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Abstract

We propose a new task of unsupervised action detection

by action matching. Given two long videos, the objective is

to temporally detect all pairs of matching video segments.

A pair of video segments are matched if they share the same

human action. The task is category independent—it does

not matter what action is being performed—and no super-

vision is used to discover such video segments. Unsuper-

vised action detection by action matching allows us to align

videos in a meaningful manner. As such, it can be used

to discover new action categories or as an action proposal

technique within, say, an action detection pipeline. More-

over, it is a useful pre-processing step for generating video

highlights, e.g., from sports videos.

We present an effective and efficient method for unsu-

pervised action detection. We use an unsupervised tempo-

ral encoding method and exploit the temporal consistency

in human actions to obtain candidate action segments. We

evaluate our method on this challenging task using three

activity recognition benchmarks, namely, the MPII Cooking

activities dataset, the THUMOS15 action detection bench-

mark and a new dataset called the IKEA dataset. On the

MPII Cooking dataset we detect action segments with a pre-

cision of 21.6% and recall of 11.7% over 946 long video

pairs and over 5000 ground truth action segments. Simi-

larly, on THUMOS dataset we obtain 18.4% precision and

25.1% recall over 5094 ground truth action segment pairs.

1. Introduction

Recognizing human activities in unconstrained videos is

important for many applications including human computer

interaction, human robots interaction, sports video analy-

sis, video retrieval, storyline reconstruction and for many

other video analysis tasks [23]. However, it is hard to de-

fine what a human action is. In the current literature, human

actions are defined based on tasks such as cutting, wash-

ing [25], based on specificity and regularity of human mo-

tion such as running, walking, hand waving [27], or based

Throw the ball

Figure 1: Unsupervised action detection by action match-

ing. Two videos share a common human action throw the

ball. Objective is to temporally localize the common human

action units (segments) within a pair of videos.

on sports activities such as weight lifting, skying or cricket

bowling [30]. Moreover, current methods in human action

recognition require a lot of supervised data [18]. Human

action detection is the task of temporally localizing a hu-

man action within a long video [25]. Obtaining ground truth

labels for human actions in video collections is costly and

consequently annotated large high quality video datasets are

hard to come by. Unlike action classification, which just re-

quires a single label for the entire video sequence, to create

an action detection dataset the annotator must watch the en-

tire video and mark the beginning and end of each human

action. Such manual annotations could be wrong, subjec-

tive and highly ambiguous. But action detection methods

require a lot of annotations to supervise training of action

detectors. As such, a more efficient method is needed.

In this paper, we present a method to discover common

action segments from a pair of videos based on human ac-

tion matching in unsupervised manner. We call this novel

task unsupervised action detection by action matching. We

match segments of one video with the other one such that

matched segments are from the same human action cate-

gory. The method must recognize similar human action seg-

ments while temporally localizing the actions (i.e., detec-

tion) without using any external information (see Figure 1).

As the task is unsupervised, our method does not know the

type of detected action, only that one is occurring. This

task extends the ASLAN [19] challenge where the task was

to predict whether a pair of videos contains the same action

or not. However, in the proposed task, the pair of videos
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may contain a series of human actions and a large number

of matched action segments.

Unsupervised action detection by action matching is use-

ful for many applications. Obviously, the output of this task

can be used to discover human action categories in unsu-

pervised manner, which could be subsequently labeled. For

example, we can cluster the large number of matched hu-

man action segments from unsupervised action detection to

discover human action categories similar to unsupervised

object discovery in static images [33]. The proposed task

is also useful for early human action and activity predic-

tion [26]. Imagine a robot that has access to a large video

archive containing many human actions and tasks (such as

cooking a meal, fixing a table, and cleaning a garage). Now

whenever the robot sees a particular sequence of human ac-

tions in a live video stream, it is able to align common ac-

tions in the live stream with the videos in the archive. This

would allow the robot to temporally localize the human ac-

tivities without supervision. Moreover, the robot could an-

ticipate future human actions by aligning what it has seen

with the archive without any annotations. Another applica-

tion of the proposed task is in video highlights generation

of, say, sports activities without human intervention [14].

Imagine a system with access to an archive of sports high-

lights videos. Given a full sports coverage video, the system

can generate new highlights by aligning the highlight videos

with full coverage video through detection and alignment

of human actions. Since highlights only capture interesting

events, we can exploit such prior information to generate

new video sports highlights. Yet another application for the

proposed task is to generate candidate temporal action pro-

posals similar to object proposal methods that are currently

popular for object detection in static images [2].

In this paper we propose a novel unsupervised action de-

tection task and propose a very effective yet simple method

to solve the problem by human action matching. The re-

lated task of action classification is a well studied with

much progress being made over the last decade [8, 16,

20, 32, 35, 28, 22]. However, action detection is a rel-

atively new task that has shown great promise in recent

years [25, 21, 29, 36, 24]. Action detection is challenging

as the duration of the action is varied and unknown, and the

background context can easily confuse the action classifiers.

Furthermore, video computation is expensive so very effec-

tive temporal encoding methods are needed. In supervised

action detection, one can rely on a large source of annotated

videos of human actions to obtain discriminative temporal

encodings using discriminative sequence encoders [5]. As

the proposed task is unsupervised, however, we must rely on

unsupervised video temporal dynamic encoding techniques

such as unsupervised LSTMs [31] or rank pooling [11].

Due to its demonstrated effectiveness, we use a variant of

rank pooling with the addition of temporal consistency for

the task of unsupervised action detection. The naive ap-

proach of simply matching all possible video segments will

not produce good results due to large number of false posi-

tives and deficiencies in the matching function. At the same

time such an approach would not be able to take advantage

of temporal consistency and smoothness in the execution of

human actions. Moreover, it is highly inefficient. To over-

come these drawbacks, we present a simple yet effective

algorithm that exploits the temporal smoothness and con-

sistency of human action evolution. Results of our method

are reported on three activity recognition benchmarks.

2. Related work

Video alignment and video synchronization is related to

the proposed task. However, except one instance we could

not find any prior work in video synchronization or align-

ment that uses semantics such as human actions to align

videos [34]. Most prior related work align pair of videos

both in temporal and spatial domain without considering

the action semantics [4] or human action dynamics. This

is mostly done by sequence to sequence matching via frame

correspondences. Frames content should be matched and

correspondences should be found. Most prior work exploit

geometric and photometric properties of the two scenes to

find the correspondences in space and time [4]. For exam-

ple, in Diego et al. [4] the paper assumes that the motion in

two videos are somewhat similar and there is some overlap

between field of view of cameras. Similarly, in Ukrainitz

and Irani [34] alignment is performed in space and time by

maximizing the local space-time correlations directly us-

ing the pixel intensity information. They seek a transfor-

mation that minimizes the spatial-temporal displacement of

near identical pair of videos. Cross-view action recognition

by exploiting the self similarity of videos is also somewhat

related to our work [17]. However, compared to other re-

lated methods, ours does not rely on geometric or photomet-

ric properties of pair of matching videos. We only rely on

encoding of human motion dynamics. In contrast to these

prior work we exploit the temporal consistency and smooth-

ness of information evolution of human actions. Further-

more, our task is an action detection task. To the best of our

knowledge, unsupervised action detection is a novel task.

Supervised action detection is also related to ours [25,

21, 29, 36, 24]. Most of the progress in action detection

is thanks to two main stream action detection datasets; the

THUMOS challenge [13] and the MPII cooking activity

dataset [25]. Rohrbach et al. [25] perform action detection

using dense trajectory features encoded with bag-of-words

and then applying simple temporal pooling method such

as sum-pooling followed by SVM classifiers. They use a

sliding window method. Joint exploitation of geometrical

contextual information among objects, human body parts,

body poses is used for action detection using LSTM in Ni et



al. [21]. A method for fine-grained action detection in long

video sequences based on a multi-stream bi-directional re-

current neural networks was presented in Singh et al. [29].

Reinforcement learning based action detection method that

utilizes recurrent neural networks has also been studies [36].

Different from all above methods, ours is an unsupervised

action detection task where we have to temporally localize

similar human actions in two long video sequences.

Recent work on temporal action proposal is also related

to our work [6]. However, most of these methods are su-

pervised. Output of our method can be used for temporal

action proposals in an unsupervised manner and is agnostic

to the action category.

Our method is also related to rank-pooling based action

recognition [1, 3, 9, 10, 11, 12]. To the best of our knowl-

edge, we are the first to use rank-pooling based dynamic

encoding for an action detection task.

3. Unsupervised action detection

In this section we formalize the action matching problem

(§3.1), provide an overview of our proposed solution (§3.2),

discuss our method for sequence encoding (§3.3), and give

details of how these come together to form a complete al-

gorithm for unsupervised action detection by action match-

ing (§3.4 and 3.5). Finally, we present two strong baseline

methods (§ 3.6) that we compare against in the experiments.

3.1. Problem formulation

Given a pair of video sequences (Xa, Xb) where Xa =
〈xa

1 ,x
a
2 , . . . ,x

a
n〉 and Xb =

〈
x
b
1,x

b
2, . . . ,x

b
m

〉
, we want to

identify common human actions and localize them in each

sequence. Many of the video frames may not belong to

any human action class and we denote these by the spe-

cial background label ⋄. Let us denote the set of human

action categories that we care about by Y . Then for each

video X = 〈x1,x2, . . . ,xn〉, there is a corresponding la-

bel sequence Y = 〈y1, y2, . . . , yn〉 where yt ∈ Y ∪ {⋄} is

the label for the t-th frame in the sequence. An action unit

of video X is a contiguous subsequence of X that contains

frames of only a single action class from the action label set

Y . An action unit u is called maximal if frames adjacent to

those in u take a different action label from Y ∪ {⋄}. An

action unit ua from video Xa is matched to action unit ub

from video Xb if the action class label of ua is same as ac-

tion class label of ub. Note that each action unit is valid if

the union over intersection between an action unit and any

ground truth is greater than some threshold (IoU = 0.5). The

goal of our task is to find matching pairs of valid maximal

action units from a pair of arbitrary long videos.

3.2. Overview of proposed solution

Given a collection of videos, first we extract frame-level

CNN features from them. With slight abuse of notation
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Figure 2: Unsupervised action detection by action matching

using temporally constant matching. Frames are denoted by

xa
t for the first video and by xb

t for the second video. Then

subsequences of size three are temporally encoded to obtain

vectors wa
t and wb

t . Afterwards, these temporal vectors are

matched using bipartite graph matching. Matching tempo-

ral encodings from two videos are connected with an edge.

Temporally consistent edges are shown in green and blue

edges while isolated edges are shown in black. Each tempo-

ral encoding propagates the matches to frames as shown by

the green coloured boxes. This way we can find the match-

ing video segments that share similar temporal evolutions.

we denote the sequence of vectors for the i-th video as

Xi =
〈
x
i
1,x

i
2, . . . ,x

i
n

〉
. We then sample subsequences

of length lw and stride ls and apply temporal encoding to

each subsequence. For every pair of videos from the collec-

tion we construct a similarity matrix between subsequences

from the first and second video, respectively. Next, we ex-

ploit the temporal consistency of activities to obtain candi-

date action unit pairs. Last, we apply non-maximal suppres-

sion to remove redundant candidate action unit pairs.

3.3. Temporal encoding of video segments

Temporal encoding takes an arbitrary long subsequence

and represents it by a fixed length vector. Recently rank

pooling was introduced as an effective and efficient method

for temporal encoding of human actions [11]. The first step

applied by Fernando et al. [11] is to smooth the frame-level

features by time varying means.

Given an input sequence X = 〈x1,x2, . . . ,xn〉, the

time varying mean at frame t is given by mt =
1
t

∑t

τ=1 xτ .

The method then normalizes the vector mt and only looks

at the direction of the evolution of the mean. Let us de-

note this preprocessed sequence by V = 〈v1,v2, . . . ,vn〉,



where each element vt is given by

vt =
1

‖mt‖
mt (1)

Note that vt captures only the direction of the unit mean

appearance vector at time t. Rank pooling then takes this

pre-processed sequence V and models the evolution of data

over time using a linear ranking objective [11] as follows:

w
⋆∈ argmin

w

{
1

2
‖w‖2 +

C

2

J∑

t=1

[
|t−w

⊤
vt| − ǫ

]2
≥0

}

(2)

As the parameter vector w
⋆ models the evolution of ap-

pearance information within the video, it also captures the

temporal structure that can be used to represent the dynam-

ics effectively. Such representations are robust and efficient

to compute with stand packages such as LibLinear [7]. In

the original rank-pooling method [11] non-linearity is in-

troduced before the temporal encoding and after temporal

encoding using a point-wise non-linear function Ψ(·), such

as the signed square root. In summary, the steps of temporal

encodings proposed by Fernando et al. [11] for supervised

action classification is shown in the following equation:

X
mt=

1

t

∑
t

τ=1
xτ

7−→ M
vt=

mt

‖mt‖7−→ V
Ψ(vt)
7−→ Ṽ

Φ(Ṽ )
7−→ w

Ψ(w)
7−→ w̃

w̃

‖w̃‖
7−→ w̃

∗

(3)

To simplify the pre-processing pipeline in this work we

remove the non-linear transformations before and after rank

pooling. Our pipeline for generating a temporal encoding of

a video sequence is then:

X
mt7−→ M

vt=
mt

‖mt‖7−→ V
Φ(V )
7−→ w

w

‖w‖
7−→ w

∗ (4)

For long sequences the time varying mean smoothing

applied by Fernando et al. [11] could be problematic in

that smoothing is dominated by early frames. In this pa-

per, we investigate an alternative scheme to obtain the

smoothed vector mt. Specifically, we investigate the fol-

lowing ARMA model in addition to the time varying mean,

mt = αmt−1 + (1− α)xt (5)

where we set m0 to x1.

3.4. Temporal gram matrix construction

Given a pair of long videos Xa and Xb, we generate sub-

sequences of length lw with a stride of ls. Let the number

of subsequences be denoted by A and B for Xa and Xb,

respectively. To avoid ambiguity in the sequel we refer to

the subsequences of video frames as video segments. For

each video segment we extract frame-wise features and ap-

ply rank pooling to obtain a fixed-length temporal encod-

ing for each of the segments using the process explained in

Equation 4. The obtained ordered set of temporally rank

pooled vectors is then 〈wa
1 ,w

a
2 , . . . ,w

a
A〉 for video Xa and〈

w
b
1,w

b
2, . . . ,w

b
B

〉
for video Xb. We can now construct a

similarity matrix (Gram matrix) G of size A × B by tak-

ing the inner-product between each pair of segments from

videos Xa and Xb as

Gi,j = w
a
i ·w

b
j ,

∀i ∈ {1, . . . , A}
∀j ∈ {1, . . . , B}

(6)

3.5. Exploiting the temporal consistency

We generate candidate action unit pairs (ua, ub) by ex-

ploiting the temporal consistency and smoothness proper-

ties of the human action evolution. To this end, we use the

Gram matrix constructed in the previous step and process

it to find the top candidates. We select matched segments

which have a similarity score greater than some positive

threshold T . In our experiments we set T to the one stan-

dard deviation above the mean of elements of G. If T is

non-positive we declare no matching segments. We then

find the top temporally consistent candidate matches via a

simple search algorithm, which we describe below.

Note that the problem of finding the largest common sub-

sequence in two sequences of length A and B has a com-

putational complexity of O(A2B2), which is prohibitively

expensive. Furthermore, we are interested in finding the top

K best matches, not just the single best match. To allevi-

ate the computational cost, we reduce the search space by

employing some heuristics. We formalize the problem of

identifying action unit pairs as a bipartite graph matching

problem with temporal consistency constraints as show in

Figure 2. We assume that the graph is sparse (via discard-

ing edges with weight less than our threshold T ) and that

the matched subsequences of video segments have the same

length and satisfy the temporal consistency (i.e., are in the

same order). For example, the subsequence w
a
i , . . . ,w

a
i+k

matches the subsequence w
b
j , . . . ,w

b
j+k if and only if the

inner-product wa
i+p ·w

b
j+p ≥ T for all p ∈ {0, . . . , k}.

Our proposed algorithm is shown in Algorithm 1. Given

sequences of encoded video segments Wa and Wb for

videos Xa and Xb, respectively, the algorithm finds all runs

of matching action unit candidates containing more than L

video segments (L > 1). Such a strategy allows us to ob-

tain longer action units, i.e., beyond the size of the original

window size lw, without resorting to a multiple scale strat-

egy (with multiple window sizes) as commonly done in the

supervised action detection literature [25, 36].

Once we obtain set of candidates we use non-maximum

suppression to get rid of the redundant candidates. Two

pairs of candidate matching action units are considered re-

dundant if they overlap with more than 0.5 IoU. To be pre-

cise, let ua
1 and ua

2 be two sequence of video segments from

video Xa and let ub
1 and ub

2 be two sequences of video seg-

ments from video Xb. Let us assume that pairs (ua
1 , u

b
1)



Input: Sequence Wa = 〈wa
1 , . . . ,w

a
A〉

Input: Sequence Wb = 〈w
b
1, . . . ,w

b
B〉

Input: Minimum match length L and threshold T > 0
Output: Candidate detections J

Construct gram matrix G as Gi,j = w
a
i ·w

b
j ;

Initialize candidate detection graph J (Ji,j = 0, ∀i, j);

for i← 1 to A− L do

// find all wb
j that match w

a
i

C0 = {j ∈ {1, . . . , B} | Gi,j > T};
for k ← 1 to L− 1 do

// find all wb
j that match w

a
i+k

Ck = {j ∈ {1, . . . , B} | Gi+k,j > T};
// remove temporallly inconsistent matches from C0

C0 = C0 ∩ (Ck − k);

end

// update candidate detection graph

for k ∈ {1, . . . , L} and c ∈ C0 do

J(i+ k−1, c+ k−1) = G(i+ k−1, c+ k−1);
end

end

Algorithm 1: Candidate generation of action unit

matches with temporal consistency.

and (ua
2 , u

b
2) are matching. Then these two pairs of match-

ing action units are redundant if ua
1 and ua

2 overlap with IoU

greater than 0.5 and ub
1 and ub

2 overlap with IoU greater than

0.5. In such situations we keep only the pair with highest

matching score. The matching score of a candidate action

unit pair (ua
∗, u

b
∗) is the sum of scores of all matched seg-

ments (of size lw) within that candidate action unit pair, i.e.,∑
w

a,wb∈(ua
∗,u

b
∗)
w

a ·wb.

3.6. Baselines methods

In this section we present two baseline methods that uti-

lizes rank-pooling for comparison.

Clustering method: Given each video X =
〈x1,x2, . . . ,xn〉, we first generate video segments as above

with length lw with a stride of one. Then we temporally

encode each segment using approximate rank pooling [1]

without using any non-linear operations on the input data.

Approximate rank-pooling is used due to its computational

efficiency (it has constant time complexity). Let us de-

note the sequence of temporally encoded output vectors by

V = 〈v1,v2, . . . ,vn−lw+1〉. To obtain segments with sim-

ilar dynamics, we cluster each of the sequences V into k

clusters using k-means. The goal is to find clusters that are,

in fact, temporally meaningful and valid temporal segments.

To further enforce this, we use the following simple trick.

We modify each element of the sequence V = 〈v1,v2, . . .〉
such that vnew

t = (vt, βt). This way, we obtain clusters that

are correlated in time as well as being dynamically similar.

Any cluster that does not have more than some given num-

ber of frames (in our case 60) are pruned. Afterwards, we

encode each of the valid clusters with temporal rank pooling

using Equation 4. Each of the clusters is now time coherent

and results in temporally encoded subsequences which we

use as candidate action units.

Given a pair of videos, we create such clusterings, one

per video and match the clusters of two videos using tem-

poral rank-pooled encoding of segments. The matching is

done using cosine similarity. All pairs of clusters having

temporal cosine similarity greater than some threshold (0.2

in our experiments) is considered a matching candidate pair

for the final evaluation. We keep the top k such detections

as candidates.

Rank pooling-based matching: In our second baseline,

we select a window size lw and a stride ls and temporally

rank pool each video segment starting from t = 1 up to

t = n,m (i.e., to the end of the video). This result in

a sequence of rank pooled features
〈
w

a
1 , . . . ,w

a
n−lw

〉
and〈

w
b
1, . . . ,w

b
m−lw

〉
. As before we construct the gram ma-

trix using using Equation 6. We then keep only the pairs

of matched sub-sequences having cosine similarity greater

than some threshold (again, 0.2 in our experiments) as can-

didate detections. This method is equivalent to our proposed

algorithm when the minimum matched sequence length L is

set to zero.

4. Experiments

In this section we report results from extensive experi-

ments on action detection by action matching. We start by

outlining our evaluation criteria and datasets used.

4.1. Evaluation criteria

Given a pair of videos from the ground truth temporal

annotation we obtain the start and end of each action. Each

video may contain more than one instance of human ac-

tion. Therefore, there can be more than one matching pairs

of ground truth action units. For example, let us assume

that there are Na ground truth action units from action class

y in video Xa and Nb number of ground truth action units

from the same action class in video Xb. Therefore, there are

Na×Nb matching pairs of ground truth action units. Then a

perfect method would be able to detect all of them within a

specific IoU threshold (0.5) as explained in Section 3.1. To

evaluate algorithms we use precision, recall and F1-score.

During evaluations, we ignore all redundant candidates (ac-

tion unit pairs) and keep only a single best candidate (ac-

tion unit pair) per ground truth pair. This is done only at the

evaluation. Candidate generation algorithm has no access to

temporal annotations. For a given pair of videos, and gen-

erated candidate pairs of action units, the precision, recall

and F1-score is define as follows:

P =
# of correct candidate action unit pairs

#of candidates generated
× 100 (7)



Figure 3: Matched examples from IKEA dataset

R =
# of correct candidate action unit pairs

# of ground truth action unit pairs
× 100 (8)

F1 =
2PR

P +R
(9)

4.2. Datasets

THUMOS dataset [13]: THUMOS’15 dataset includes

four parts: training data, validation data, background data

and test data. The training data is based on the UCF101

[2] action dataset, where videos are temporally trimmed

(each video usually contains one instance of the action with-

out irrelevant frames). A subset of 20 action classes out

of 101 is employed for this task. The training videos are

not useful for our task. We use the validation and test set

of the THUMOS’15 dataset. Both the validation and the

test sets consist of temporal annotations (start and end time)

of all instances of the actions occurring in the validation

videos. Altogether, there are 412 videos belonging to 20

action classes. Some videos contain multiple human action

classes. Some pairs of videos do not contain any match-

ing human action. We ignore any such pairs of videos from

the evaluations. There are 6325 temporal annotations in this

dataset. We ignore any pair of videos that has only a single

action unit (ground truth detection). Finally, we end up with

5094 ground truth detection pairs over all 412 videos.

MPII Cooking dataset [25]: This dataset contains 65

different cooking activities, such as cut slices, pour spice,

etc., recorded from 12 participants. In total there are 44

videos with a total length of more than 8 hours or 881,755

frames. The dataset contains a total of 5,609 annotations of

65 activity categories. Since each video is very long we use

all possible pairs during the evaluation. Therefore, there are

946 total number of video pairs for evaluation.

IKEA dataset: This dataset contains 20 sequences of

different people assembling the same IKEA drawer. Each

sequence consists of approximately 300-400 frames. The

viewpoint of the camera for each sequence is approximately

the same. The camera is facing the work bench. The dataset

and the annotations we used in our experiments will be

available.

4.3. Feature and frame representations

For MPII Cooking activities dataset, we use provided

dense trajectory features encoded with bag-of-word. We

use HOG, HOF, MBH based trajectory features quantized

into 4000 visual words as the frame representations [25].

For THUMOS dataset, we use the residual network fea-

tures [15] (152-layer network). For IKEA dataset, we eval-

uate our approach using similar features to the MPII Cook-

ing activities dataset in addition to the 152-layer residual

network features.

Baseline 1 details: We apply approximate rank pool-

ing on input sequences with window size (lw) of 61 (21 for

IKEA dataset) and stride 1. Afterwards, we L2 normalize

the temporally pooled sequences. We cluster each sequence

into 10 clusters. Experimentally we found that 10 clusters is

reasonable as it generates roughly 100 candidate action de-

tections. Before clustering step, each temporal pooled vec-

tor at time t is concatenated with the time variable such that

the new vector vnew
t = (vt, βt) where β = 0.001. Then we

keep candidate temporal segments (clusters) if they are tem-

porally consistent and longer than 60 frames (20 frames for

IKEA dataset). Given a pair of videos we have n temporal

segments for the first video and m segments for the second

and find candidates as explained in section Section 3.6.

4.4. Results

First, we report results for two baseline methods and pro-

posed effective temporal consistency method using Cook-

ing activities dataset in Table 1, IKEA dataset in Table 2

and THUMOS15 dataset in Table 3. For Cooking activi-

ties and THUMOS15 datasets, we use window sizes of 61

(stride 10) and minimum match length L of size L = 10,

and use top 100 candidate detections for evaluation.

Results in Table 1 suggest that the best individual feature

is MBH (F1 score of 14.1). Interestingly, the second best

feature is the HOG feature. Most interestingly, the tempo-

ral consistency method improves over other two baseline by

significant margin in terms of F1-score. For MBH features,

the clustering method obtains F1 score of 4.4, rank pooling

based matching obtains 4.8 while the temporal consistency

method improves results to 14.1. Similar trends can be ob-

served for both IKEA dataset and the challenging THU-

MOS15 dataset. The temporal consistency method outper-

forms other two baselines over all three datasets using both

trajectory features as well as deep residual network features.

In some instances, for MPII Cooking activities dataset, the

improvement of the temporal consistency method is more

than twice other methods in terms of F1 score. Interest-

ingly, for IKEA dataset the rank pooling matching obtains

significant precision values. Perhaps this is because this is



Method Rc. (%) Pr. (%) F1 (%)

HOG

Cluster method 17.4 4.1 6.6

Rank pooling-based matching 3.8 3.1 3.4

Temporal consistency 14.1 13.7 13.9

HOF

Cluster method 7.2 2.2 3.4

Rank pooling-based matching 3.2 2.8 3.0

Temporal consistency 9.5 9.6 9.6

MBH

Cluster method 10.7 2.8 4.4

Rank pooling-based matching 5.3 4.4 4.8

Temporal consistency 14.2 14.0 14.1

Fused

Cluster method 13.1 5.4 7.6

Rank pooling-based matching 7.2 6.4 6.8

Temporal consistency 11.7 21.6 15.1

Table 1: Unsupervised action detection results for MPII

Cooking dataset.

Method Rc. (%) Pr. (%) F1 (%)

HOG

Cluster method 2.2 2.4 2.1

Rank pooling-based matching 2.1 57.4 4.0

Temporal consistency 14.2 17.5 15.7

HOF

Cluster method 3.0 5.1 3.6

Rank pooling-based matching 2.1 58.2 4.0

Temporal consistency 22.5 24.9 23.6

MBH

Cluster method 0.9 1.0 0.9

Rank pooling-based matching 2.1 58.1 4.0

Temporal consistency 17.8 22.9 20.0

Deep

Cluster method 0.15 0.13 0.14

Rank pooling-based matching 2.7 51.1 5.0

Temporal consistency 19.6 24.6 21.1

Fused

Cluster method 3.8 3.6 3.5

Rank pooling-based matching 2.1 58.3 4.1

Temporal consistency 25.3 24.9 25.1

Table 2: Unsupervised action detection results for IKEA

dataset.

a relatively small dataset.

We also report results by fusing the HOG, HOF and

MBH features. HOG, HOF and MBH features are fused

using the average gram metric (similar to average Kernel)

for Rank pooling-based matching and temporal consistency

methods. Other fusion methods such as merging the can-

didates from different features did not improve our results

perhaps because such a strategy would not be able to ex-

ploit the advantages of temporal consistency. For cluster-

ing method, we use early fusion (concatenation of feature

vectors). Even after the fusion, we see that temporal con-

sistency method is effective. Therefore, we conclude that

rank pooling based temporal consistency method is useful

for unsupervised action detection by action matching task.

Method Rc. (%) Pr. (%) F1 (%)

Cluster method 12.5 17.6 14.6

Rank pooling-based matching 11.5 4.8 6.7

Temporal consistency 24.2 16.3 19.5

Table 3: Unsupervised action detection results for THU-

MOS15 dataset.

Method HOG HOF MBH Resnet

IKEA - TVM 15.7 23.6 20.0 21.1

IKEA - ARMA 18.4 26.5 21.9 21.8

Cooking - TVM 13.9 9.6 14.1 –

Cooking - ARMA 13.7 10.3 14.2 –

THUMOS15 - TVM – – – 19.5

THUMOS15 - ARMA – – – 21.2

Table 4: Impact of ARMA model on unsupervised action

detection results.

Class Recalled % of action segments

GolfSwing 43.0

BaseballPitch 35.2

CleanAndJerk 33.1

SoccerPenalty 25.8

Shotput 22.2

Table 5: Class based action discovery performance for

THUMOS dataset.

Class Recalled % of action segments

take-out-from-drawer 57.0

take-out-from-cupboard 47.7

take-out-from-fridge 34.3

take-&-put-in-cupboard 20.0

take-&-put-in-fridge 16.7

Table 6: Class based action discovery performance for

Cooking dataset (Top 5 classes)

4.5. Impact of ARMA model

Next we evaluate the impact of ARMA model on unsu-

pervised action detection task using all three datasets. We

only report the F1 score for clarity. Results are reported

in Table 4. Results suggest that ARMA smoothing process

obtains better results compared to the Time Varying Mean

(TVM) [11] except for the HOG features in the Cooking

activities dataset. The impact of ARMA model over THU-

MOS15 dataset is about 1.7%. We conclude that ARMA

model is better suited than the TVM for unsupervised action

detection task using rank-pooling and temporal consistency

algorithm.

4.6. Evaluating temporal consistency parameters

In this section we evaluate the effectiveness of several

parameters of the temporal consistency method. We use the

THUMOS15 dataset for parameter evaluation. For this ex-



(a) (b) (c)

Figure 4: Effect of several parameter on temporal consistency method. (a) window size, (b) number of candidate detections

and (c) maximum temporal segment length (L) is evaluated using THUMOS15 dataset.

Using the screwdriver

Figure 5: Visualizing unsupervised action detection from

IKEA dataset

periment we use TVM method (not ARMA). We evaluate

the impact of window size lw, number of candidate detec-

tions, and minimum matched sequence length L. Results

are shown in Figure 4. As it can be seen from Figure 4 (a),

the results improve with bigger window size but results start

to decrease after window size of 61. The results in the sec-

ond plot (Figure 4 (b)) is not surprising. It indicates as the

number of detections increases, the precision drops while

the recall improves. However, the best F1 score is obtained

for 60 detections using a window size of 60 and L value

of 10. Next in Figure 4 (c), we see that as the minimum

temporal candidate length L increases, the results improve

significantly up to about L value of 19. This plot is very

interesting and suggests that relatively large temporal can-

didates are better suited. This is a clear advantage of our

rank pooling-based temporal consistency algorithm. Note

that our temporal consistency method can be applied over

other temporal encoding methods as well (not just limited

to rank pooling). The main advantage of our temporal con-

sistency method is that even if one uses a fixed window size,

yet able to obtain variable length action unit candidates be-

yond the window size. Results suggest that such a strategy

allows us to improve the detection performance without ad-

ditional temporal encodings of different window sizes. We

conclude that our temporal consistency method is very use-

ful for unsupervised action detection task.

4.7. Class­based analysis and action discovery

In this section we compute the class-based analysis on

detected action segments. In the following we show the re-

call (percentage of discovered action segments) of each ac-

tion category using our temporal consistency algorithm. We

report the best 5 classes for Cooking activities and THU-

MOS15 datasets in Table 5 and Table 6 respectively. Some

of the detected human actions for IKEA dataset is also

shown in Figure 3 and Figure 5. We conclude that the top

detected action segments from our method are class specific

and can be used as an action discovery technique.

5. Conclusion

We have proposed a novel task called unsupervised ac-

tion detection by action matching. In this task the objective

is to find pairs of video segments that share a common hu-

man action from a long pair of videos. It is an unsupervised

task as the task is agnostic to the action class which make it

useful for many real world applications. We have presented

an effective and efficient method for discovering such hu-

man action pairs. We exploit the temporal consistency and

the temporal evolution of videos to discover such pairs of

video segments. We obtained promising results on three

action detection datasets including MPII Cooking activities

dataset and THUMOS15 challenge dataset. We believe in

future the proposed task would be evolved to jointly learn

video representations, action categories and action detectors

in an unsupervised or semi-supervised manner while solv-

ing many real world problems.
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