dif-
ferent runs or experiments. For environments with slightly
changing scenarios or frequently changing data, it is of emi-
nent importance that features are robust enough to cope with
these changes by still achieving good retrieval performances.

This paper includes the following contributions:

1. We propose an improved version of the CCA-based
feature selection method presented in [45,46] that essen-
tially compares CCA values between a single feature
candidate and the set of already selected features. The
approach is unsupervised andmaintains the interpretation
of entire features as the underlying feature components
are kept together.

2. We introduce robustness as a goal for feature selection
in the case of changing media repositories and define a
measure for robustness. We argue and demonstrate that
many of the excellent results in media feature selec-
tion are clearly tailored to specific datasets and results
drop immediately when the methods are confronted with
larger variations in the data. The measure for robustness
allows to compare different approaches in this respect.

3. We perform a thorough evaluation of the proposed
approach on datasets from the audio and video domains
with different application scenarios. Evaluation results
demonstrate the outstandingperformanceof the approach
and its robustness across different datasets. Our unsu-
pervised approach is competitive to state of the art
approaches that stress the importance of the “right”
feature set and that, therefore, require careful manual
selection of their features.

4. We question the appropriateness of application-oriented
approaches at least for many tasks in the audio domain,
specifically the ones investigated here, and favor a robust
data-oriented approach for feature selection. We under-
stand that the quality and robustness of features selected
by our approach is primarily caused by the powerful fea-
tures developed in the audio domain so far. We are aware
that more evaluations for different datasets and different
application scenarios will be necessary to investigate this
issue further, but we believe that the method suggested
will have an impact on how features will be selected in
the audio domain in the future.

This paper is organized as follows. Section 2 presents
an overview of related work. Section 3 presents proposed
CCA-based feature selection approach. Section 4 outlines
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the evaluation setup for the performed experiments. Sec-
tion 5 presents the results of an experimental study of the
proposed approach and a comparison with representative
methods. Section 6 concludes this work.

2 Related work

Feature selection is commonly applied to reduce the dimen-
sionality of exploited data, to remove irrelevant items, to
increase accuracy, and to improve result comprehensibil-
ity [15]. Feature selection approaches can be broadly divided
into embedded, wrapper, filter, and hybrid methods [28,54].
Out of these four categories, filter approaches are widely
employed for their efficiency and ability to generalize since
they are not bound to the bias of any learning algorithm.
Filter methods follow mainly two approaches for feature
selection: individual feature evaluation and feature subset
evaluation. Individual feature evaluation methods assess
each feature component individually and assign weights
according to their relevance, resulting in a ranked list of
features [17,29]. Subset evaluation approaches assess fea-
tures in the context of generated feature subsets [34,61]. Such
methods iteratively generate feature subsets using different
search strategies until a predefined stopping criterion is met.
The evaluation of generated feature subsets usually employs
some statistical measures to assess their relevance and redun-
dancy. In this context, correlation analysis is often applied
to measure feature redundancy. In our previous work, we
proposed a CCA-based approach, that involves information
gain as a feature selection rule [46]. We performed a thor-
ough comparison with well-established filter-based selection
methods, Chi-square [33], information gain [17], informa-
tion gain ratio [42], ReliefF [29], consistency-based [34],
and correlation-based [16]. Our approach outperformed the
investigated algorithms in terms of accuracy and runtime and
obtained a high robustness of the feature selections for dif-
ferent datasets in the same audio retrieval task.

Both subset and individual feature evaluation approaches
ignore any existing relationships among the components of
multi-dimensional features. Recently, Xu et al. [57] pro-
posed a gradient boosted feature selection approach that is
able to consider predefined group feature structures. How-
ever, the proposed approach employs the group structure
information for controlled boosting only and, thus, com-
ponents from the same multi-dimensional feature are, in
general, preferred for selection. As a result, the final fea-
ture set still consists of single feature components (from
potentially few multi-dimensional features). In contrast, the
group lasso algorithm [62] is an extension of the popular lasso
approach [55] for the selection of predefined groups of vari-
ables in regression models [35]. Although the estimates are
invariant under (groupwise) orthogonal transformations [62],

fitted models may not be sparse. Simon et al. propose sparse
group lasso that yields solutions that are sparse at both group
and individual feature levels [13,52]. However, Hall and
Miller show that such model-based approaches may still be
inadequate for detecting all influential features [18].

Current researchonaudio andvideo classifications focuses
mostly on the development of new features and classifica-
tion methods [11,26,27,30,38]. Few works exploit feature
selection in the context of genre classifications [9,12,22,
50,60], musical instrument classification [8,51], and emo-
tion/mood classification [43,59], commonly using a single
dataset only. Most approaches consider wrapper-based fea-
ture selection, i.e., the underlying feature selection process is
supervised,maximizing the classification accuracyof a learn-
ing algorithm. Common approaches for the identification
of potential feature sets include genetic algorithm [50] and
greedy selection heuristics [12,43,59,60]. Although, usually,
wrapper-based feature selection methods outperform filter-
based approaches, they commonly suffer potential overfitting
to the training data and, hence, decreased generalization abil-
ity. Existing filter-based feature selection approaches in the
context of media classification employ primarily individual
feature evaluation to assess the quality of each feature com-
ponent. For example, Simmermacher et al. [51] and Deng
et al. [8] exploit the performance of information gain, infor-
mation gain ratio, and symmetrical uncertainty for musical
instrument classification. The authors report that the informa-
tion gain achieves comparable performance to the other two
filter-based methods. Similarly, Doraisamy et al. [9] evalu-
ate information gain ratio, Chi-square, correlation-based, and
SVM-based feature selection in the context of genre clas-
sification of traditional Malay music. The achieved results
indicate similar performance of the considered feature selec-
tion approaches on the employed dataset. Recently, Huang et
al. [22] proposed a self-adaptive harmony search algorithm
for the classification of music genres. The authors employ
a local feature selection strategy on pairs of music genres
which limits the applicability of the approach to scenarios
with available prior knowledge about the investigated dataset.
Currently, existing approaches and reported evaluations on
audio and video classifications are commonly limited to a
specific task and a single dataset. In contrast, we explore
various application scenarios and provide insights into the
selected features using different audio and video datasets.
Additionally, we investigate the role of the data and the appli-
cation scenario on the selected features.

3 Proposed approach

In this paper, we propose an unsupervised group feature
selection approach which is an extended version of [45,46].
The approach exploits the canonical correlations between
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features (of potentially strongly varying dimensionality) to
estimate the relevance of every single feature. The assump-
tion is that low-correlated features provide additional or
complementary information,while highly correlated features
indicate redundant information. Therefore, the inclusion of
the latter would only increase the target dimensionality with-
out improving the descriptive power of the resulting feature
set.

CCA is a multivariate multiple regression method that
measures correlations between multi-dimensional vectors
(features) with potentially different number of variables (fea-
ture components) [20]. For each of the input vectors, base
vectors are generated in a way that optimizes their correla-
tions in terms of mutual information, which serves as an
indicator for statistical coherence. The base vectors have
maximum dimensions of the minimum dimensionality of the
original input vectors and are independent of any affine trans-
formations or the underlying coordinate system. Therefore,
CCA allows for the analysis of relationships between multi-
ple dependent or independent variables. For the special case
of low-dimensional features, i.e., features that comprise one
or two components, we employ the linear and multiple cor-
relation approaches by Hotteling [20].

Let X andY be two features of (potentially) different sizes:
X = [X1, . . . , X p],Y = [Y1, . . . ,Yq ]. For each feature,
there is a solution for the corresponding linear combinations
U = Xα andV = Yβ. Tooptimize the correlation coefficient
ρ betweenU andV , the vectorsα andβ have to be found such
that ρ is maximized, i.e., maxα,β ρ(U, V ), where ρ(U, V ) is
given by:

ρ(U, V ) = Cov(U, V )√
Var(U )

√
Var(V )

= Cov(Xα,Yβ)√
Var(Xα)

√
Var(Yβ)

= α′Cov(X,Y )β√
α′Var(X)α

√
β ′Var(Y )β

.

(1)

We consider the correlation coefficient, ρ, between any
two features X and Y as an estimator for their complemen-
tarity and, hence, relevance. Initially, we rank all features
according to their pairwise correlation coefficients. A high
rank is assigned to weakly correlated and thus complemen-
tary feature pairs. Strongly correlated and thus redundant
feature pairs get low ranks. The feature pair with the low-
est correlation builds the initial target feature set. All other
features are processed in a loop. In each iteration, an inter-
nal evaluation of the correlations of the remaining features
to the current target set estimates whether or not a fea-
ture contributes additional information to the target set. For
this purpose, we consider the current target set as a sin-
gle multi-dimensional feature and exploit its correlation to
every feature in the remaining group feature set. The fea-

ture with the lowest correlation is added to the target set
if it does not exceed a predefined threshold, thc. The pur-
pose of the threshold is to avoid the consideration of features
that have a high correlation value. Each addition to the tar-
get set influences the correlations to the remaining features.
The more features are included in the target set, the higher
the correlations of the target set to the remaining features
becomes. Therefore, the underlying CCA is re-initialized
after each feature addition. In the original approach, we
only computed CCA values once and processed (added)
the corresponding features based on this static list. The
adaptation of CCA has considerable consequences on the
selected features. We will show in the evaluation that the
selected features demonstrate extraordinary quality. They
will be used throughout the paper for different datasets as
well as different tasks and compete with feature sets that
were specifically and carefully selected for these datasets
and/or tasks in many cases. The increase in the correla-
tions additionally allows for the autonomous termination
of the feature selection process. If the lowest correlation
between the target set and the remaining features exceeds
the predefined threshold, thc, the selection process termi-
nates. Eventually, an additional, optional stopping criterion
can be employed to terminate the feature selection process if,
for example, a feature set of a certain size is desired. In this
work, we do not employ such stopping criterion but inves-
tigate all feature pairs to autonomously identify the optimal
set of features for the given data. Algorithm 1 illustrates a
simplified scheme for the proposed group feature selection
approach.

Algorithm 1: Group Feature Selection Scheme
Input : fS ... input feature set

thc ... correlation threshold
[maxF... max. number of features] /* optional */

Output: sF... selected feature set

tS ←− {} /* target feature set */
rF ←− fS /* remaining feature set */

begin
[cP, cC] ←− sort(cca(fS))

tS ←− cP1 /* the feature pair cP1 has the lowest
canonical correlation coefficient cC1 */

rF ←− rF − tS
while rF �= ∅ do

[cP, cC] ←− sort(cca(tS ∪ rF))

if cC1 <thc then
tS ← unique(tS ∪ cP1)
rF ←− rF − tS

else
break

end
if exists(maxF) and length(tS) ≥ maxF then

break
end

end

return sF ← tS
end
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Table 1 Overview of the
employed audio datasets

Scenario Dataset Samples Classes Samples/class

Mean (m) Std (σ )

Genre ISMIR [24] 1458 6 243 209

Instrument IOWA [23] 894 22 41 55

Table 2 Overview of the
employed video datasets

Scenario Dataset Videos Classes Segments (s) Samples Samples/class

Mean (m) Std (σ )

Sub-genre BBC 9 3 2 16,191 5397 0.00

10 3231 1077 0.00

30 1071 357 0.00

Genre RAI [37] 264 7 2 209,300 29,900 25,635

10 41,721 5960 5070

30 13,791 1970 1687

Finally, it has to be stated that the proposed approach does
not explicitly handle noisy features, which in general exhibit
low correlations. For such a case, a preprocessing step (data
cleaning) is needed to eliminate potentially noisy features.
Such a step is not considered in this work.

4 Evaluation setup

4.1 Application scenarios and datasets

We investigate two audio classification scenarios: music
genre and instrument classification. The two underlying real-
world datasets demonstrate different degrees of difficulty in
the context of high-dimensional data mining: strongly vary-
ing number of samples in comparisonwith the overall feature
dimensionality, number of classes, and class distribution (see
Table 1). Additionally, the nature of the data does not allow
for any assumptions about the distribution of single feature
components or complete group features. Thedatasets arewell
established in the domain of audio analysis and, thus, suitable
for a comparison with related work.

Additionally, we investigate two video datasets: BBC
documentaries and RAI TV broadcasts (see Table 2). The
BBC data is a self-collected set of 9 h of videos from
the BBC’s YouTube channel.1 It covers three sub-genres:
technical, nature, and music. Although the semantic focus
of the three sub-genres is strongly varying, all videos in
this set are composed, edited, and post-processed in a very
similar way, at least from a technical (editorial) point of
view. The second video dataset contains more than 100 h
of complete broadcasted programmes of RAI television and
compromises 7 genres: commercials, football, music, news,

1 https://www.youtube.com/user/BBC/.

talk shows, weather forecasts, and cartoons [37,38]. In con-
trast to the BBC documentaries, the RAI broadcasts exhibit
strongly varying structures and no explicit regularities among
the different genres. As a result, this heterogeneous cor-
pus corresponds to a conventional genre classification task,
whereas the BBC documentaries allow for the investigation
of a sub-genre classification scenario. Since the different
video datasets are available as different video container files,
we first extract the audio tracks and convert them to PCM
audio files. The audio tracks are segmented into chunks of
2, 10, and 30 s. This subdivision is carried out with an
overlap of 50% in order to maintain acoustic information
near the segmentation boundaries. Especially when con-
sidering small segments of the audio signals, passages of
constant silence may appear. These segments do not have
any expressiveness and may cause errors in the feature
extraction process. Therefore, we perform silence detec-
tion by means of a noise threshold of −60 dB and remove
detected silent segments from the dataset. This step has a
low impact on the following analysis: none of the segments
from the BBC documentaries and only 0.2% of the 2 s seg-
ments from the RAI TV dataset are identified as silence and
removed.

4.2 Audio features

We employ a set of 50 group features (679 feature compo-
nents in total) that includes representative and comprehensive
audio features from the temporal and frequency domains.
They represent different audio aspects, such as harmonic
structure, rhythm, pitch, and loudness. Formore details on all
features please refer to [36]. Table 3 provides an overview
of the extracted features and the corresponding number of
components (feature dimension).
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Table 3 Overview of the employed features (in alphabetical order) and
the corresponding dimensions (D)

Feature Feature name D

AD Amplitude Descriptor 40

BFCC Bark-scale Frequency Cepstral Coefficients 40

BTHI Beat Histogram 7

CRMA Chroma CENS Features 24

E4Hz 4 Hz Modulation Energy 2

GPD Group Delay 40

HMDV Harmonic Derivate 16

HZCR High Zero Crossing Rate 1

LPC Linear Predictive Coding 40

LPCC Linear Prediction Cepstral Coefficients 40

LPZC Linear Prediction ZCR 2

LSP Line Spectral Pairs 40

M7_AFF MPEG-7 Audio Fundamental Frequency 4

M7_AH MPEG-7 Audio Harmonicity 4

M7_AP MPEG-7 Audio Power 2

M7_ASB MPEG-7 Audio Spectrum Basis 72

M7_ASC MPEG-7 Audio Spectrum Centroid 2

M7_ASF MPEG-7 Audio Spectrum Flatness 34

M7_ASP MPEG-7 Audio Spectrum Projection 16

M7_ASS MPEG-7 Audio Spectrum Spread 2

M7_AW MPEG-7 Audio Waveform 4

M7_HSC MPEG-7 Harmonic Spectral Centroid 1

M7_HSD MPEG-7 Harmonic Spectral Deviation 1

M7_HSS MPEG-7 Harmonic Spectral Spread 1

M7_HSV MPEG-7 Harmonic Spectral Variation 1

M7_LAT MPEG-7 Log Attack Time 1

M7_SC MPEG-7 Spectral Centroid 1

MFCC Mel-scale Frequency Cepstral Coefficients 40

PLP Perceptual Linear Prediction 38

PTCH Pitch 2

PTCT Pitch Contour 2

PTVB Pitch Vibration 1

R_ZC Range of Zero Crossing Rate 1

RMS Root Mean Square 2

ROFF Spectral Rolloff 2

RPLP Raster PLP 38

RYPT Rhythm Patterns 20

SBER Subband Energy Ratio 10

SF Spectral Flux 2

SONE Loudness 40

SPCR Spectral Crest 8

SPCT Spectral Center 2

SPDI Spectral Dispersion 2

SPEY Spectral Entropy 8

SPPS Spectral Peak Structure 2

SPRE Spectral Renyi Entropy 8

Table 3 continued

Feature Feature name D

SPSL Spectral Slope 8

STE Short Time Energy 2

VDR Volume Dynamic Range 1

ZCR Zero Crossing Rate 2

679

4.3 Performance metrics

We consider two performance metrics: weighted F-score
for measuring the classification accuracy and robustness for
measuring the reliability of a feature selection method to
repeatedly select the same feature set for a given application
scenario in different runs.

The weighted F-score accounts for the class distribution
of the underlying dataset by building the arithmetic mean of
the standard F-score values for the individual classes:

Fw
β = 1

n

∑

c∈C
Fβ(c) × nc, (2)

where nc denotes the number of instances per class c, n is the
number of instances in total, and Fβ is the standard F-score:

Fβ = (1 + β2)
precision × recall

β2 × precision + recall
. (3)

Up to now robustness (stability) has not been considered
to be an issue in the domain of media analysis and media
mining. This paper is one of the first to draw the attention
to the fact that in dynamic environments and continuously
changing large media repositories, robustness should be an
important aspect of feature selection. Robust feature selec-
tion has been addressed in other domains, such as in internet
traffic anomaly detection [41] and, especially, in bioinformat-
ics. Several approaches have been suggested for the analysis
of gene expression data obtained from microarray experi-
ments [1,4], for example in [19,39,44,58]. This challenging
problem deals with a feature space of at least tens of thou-
sands of genes, a small sample size, and noise and variability
due to the experimental setup making the robustness of
selected features an important goal.

Robustness measures are usually based on the similarity
of feature sets. An approach producing very similar feature
sets in different runs or in different tasks is considered to be
robust. A very popular measure for set similarity in statistics
is the Jaccard index defined as the cardinality of the intersec-
tion divided by the cardinality of the union of two (or more)
sets [31]. Additional measures have been introduced in the
literature, and an overview and comparison is provided by
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Table 4 Influence of the
correlation threshold (thc) on
the classification accuracy in
terms of F1-scores (F1), number
(N) of selected features, and
dimensionality (D) of the
corresponding feature subset in
comparison to the full feature
set (Full FS) for the employed
audio datasets

thc ISMIR IOWA

Features F1 Features F1

D (%) N KNN SVM D (%) N KNN SVM

0.95 41 (6%) 17 0.6942 0.7504 29 (4%) 16 0.8600 0.9181

0.96 43 (6%) 18 0.6901 0.7413 31 (5%) 17 0.8682 0.9252

0.97 51 (8%) 19 0.7011 0.7637 36 (5%) 18 0.8904 0.9340

0.98 69 (10%) 20 0.7077 0.7746 37 (5%) 19 0.9020 0.9432

0.99 88 (13%) 23 0.7171 0.7923 47 (7%) 21 0.9045 0.9449

1.00 143 (21%) 34 0.7360 0.8175 82 (12%) 29 0.9084 0.9522

Full FS 679 (100%) 50 0.7720 0.8550 679 (100%) 50 0.9440 0.9780

Somol and Novovicova [53]. We principally follow the def-
inition of the Jaccard index. However, we aim at making
differences between approaches larger and more expressive
by not using the cardinality of the union but the cardinality
of the smaller set as divisor. We therefore measure robust-
ness, R, of a feature selection approach by considering the
co-occurrences of the selected features in a final feature set,
f S, averaged over a predefined number of independent and
randomly initialized runs, r , as follows:

R = 2

r(r − 1)

r−1∑

i=1

r∑

j=i+1

| f Si ∩ f S j |
min(| f Si |, | f S j |) (4)

4.4 Classifiers

We compare the performance of two well-established clas-
sifiers for audio classification [14]: K-nearest neighbor
(KNN) [6], and support vector machine (SVM) [56]. In pre-
vious work, we additionally considered multinomial logistic
regression (MLG) and random forest (RF) [5] in various
audio-based scenarios [46]. Both MLG and RF classifiers
demonstrated comparable performance to KNN and SVM at
notably higher computational costs. Therefore, in this work
we focus on the performance of KNN and SVM only. The
classifier parameters have been selected based on prelimi-
nary experiments on all investigated datasets with respect to
classification accuracy and runtime performance.We employ
KNNwith k = 1 and the Euclidean distance with no distance
weighting. The SVM uses a linear kernel function. All clas-
sifications are randomly initialized, 10-fold cross-validated
with respect to the underlying class distribution, and run 10
times independently.

5 Evaluation results

5.1 Correlation threshold

In our first experiment, we elaborate the influence of the
correlation threshold, thc, on the selected feature set (both in

terms of dimensionality and number of selected features) and
the resulting classification performance in terms of F1-score.
Additionally, we put the results in relation to the performance
of the full feature set. For this experiment, we perform feature
selection on 10% of the corresponding data in 10 randomly
initialized runs. For the classification, each run is 10-fold
cross-validated. Tables 4 and 5 summarize the achieved
results averaged over the 10 independent runs for differ-
ent correlation thresholds, thc = {0.95, 0.96, . . . , 1.00},
for the audio and video sets, respectively. The results show
that an increase in the correlation threshold leads to an
increase in both the dimensions of the selected feature set
and the classification accuracy. This monotonic increase can
be observed independently of the underlying classifier and
dataset. Noteworthy is the remarkable reduction in feature
dimensionality at a comparable performance level. For exam-
ple, the BBC data with video segments of 2 s achieves an
F1-score of 99.90% using the SVM classifier. The employ-
ment of the proposed feature selection approach with a
correlation threshold of 0.95 achieves a notable reduction
in the feature set to 28% of the full feature set at highly com-
parable classification performance indicated by the F1-score
of 99.81%. The reduction in feature dimensionality leads
to lower computational costs. Moreover, a lower feature set
dimensionality supports the application of methods which
cannot handle high-dimensional data.

The results additionally showanotable differencebetween
the performance across the different segment sizes for the two
video datasets. BBC performs better for smaller segments
(e.g., F1-score of 99.81% for audio segments of size 2 s
and F1-score of 92.81% for segments of size 30 s using the
SVM classifier and thc = 0.95). On the opposite side, the
RAI dataset performs slightly better for increasing segment
sizes (e.g., F1-score of 80.62% for segments of size 2 s.2 and
F1-score of 90.83% for segments of size 30 s, again using
the SVM classifier and thc = 0.95). This inverse tendency is

2 Please note that due to computational reasons we performed clas-
sification on 25% of the RAI dataset with segments of size 2 s as an
approximation for the overall performance.
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Table 5 Influence of the correlation threshold (thc) on the classification accuracy in terms of F1-scores (F1), number (N) of selected features, and
dimensionality (D) of the corresponding feature subset in comparison to the full feature set (Full FS) for the employed video datasets

thc 2 s 10 s 30 s

Features F1 Features F1 Features F1

D (%) N KNN SVM D (%) N KNN SVM D (%) N KNN SVM

BBC

0.95 191 (28%) 26 0.9964 0.9981 113 (17%) 22 0.9701 0.9858 49 (7%) 20 0.9505 0.9281

0.96 208 (31%) 26 0.9974 0.9989 127 (19%) 23 0.9704 0.9877 56 (8%) 21 0.9504 0.9424

0.97 221 (32%) 28 0.9970 0.9980 140 (21%) 24 0.9733 0.9896 61 (9%) 22 0.9534 0.9534

0.98 254 (37%) 31 0.9974 0.9984 156 (23%) 27 0.9824 0.9905 67 (10%) 23 0.9515 0.9549

0.99 360 (53%) 35 0.9980 0.9990 182 (27%) 29 0.9888 0.9937 76 (11%) 25 0.9606 0.9657

1.00 679 (100%) 50 0.9990 0.9990 316 (47%) 41 0.9958 0.9977 104 (15%) 32 0.9709 0.9767

Full FS 679 (100%) 50 0.9990 0.9990 679 (100%) 50 0.9970 0.9980 679 (100%) 50 0.9910 0.9940

RAI

0.95 175 (26%) 26 0.7709 0.8062 103 (15%) 20 0.8725 0.8741 103 (15%) 20 0.9232 0.9083

0.96 178 (26%) 27 0.7743 0.8101 124 (18%) 21 0.8808 0.8758 124 (18%) 21 0.9302 0.9142

0.97 192 (28%) 29 0.8016 0.8282 146 (22%) 23 0.8954 0.8859 146 (22%) 23 0.9347 0.9194

0.98 223 (33%) 31 0.8206 0.8369 170 (25%) 27 0.9047 0.8946 170 (25%) 27 0.9504 0.9360

0.99 242 (36%) 34 0.8246 0.8499 283 (42%) 31 0.9177 0.9256 283 (42%) 31 0.8795 0.9415

1.00 679 (100%) 50 0.9167 0.9183 679 (100%) 50 0.9820 0.9690 679 (100%) 50 0.9790 0.9800

Full FS 679 (100%) 50 0.9167 0.9183 679 (100%) 50 0.9820 0.9690 679 (100%) 50 0.9790 0.9800

primarily due to the substantial difference in the nature of the
underlying data. While the BBC data are very homogeneous
(all documentaries share common structure and elements),
theRAI data are distinctive to a certain degree.As a result, the
BBC set requires higher granulated segments to capturemore
descriptive information and, thus, better distinguish across
the different sub-genres of documentaries.

The comparison of the two classifiers, KNN and SVM,
indicates existing data dependency of the overall perfor-
mance in terms of F1-score. While for the audio datasets
SVM notably outperforms KNN, for the video datasets the
performance difference vanishes. In general, SVM outper-
forms KNN. However, in very specific data settings (cp. RAI
dataset, segment size of 30 s, thc = {0.95, 0.96, 0.97, 0.98})
KNN demonstrates superior performance over SVM at sig-
nificantly lower computation costs.

Finally, we investigate the robustness of the proposed fea-
ture selection approach, i.e., its ability to select the same
features in different runs for the same dataset. Figure 1 shows
the achieved results for all datasets for the previously con-
sidered threshold settings. The results indicate two trends.
First, the larger the available data, the more robust is the
selected feature set. For example, the RAI dataset with seg-
ments of 2 s (209.300 samples in total) achieves an average
intersection of 98.46% in contrast to the same dataset with
segments of 30 s (13.791 samples in total) which achieves
an average intersection of 85.57% for thc = 0.95. This ten-
dency can be observed over the different threshold settings

and for the three variations of the BBC dataset as well. Sec-
ond, the higher the correlation threshold, the more robust the
selected feature set. For example, the ISMIR dataset achieves
80.65% feature overlapping for thc = 0.95 and 97.37% for
thc = 1.00. This tendency is closely related to the number
of selected features and, again, independent of the underly-
ing dataset. Overall, the average intersection over all datasets
and threshold settings is 92% indicating the high robustness
of the proposed feature selection approach.

5.2 Data size for feature selection

In this experiment, we investigate the influence of the size
of available data on the feature selection process (in terms
of dimensionality and number of the selected features and
the robustness of the resulting feature sets over different runs
on the same data) and on the classification performance (in
terms of F1-scores). For this evaluation, we consider the two
audio datasets, ISMIR and IOWA, and two video datasets,
BBC and RAI, segments of size 30 s. We fix the correlation
threshold, thc, to 0.99 and consider different portion sizes
of the investigated datasets for the feature selection process
(1, 5, 10, 20, 50, and 100%) in 10 randomly initialized and
10-fold cross-validated runs. The smallest class in the IOWA
dataset is of size 9; therefore, the lowest reported portion for
this dataset is 10%.

Table 6 summarizes the results in terms of dimensionality
of the selected feature sets and the corresponding classi-
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Fig. 1 Overlapping of the selected features over the 10 independent and randomly initialized runs for the different datasets and threshold settings

Table 6 Influence of the size of
the data available for feature
selection on the classification
accuracy in terms of F1-scores
(F1), number (N) of selected
features, and dimensionality (D)
of the corresponding feature
subset in comparison to the full
feature set (Full FS) for the
investigated datasets

Audio datasets

Data ISMIR IOWA

Features F1 Features F1

D (%) N KNN SVM D (%) N KNN SVM

1% 11 (2%) 9 0.5986 0.6057 – – – – –

5% 45 (7%) 20 0.7007 0.7727 – – – – –

10% 88 (13%) 23 0.7171 0.7923 47 (7%) 21 0.9045 0.9449

20% 135 (20%) 26 0.7250 0.8029 97 (14%) 24 0.8971 0.9506

50% 199 (29%) 29 0.7453 0.8255 234 (34%) 25 0.8757 0.9415

100% 225 (33%) 32 0.7560 0.8310 276 (41%) 29 0.8990 0.9520

Full FS 679 (100%) 50 0.7720 0.8550 679 (100%) 50 0.9440 0.9780

Video datasets

Data BBC-30 s RAI-30 s

Features F1 Features F1
D (%) N KNN SVM D (%) N KNN SVM

1% 8 (1%) 7 0.8281 0.6567 80 (12%) 23 0.9276 0.9090

5% 42 (6%) 25 0.9637 0.9314 240 (35%) 30 0.9094 0.9420

10% 76 (11%) 25 0.9606 0.9657 283 (42%) 31 0.8795 0.9415

20% 145 (21%) 27 0.9701 0.9802 328 (48%) 32 0.9089 0.9562

50% 301 (44%) 31 0.9690 0.9930 320 (47%) 35 0.9122 0.9575

100% 357 (53%) 33 0.9810 0.9930 340 (50%) 33 0.9120 0.9580

Full FS 679 (100%) 50 0.9910 0.9940 679 (100%) 50 0.9790 0.9800

fication performance. The results show that an increasing
size of available data for feature selection usually leads to a
higher number of selected features. This is due to the fact that
more data usually reveals more aspects about the underlying
data characteristics. Therefore, a larger number of features is
required to capture more descriptive information. However,
while the amount of data for the feature selection is rapidly
growing, the size of the selected feature set only displays a
slight increase. This indicates that, at some point no addi-
tional information is introduced by newly added instances.
Overall, the size of the selected feature set is again notably
lower than the size of the full feature set.

Figure 2 shows the robustness of the selected feature sets
over the different runs for each of the investigated datasets.
The results reflect the previous observations. The random
selection of a low portion of data (e.g., 1–5%) may poten-
tially lead to the selection of data subsets that capture very
differing characteristics resulting in a (relatively) low inter-
section of the selected feature sets. In contrast, the probability
that a larger data subset will account for a greater deal of the
characteristics of the underlying data is significantly higher.
Therefore, the more data are available for the feature selec-
tion process, the higher the robustness of the selected feature
set. Nevertheless, the results show that performing feature
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Fig. 2 Overlapping of the selected features over the 10 independent and randomly initialized runs for varying percentages of available data for
feature selection for the investigated datasets

selection on 10% of the data already achieves highly robust
feature sets with an intersection of approx. 90% over the dif-
ferent randomly initialized runs.

5.3 Comparison to related work on feature selection

In this section, we compare the performance of the pro-
posed group feature selection approach with our previous
work, CcaFS [45], which applies CCA on feature pairs, with
two well-established but supervised subset-based feature
selection approaches, consistency-based (ConFS) [34] and
correlation-based(CorrFS) [16], and with the group feature
selection approach group lasso (GL) [62]. For all approaches,
we perform feature selection andmodel building for the clas-
sifier on 20% of the available data. The performance on the
remaining data is evaluated in terms of both F1-score and
robustness of the selected feature sets averaged over 10 inde-
pendent and randomly initialized runs. For the classification,
we employ the SVM classifier and perform 10-fold cross-
validation of each run.

Table 7 condenses the results for the four data sets, ISMIR,
IOWA, BBC (30 s) and RAI (30 s), in terms of the selected
feature set dimension (D), the percentage of compression in
comparison to the initial (full) feature set (%), F1-score using
the SVM classifier, and robustness (R). The results show no
overall winner over all four datasets in terms of F1-score:
Group lasso achieves the best F1-score for BBCandRAI, and
the supervised correlation-based approach the best results for
ISMIR and IOWA. Our approach is second for three datasets
and third for IOWA, however, with very small differences to
the best approaches. Robustness shows an entirely different
picture: Our approach is best in three cases, but usually with
large differences to the other methods. The number of fea-
tures selected is largest for our first approach CcaFS in three
cases. A comparison of our new and our first approaches
shows that we could improve F1-scores and robustness and
at the same time reduce the number of selected features. Only
in the case of the IOWA dataset, robustness could not be

improved. Overall, we demonstrated that our new, unsuper-
vised approachyields comparable results in termsofF1-score
to the other approaches while at the same time yielding con-
siderably better robustness.

5.4 Comparison to related work on media classification

In this section, we present a comparison of the results
achieved by the proposed approachwith relatedworks report-
ing results on the same three publicly available datasets:
ISMIR (music genre classification), IOWA (musical instru-
ment identification), and RAI (TV genre classification).

For the first ISMIR music dataset, we rerun the experi-
ments with the same settings as defined by the ISMIR 2004
genre classification contest3 in order to provide for com-
parability. In the contest, the classification performance is
evaluated based on predefined training and test sets (con-
sisting of 729 samples each) using weighted classification
accuracy:

CA =
∑

c∈genres
pcC Ac; (5)

where pc is the probability of appearance of genre c and
CAc the classification accuracy for c. Table 8 provides a
summary of most recent works reporting top results on the
ISMIR dataset. In general, research in the context of music
genre classification is highly tailored to the characteristics
of the specific task. For example, Lee et al. [30] elaborate
long-term modulation spectral analysis of spectral and cesp-
tral feature trajectories to describe the time-varying behavior
of music signals. The authors investigate octave-based spec-
tral contrast (OSC), normalized audio spectrum envelope
(NASE), and MFCC features. Overall, the listed approaches
exhibit a broad variety in the dimensionality of the considered
feature sets. For example, Seo and Lee [48] employ higher-

3 http://ismir2004.ismir.net/genre_contest.
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Table 7 Comparison to related
feature selection algorithms in
terms of number (N) of selected
features and their dimensionality
(D), F1-scores using the SVM
classifier, and robustness (R) of
the corresponding feature
selection approach

Audio datasets

Approach ISMIR IOWA

Features F1 R Features F1 R

D (%) N D (%) N

ConFS [34] 10 (1%) 9 0.6540 0.0585 4 (1%) 4 0.6602 0.1278

CorrFS [16] 69 (10%) 26 0.8118 0.3593 88 (13%) 31 0.9685 0.4399

GL [62] 44 (6%) 11 0.7582 0.5508 85 (13%) 13 0.9620 0.8545

CcaFS [45] 122 (18%) 28 0.7927 0.8524 82 (12%) 25 0.9426 0.8654

This work 135 (20%) 26 0.8029 0.9054 97 (14%) 24 0.9506 0.8108

Video datasets

Approach BBC-30 s RAI-30 s

Features F1 R Features F1 R

D (%) N D (%) N

ConFS [34] 3 (<1%) 3 0.7523 0.2593 8 (1%) 7 0.7698 0.1960

CorrFS [16] 42 (6%) 17 0.9448 0.4907 105 (16%) 27 0.9464 0.8252

GL [62] 134 (20%) 17 0.9898 0.7237 425 (63%) 26 0.9797 0.9659

Cca-FS [45] 121 (18%) 30 0.9749 0.8869 248 (37%) 34 0.9479 0.9138

This work 145 (21%) 27 0.9802 0.9703 328 (48%) 32 0.9562 0.9771

order moments of short-time spectral features building a
72-dimensional feature vector and achieving a classification
accuracy of 84.64%. On the opposite side, Seyerlehner et
al. [49] employ block-based features of dimensionality 9448
leading to a classification accuracy of 88.27%. Although, our
approach is outperformed by approximately 10% by Lee et
al. [30], it is the only approach that autonomously selects
features to represent the provided data. In contrast, Baniya
et al. [2], for example, manually omit features based on the
standard deviation of the considered features in the very spe-
cific data settings. Overall, the lower result by our approach
is probably caused by the initial set of 50 features which con-
sists of fundamental and representative audio features only,
describing a broad range of general audio characteristics.
This implies that we are not employing any task-specific
analysis or classification as in the work by Lee et al. [30],
for example.

Table 9 summarizes reported results of related approaches
on the IOWA dataset. A direct comparison of the results and
the underlying approaches is not possible given themajor dif-
ferences in the employed data and the experimental settings.
For example, Benetos et al. [3] report top performance on the
IOWA dataset in terms of F1-score of 95.06%. However, the
authors employ only a small subset of the available data con-
sisting of a well-defined selection of 6 instruments: piano,
bassoon, cello, flute, sax, and violin. In contrast, the works
by Deng et al. [8] and Simmermacher et al. [51] employ
nearly the same dataset size and only omit two instruments:
guitar and marimba. Still, the authors simplify the experi-

Table 8 Comparison to related works on the ISMIR dataset (in alpha-
betical order) in terms of considered feature dimensionality (D) and the
resulting weighted classification accuracy (CA)

Approach Classifier D CA

Baniya et al. [2] ELM [21] 144 0.8646

Jang and Jang [25] SVM 168 0.8340

Lee et al. [30] LDA [10] n.a. 0.8683

Lim et al. [32] SVM 468 0.8990

Seyerlehner et al. [49] SVM 9448 0.8827

Seo and Lee [48] SVM 72 0.8464

This work SVM 334 0.7792

mental settings and employ the same number of samples for
the instruments within each category. In our experiments,
we keep the original distribution of samples which provides
for a notably imbalanced data setting. Table 10 shows the
confusion matrix of the individual instrument classification
using 10-fold cross-validation; feature selection is performed
using the full dataset with thc = 0.99. In general, our results
confirm the findings by Deng et al. [8] and Simmermacher et
al. [51]. The best classification accuracies are achieved by the
piano/others and percussion categories with 100%, followed
by the string instruments with 99%. Worst average classifi-
cations accuracy is achieved within the woodwind category
by samples of bass flute classified as alto flute (and partly
vice versa). In contrast to Deng et al. [8] and Simmermacher
et al. [51], we identify the brass category as the one with the
lowest average classification accuracy of 78%. Overall, our
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Table 9 Comparison to related
works (in alphabetical order) on
the IOWA dataset with respect
to the considered
classes/instruments and the
resulting classification accuracy
in terms of F1-scores (F1)

Approach Classes/instruments Dataset size F1

Benetos et al. [3] 6 300 0.9506

Deng et al. [8] 20 761 0.8690

Nielsen et al. [40] 17 n.a. 0.7590

Simmermacher et al. [51] 20 761 0.8925

This work 22 894

10% FS 0.9449

100% FS 0.9520

FS denotes the percentage of data employed for the feature selection with thc = 0.99

Table 10 IOWA confusion matrix of 10-fold cross-validation (in percentage)

Instrument #
Classified as

a b c d e f g h i j k l m n o p q r s t u v
Piano/others:
a=Piano 260 100
b=Guitar 45 100
Brass:
c=Tuba 9 100
d=BbTrumpet 24 96 4
e=Horn 12 67 8 25
f=TenorTrombone 12 58 25 17
g=BassTrombone 12 58 25 17
String:
h=Violin 71 100
i=Viola 62 100
j=DoubleBass 71 100
k=Cello 79 3 96 1
Woodwind:
l=BbSopranoSax 25 92 4 4
m=AltoSax 18 100
n=Oboe 12 17 8 8 67
o=Bassoon 15 13 87
p=Flute 22 100
q=AltoFlute 11 82 18
r=BassFlute 10 10 50 40
s=BassClarinet 12 83 17
t=BbClarinet 14 7 7 7 79
u=EbClarinet 14 7 7 86
Percussion:
v=marimba 84 100
Per instrument category 100 78 99 85 100

Feature selection (FS) is performed using the full dataset with thc = 0.99. # denotes the number of samples for each instrument. The last line shows
the weighted average classification rate per instrument category

proposed approach outperforms previous works in terms of
F1-score of 95.20%.

Eventually, we compare our approach with related works
reporting evaluation results on theRAIdataset (seeTable 11).4

In contrast to the previous audio sets, the RAI video dataset
allows for the development and comparison of approaches
using different modalities. Recent works demonstrate a ten-
dency towardmultimodal approaches [11,37,38]. The results
achieved by our approach indicate the outstanding perfor-
mance of the selected audio features in terms of F1-score of
95.80% despite the use of single modality only. Addition-
ally, our approach demonstrates strong competitiveness to
the top reported performance by Ekenel and Semela [11].
In addition to some acoustic features, Ekenel and Semena
consider visual, structural, and cognitive features. Similar
to the works by Montagnuolo et al. [37,38], the features
are selected in a way which reflects the editors process in
TV production and cannot be applied to arbitrary data. The
audio-based approach by Ekenel and Semela [11] achieves
comparable performance in terms of F1-score of 95.70%.

4 Please note that the information on the number of videos and their
duration in the table may partially differ from the information in the
referenced works due to corrected rounding or computation errors.

However, the approach is supervised and relies on available
data in order to train a SVMmodel for each genre separately
using manually selected features. In contrast, our approach
autonomously selects the features that are relevant for the
provided dataset and it is not bound to a specific applica-
tion or dataset. The achieved performance demonstrates the
quality of the selected features while at the same time the
exploration of a single modality notably reduces the compu-
tational effort.

5.5 Data sensitivity

Feature selection is commonly done in a very specific con-
text: for a particular application scenario or even for a specific
data setting. An initial investigation of the selected fea-
ture sets for the considered datasets revealed a high degree
of overlapping, i.e., 81% between the selected features for
the audio datasets ISMIR and IOWA and even 90% for
the video datasets BBC and RAI (30 s segments). This is
noteworthy since the datasets target different application
scenarios. One might argue that the remaining 10 or 19%
would be crucial for the classification performance in the
corresponding settings. The alternative hypothesis is that a
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Table 11 Comparison to related
works (in alphabetical order) on
the RAI dataset in terms of
considered modalities: audio
(A), visual (V), structural (S),
cognitive(C), and the resulting
classification accuracy in terms
of F1-scores (F1)

Approach Modality Videos Duration (in min) F1

Ekenel and Semela [11] A, V, S, C 262 4,164 0.9920

Ekenel and Semela [11] A 262 4,164 0.9570

Kim et al. [27] A 262 4,164 0.9430

Montagnuolo et al. [37] A, V, S, C n.a. 6,692 0.9200

Montagnuolo et al. [38] A, V, S, C 396 6,672 0.9490

Montagnuolo et al. [38] A 396 6,672 0.7870

Sargent et al. [47] A, V, S 264 n.a. 0.7160

This work A 264 4,175

10% FS 0.9415

100% FS 0.9580

Table 12 Evaluation of the
classification performance of
feature selection on a related
dataset

Dataset Features F1

Feature selection Classification D (%) N KNN SVM

Audio

IOWA ISMIR 47 (7%) 21 0.6891 0.7727

ISMIR 88 (13%) 23 0.7171 0.7923

ISMIR IOWA 88 (13%) 23 0.9182 0.9477

IOWA 47 (7%) 21 0.9045 0.9449

Video

RAI-30 s BBC-30 s 283 (42%) 31 0.9670 0.9899

BBC-30 s 76 (11%) 25 0.9606 0.9657

BBC-30 s RAI-30 s 76 (11%) 25 0.9238 0.9184

RAI-30 s 283 (42%) 31 0.8795 0.9415

Feature selection is performed on 10% of the corresponding data with thc = 0.99

well-defined feature set is competitive for a broad range of
data and application settings. Therefore, in the following
experiments we investigate the interrelation between data
(and thus the underlying application scenario) and selected
feature set, and its influence on the classification perfor-
mance in more detail. Again, all experiments are based on
10 independent and randomly initialized runs and 10-fold
cross-validated.

In our first experiment, we exchange the selected fea-
ture sets for the two audio datasets, ISMIR and IOWA,
and for two video datasets, BBC and RAI (30 s segments),
i.e., we employ features selected on the one dataset (e.g.,
ISMIR) to performmedia classification on the second dataset
related in terms of employed media (e.g., IOWA). Table 12
compares the achieved results in terms of F1-scores to the
results using the original feature set, i.e., the features selected
using the very same dataset as for the classification. The
potentially expected drop in the classification scores cannot
be confirmed. In fact, overall, the switch of the underly-
ing feature sets leads to comparable performances for all
datasets. The slight variations in the F1-scores indicate a
dependency on the size of the feature set rather than on

the dataset originally employed for the feature selection pro-
cess. Therefore, we repeat the experiment with a comparable
size of the selected feature set (in terms of resulting dimen-
sionality). Additionally, we perform cross-media exchange
of the selected feature sets to magnify potential depen-
dencies between selected features and underlying data and
application scenarios. Table 13 summarizes the achieved
results. Again, the classification performance for a single
dataset shows only slight deviations although the feature
selection has been performed on partly strongly varying
data and for a different application scenario. For exam-
ple, the SVM classifier achieves an F1-score of 79.23% for
the ISMIR audio data using features selected on the very
same data in contrast to an F1-score of 78.76% using fea-
tures selected on the dataset consisting of BBC documentary
videos.

The results seem to support the assumption, that a well-
defined feature set can be employed for a broad range of
application scenarios. The question arises how to addition-
ally increase the applicability of the selected feature set for
varying data and application scenarios. We consider two
possibilities. The first scenario accounts for the situation
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Table 13 Evaluation of the
classification performance of
feature selection on a different
dataset

Dataset Features F1

Feature selection Classification D (%) N KNN SVM

ISMIR (10%) ISMIR 88 (13%) 23 0.7171 0.7923

IOWA (20%) 97 (14%) 24 0.6723 0.7743

BBC-30 s (10%) 76 (11%) 25 0.6898 0.7876

RAI-30 s (1%) 80 (12%) 23 0.6998 0.7728

ISMIR (10%) IOWA 88 (13%) 23 0.9182 0.9477

IOWA (20%) 97 (14%) 24 0.8971 0.9506

BBC-30 s (10%) 76 (11%) 25 0.9036 0.9489

RAI-30 s (1%) 80 (12%) 23 0.9088 0.9430

ISMIR (10%) BBC-30 s 88 (13%) 23 0.9807 0.9647

IOWA (20%) 97 (14%) 24 0.9743 0.9755

BBC-30 s (10%) 76 (11%) 25 0.9606 0.9657

RAI-30 s (1%) 80 (12%) 23 0.9477 0.9622

ISMIR (10%) RAI-30 s 88 (13%) 23 0.9492 0.9192

IOWA (20%) 97 (14%) 24 0.9143 0.9202

BBC-30 s (10%) 76 (11%) 25 0.9238 0.9184

RAI-30 s (1%) 80 (12%) 23 0.9276 0.9090

Feature selection is performed with thc = 0.99, numbers in brackets denote the portion of data for feature
selection

where only a single dataset is available. Our previous exper-
iment demonstrated that the analysis of a small portion of
the data already allows for the selection of a competitive
feature set (see Sect. 5.2). This is an especially efficient
approach when working with very large datasets. However,
there is no guarantee that even a random selection will cover
most data characteristics of the underlying set. Increasing
the selected data size for feature selection can increase the
probability for a high portion of the present data charac-
teristics (cp. Sect. 5.2). Nevertheless, the determination of
the data size for feature selection is not a trivial task since
it is strongly dependent on both the available data and on
the specific data characteristics. Another approach to cover
for broader data characteristics than in a single data portion
is repeating the feature selection process and unifying the
selected features. For this purpose in each run (out of ten),
we perform feature selection for randomly selected data por-
tions and merge the extracted features into an unified feature
set. In order to provide for comparability of the results, we
keep the corresponding data portion sizes as in our previ-
ous experiment: IOWA 20%, ISMIR 10%, BBC 10%, and
RAI 1% (cp. Table 13). The second scenario accounts for
the situation where multiple datasets are available. In this
case, we merge the unified feature sets for all datasets into a
single unified feature set (all data). Table 14 summarizes the
achieved results and compares them to the performance of
the original feature set (the result of a single data portion) and
to the performance of the full feature set. Overall, the con-
sideration of different portions of the data, unified feature

set, improves the expressiveness of the selected features and
leads to an increase in the classification performance in terms
of F1-score in comparison to the original feature set. The
employment of further datasets, unified feature set (all data),
additionally improves the expressiveness of the selected fea-
ture set. Noteworthy is the fact that although this feature
set has been selected in an unsupervised manner, it facili-
tates partly strongly differing data and application scenarios.
Furthermore, the unified feature set (all data) outperforms
previously achieved results (cp. Table 13) and it approaches
the classification performance of the full feature set with sig-
nificantly lower dimensionality (31%).5

The performed experiments confirm the fact that, in gen-
eral, the employment of more features6 will most probably
increase the classification performance of a feature set since
different features usually capture different data character-
istics. Hence, the results achieved by the full feature set
outperform the results of the selected feature sets for all
considered datasets. However, the addition of any further
feature inevitably leads to an increase in both the dimen-
sionality of the resulting feature set and the computational
costs while the overall performance might only improve

5 The final unified feature set (all data) consists of the following 35 fea-
tures (in alphabetical order): BTHI, CRMA, E4Hz, HMDV, HZZCR,
LPZC, M7_AFF, M7_AH, M7_AP, M7_ASC, M7_ASF, M7_ASP,
M7_ASS, M7_AW, M7_HSC, M7_HSD, M7_HSS, M7_HSV,
M7_LAT, M7_SC, PTCH, PTCT, PTVB, ROFF, RPLP, RYPT, R_ZC,
SF, SPCR, SPCT, SPDI, SPPS, STE, VDR, ZCR.
6 Please note, that we do not consider noise as a feature.
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Table 14 Evaluation of the
classification performance of the
unified feature selection process
for the different datasets

Dataset Feature set Features F1

D (%) N KNN SVM

ISMIR Original feature set 88 (13%) 23 0.7171 0.7923

Unified feature set 149 (22%) 31 0.7470 0.8170

Unified feature set (all data) 213 (31%) 35 0.7360 0.8340

Full feature set 679 (100%) 50 0.7720 0.8550

IOWA Original feature set 97 (14%) 24 0.8971 0.9506

Unified feature set 167 (25%) 30 0.9180 0.9600

Unified feature set (all data) 213 (31%) 35 0.9260 0.9660

Full feature set 679 (100%) 50 0.9440 0.9780

BBC-30 s Original feature set 76 (11%) 25 0.9606 0.9657

Unified feature set 115 (17%) 31 0.9790 0.9840

Unified feature set (all data) 213 (31%) 35 0.9890 0.9930

Full feature set 679 (100%) 50 0.9910 0.9940

RAI-30 s Original feature set 80 (12%) 23 0.9276 0.9090

Unified feature set 109 (16%) 29 0.9460 0.9240

Unified feature set (all data) 213 (31%) 35 0.9500 0.9480

Full feature set 679 (100%) 50 0.9790 0.9800

Feature selection is performed with thc = 0.99

marginally. Therefore, feature selection is commonly applied
to reduce dimensionality and computational costs. The main
drawback of existing approaches is that they are tailored
to specific data and/or application scenario. Any alteration
of the data settings or the underlying application scenario
requires a reconsideration of the employed features. In con-
trast, our last experiments demonstrate that the proposed
unsupervised feature selection approach allows for the iden-
tification of a highly expressive feature set that can be applied
for different data and application scenarios even if the feature
selection is performedon a small portion of the available data.
This is a crucial benefit in a dynamic environment where data
continuously changes and application scenarios are subject
to adaptation.

6 Conclusion

In this paper, we presented an unsupervised approach for
the selection of robust multi-dimensional (group) features
that exploits canonical correlation in order to separate rele-
vant from less relevant features. In contrast to related works
in the context of audio and video classification, the pro-
posed approach preserves the original grouping of feature
components into multi-dimensional (group) features, which
results in a semantically interpretable feature selection. The
approach is generic as it does not make any assumptions
about the underlying data (or even application or task) char-
acteristics, but it autonomously selects a feature set that
efficiently describes the data. In addition, the feature set

selected by our approach is remarkably robust: different runs
or even experiments for different tasks show little varia-
tions in the set of selected features, even if the underlying
training set varies considerably. We performed experiments
on various audio and video datasets representing differ-
ent application scenarios and data characteristics such as a
strongly varying number of samples and classes and a varying
class distribution. Achieved results show that our unsuper-
vised approach is competitive to related works which were
designed to solve very specific tasks and additionally demon-
strates extraordinary robustness.

The reported experiments investigating the interrelation
between selected features and provided data reveal some
valuable insights. Achieved results indicate that the depen-
dencies between data (and application scenario), and selected
features are weaker than actually expected. The same well-
selected features can discriminate both between viola and
violin sounds and between different types of video documen-
taries, for example. An approach which is highly tailored to
a particular task will most probably additionally improve the
performance in terms of classification accuracy and/or fea-
ture dimensionality. However, any alteration of the task (such
as the consideration of an additional label) will require the
reconsideration of the employed features. In contrast, the per-
formed experiments indicate that a single, highly expressive
feature set can be applied for different data and application
scenarios achieving highly competitive results. Such a robust
data-driven approach is the only possibility when mining
dynamic or unknown data collections where no prior infor-
mation about the data is available. We believe that more
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attention and research time should be paid in the future to
the general question of how to obtain more robust features in
such environments.
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