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Abstract. Band selection is a common technique to reduce the dimensionality of hyperspectral

imagery. When the desired object information is known, the reduction process can be achieved

by selecting the bands that contain the most object information. It is expected that these selected

bands can offer an overall satisfactory detection and classification performance. In this paper,

we propose a new particle swarm optimization (PSO) based supervised band-selection algorithm

that uses the known class signatures only without examining the original bands or the need of

class training samples. Thus, this method requires much less computing time than other tradi-

tional methods. However, the PSO process itself may introduce additional computation cost. To

tackle this problem, we propose parallel implementations via emerging general-purpose graphics

processing units that can provide satisfactory results in speedup when compared to the cluster-

based parallel implementation. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
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1 Introduction

The objective of hyperspectral band selection is to select a subset of original bands that contain

the major data information. Band selection can be performed based on the availability of class

information. When the interested class information has been obtained, we could apply super-

vised band selection to preserve the desired object information. When such information is

unknown, unsupervised band selection has to be implemented to find the most informative

and distinctive bands. In this paper, we will only discuss supervised band selection.

A large group of supervised band-selection algorithms calculates class separability when a

subset of bands is selected. Class separability could be measured through various ways, i.e.,

divergence, transformed divergence (TD), Bhattacharyya distance, or Jeffries-Matusita (JM)

distance, with the general criterion of the largest class separability being achieved by a smallest

subset.1–4 Under this circumstance, enough samples are usually required in order to examine

class statistics. There are also other selection criteria that employ the spectral angle mapper

(SAM) or orthogonal projection divergence (OPD),5 where the average pairwise class distance

is set as the band selection metric.

To avoid testing all the possible combinations, sequential forward selection (SFS) is often used

for band searching. It is initiated with the first selected band, then the second band is selected such

that it (together with the first one) can yield with the optimal value of a selection criterion, and so

on. In this paper, we propose a more advanced searching method, i.e., particle swarm optimization

(PSO). The PSO uses a simple mechanism that mimics swarm behavior in birds flocking and fish

schooling to guide the particles to search for global optimal solutions. It is proved to be a very

efficient optimization algorithm by searching the entire problem space.6–8 Some researchers

have explored the performance of PSO in band selection area,9,10 where the number of particles

is linked with the predefined number of bands to be selected, and the particles’ positions in search
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space indicate the indices of selected bands. In Ref. 9, a function related to greedy modular

eigenspaces is used as the fitness function, which needs to examine the entire dataset; in

Ref. 10, a neural network is embedded in the PSO training, which is very time-consuming.

The fitness function in a PSO system should be as simple as possible to avoid large

computational burden. If we set the fitness function as the subset which provides the highest

classification accuracy, this criterion function of band selection is not practical because

classification needs to be conducted each time. It is computationally prohibitive if the selected

classifier, for example, neural network or support vector machine (SVM), is very expensive with

respect to training and testing. Here, we apply the minimum estimated abundance covariance

(MEAC) method11 which is simple but effective without performing classification during

band selection, without calculating class statistical information using training samples, and

without examining original bands (or band combinations). MEAC selects bands based on

interested class spectral signatures only (one for each class).

Although PSO algorithms present attractive global optima search properties, they are plagued

by high computational cost as measured by running time. It is natural to implement parallel

computing for such an optimization system. Clusters are commonly used nowadays for high

performance computing purpose. Recently, graphics computing units (GPUs) are attracting

more and more attention from engineering and science area due to its portability and low-

cost. GPUs were first invented for graphics acceleration, but its computational power for general

purpose computing has also been explored.12 GPU has already been successfully used in many

computation fields, such as signal process problems,13 computer vision problems,14 Voronoi

diagrams,15 neural network computation,16 and so on. It is also applied to hyperspectral

image analysis, e.g., detection, classification, and unmixing.17–19 Several GPU based PSO imple-

mentations have been developed. Veronese and Krohling20 are the first to develop the PSO

parallel implementation on GPU using compute unified device architecture (CUDA) platform.

Zhou and Tan21 have presented a model for PSO with local ring topology. Mussi et al.22 imple-

mented both local ring topology and global topology and applied their PSO model to detect road

signs. Zhu and Curry23 presented a hybrid PSO model including CPU and GPU codes on particle

solution updates. In this paper, we will present GPU implementation with the latest GTX285 for

the PSO-based band selection algorithm with the MEAC criterion and compare its performance

with that of the cluster implementation.

2 Band Selection Method

2.1 Theory Background

In a supervised band selection situation where interested class signatures are known, band

selection process can be greatly simplified. It saves a lot of computation time by utilizing

only the class signatures rather than entire bands for band selection.

Assume that there are p classes present in an image scene with L bands. Based on the

linear-mixture model, a pixel (r) can be considered as the mixture of the p endmembers.

Let the end member matrix be S ¼ ½s1; s2; : : : ; sp�. So the pixel r can be expressed as

r ¼ Sαþ n; (1)

where α ¼ ðα1α2αpÞ
T is the abundance vector and n is the uncorrelated whitened noise with

statistical character of EðnÞ ¼ 0 and CovðnÞ ¼ σ
2I where I is identity matrix. The least square

solution of α, denoted as α̂, can be obtained as24

α̂ ¼ ðSTSÞ−1STr: (2)

The stochastic features of α̂ include

Eðα̂Þ ¼ α Covðα̂Þ ¼ σ
2ðSTSÞ−1. (3)

In the scenario where q classes exist and q > p, which means that only p class signatures

are known, then the noise n in Eq. (1) is not white any more. Instead, CovðnÞ ¼ σ
2
Σ where
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Σ is the noise covariance matrix. In this case, the abundance of the p classes can be estimated

using the weighted least square solution as

α̂ ¼ ðSTΣ−1SÞ−1STΣ−1r: (4)

According to Ref. 24, the first- and second-order moments of α̂ become

Eðα̂Þ ¼ α Covðα̂Þ ¼ σ
2ðSTΣ−1SÞ−1: (5)

2.2 Fitness Function and SFS Searching

Intuitively, the subset of selected bands should reduce the deviation of α̂ from the actual α. When

all the classes are known, this is equivalent to minimizing the trace of the covariance, i.e.,

trace½ðŜTŜÞ−1 �: (6)

Let ΦS denote the selected band subset, and then Ŝ is the matrix containing class spectral sig-

natures in Φ
S. If the number of existed classes is larger than that of known, it is equivalent to

minimize

trace½ðŜTΣ̂−1
ŜÞ−1 �; (7)

where Σ̂ is the data covariance matrix with the selected bands in Φ
S only. The resulting band-

selection algorithm based on the equations above is referred to as the MEACmethod. It is chosen

as the fitness function for our PSO-based band selection due to its robust performance.

The basic steps of the traditional SFS searching using MEAC for band selection can be

described as:

1. initializing the algorithm by choosing a pair of bands B1 and B2, then Φ
S
2 ¼ fB1;B2g,

2. finding a third band B3 such that Eq. (6) or Eq. (7) can be minimized, then the selected

band subset is updated as ΦS
3 ¼ Φ

S
2

S
fB3g, and

3. continuing on step 2) until a desired number of bands has been added to Φ
S.

2.3 PSO Searching for Band Selection

PSO has been widely used in multi-dimensional optimization. It is one of the evolutionary algo-

rithms targeted especially towards global optimization. PSO searches the solution space by start-

ing from randomly distributed particles like swarm. It is very similar to other evolutionary

computation algorithms but has relatively fast convergence. It shares some characteristics

with evolutionary techniques: 1) It uses a large size of random particles as initials; 2) the optimal

objective function (i.e., fitness function) value is determined by iteratively updating the genera-

tions; and 3) evolution adaptation uses the previous generations, and particles are flown through

the problem space following the current best solution. For our problem, the predefined number of

bands equals the number of particles. Each particle’s position represents the index of that

selected band.

Here, possible solutions (i.e., selected bands) are called particles, and recursive solution

update is called velocity. The update of particles is stated by Eq. (8). It calculates the new velo-

city V id for each particle based on the previous velocity V id, particle’s current location xid, the

location (pid) that it has reached so far for the objective function Eq. (6) or Eq. (7), and the

particle’s location (pgd) that has been reached so far globally for the objective function.

These particles are all potential solutions, and their locations are updated by Eq. (9). Two learn-

ing rates are c1 and c2. The inertia weight w ¼ f0.5þ ½randð•Þ∕2.0�g is used as the scaling factor
of previous velocity V id, which provides improved performance in various applications.7,8 Here,

randð•Þ represents a function generating a random variable uniformly distributed within [0, 1].

V id ¼ w × V id þ c1 × randð•Þ × ðpid − xidÞ þ c2 × randð•Þ × ðpgd − xidÞ. (8)
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xid ¼ xid þ V id. (9)

2.4 Performance Evaluation

When pixel-level ground truth is unavailable, the classification maps from using all the original

bands can be considered as ground truth, and those from the selected bands are compared with

them with spatial correlation coefficient ρ. An average ρ closer to one generally means better

performance. This is under the assumption that using all the original spectral bands (after bad-

band removal), the best or, at least, satisfying classification performance can be provided. This

method measures the image similarity and in turn provides us the assessment of quantitative

performance in an unsupervised situation.

3 GPU Implementations

The GPU comes with the shared memory architecture. As all processors of the GPU can share

data within a global address space, it fits the data parallelism very well. To achieve satisfied

parallel performance, the data throughput is very critical in GPU parallel algorithm design,

which means enough data and computation should be designed ahead to feed into the GPU

to take advantage of its computing power. Previous work shows that it can achieve excellent

speedup performance only when the data size is increased to thousands. As it uses the shared

memory model, the major bottleneck is memory communication between the host and device;

unnecessary data transfer between host and device should be avoided. After all, two key rules

should be followed in the parallel algorithm design stage: (1) reduce the communication between

host and device, and (2) parallel data size as large as possible.

In this paper, our purpose is to accelerate the running speed of MEAC-based PSO searching

method on GPU; meanwhile, performances of the GPU-implemented PSO should not be

deteriorated. By exploring the full power of the parallel computing ability of GPU, we expect

the implementation can solve the global optimization problem for high-dimensional data with

large swarm population.

3.1 Data Organization

In PSO, the information of position and velocity for all the particles is stored on the global

memory of GPU chips. One-dimensional arrays are used for storing parameters, including posi-

tion, velocity, pbest and gbest fitness values for all the particles. Here, we assume the dimension

of the problem isD (equal to the number of bands to be selected), and the swarm population is N.

So an array of length DN is used to represent each swarm by storing all the position and velocity

values. The pbest fitness and fitness value is stored on an array of length D.

3.2 Random Number Generation

In the process of optimization, PSO requires random numbers for velocity updating. Three ran-

dom numbers are needed during each iteration. One is for the inertia weight, and two are for the

learning rates. As the absence of high precision integer arithmetic, generating random numbers

in GPUs is not easy, we generate random numbers on CPU first and then transfer these numbers

to the global memory of GPU. However, the data transportation between GPU and CPU is quite

time consuming. If we generate random numbers on CPU for each iteration and then transfer

them to GPU, the speedup performance will be degraded. In order to reduce the communication

time between CPU and GPU as much as possible, we would transfer the random numbers in

advance. First, we generate T random numbers on CPU before running PSO where T is large

enough as necessary in the predefined iterations. Then, they are transported to GPU global mem-

ory and stored in an array R. When it comes to the update of the velocity, we pass three random

numbers from R instead of transporting three times of max iterations random numbers from

CPU to GPU. The running speed can be obviously improved by using this technique. In the

experiment, we make a comparison with the cellular automata (CA) random number generator

(RNG) approach25 that generates random numbers in GPU itself.
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3.3 Overall Algorithm of GPU-Implemented PSO

The main steps illustrated in Fig. 1 for GPU-implemented PSO can be described as below. Here,

we set the maximum number of iterations as the stopping criterion for the optimization process

based on our experience:

1. Initialize the positions and velocities of all particles.

2. Transfer these data and hyperspectral data from CPU to GPU’s global memory.

3. For i ¼ 1 to Max Iteration do

Compute fitness values of all particles using Eq. (6) or Eq. (7)

Update pbest and pbest position of each particle

Update gbest and gbest position for all the particles

Update velocity and position of each particle using Eqs. (8) and (9).
end for
Transfer results data back to CPU and output.

local

memory 

global

memory 

position

fitness

shared

memory 

global

memory 

fitness

pbest  fitness

pbest fitness 

shared

memory 

pbest fitness
global

memory 
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memory 
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memory 

random number 

velocity and position

pbest position 

gbest postion 

velocity 

position
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Step 2. Update pbest and pbest position
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Step 4. Update velocity and position

Stopping

criterion 
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Generate random 
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Load data 

CPU GPU

Print out results 

Fig. 1 The Diagram for the GPU-implemented PSO band selection.
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3.4 Parallelization Design On GPU

The difference between the implementation on CPU and a GPU kernel is that the kernel function

of GPU is designed for single-instruction, multiple-data (SIMD) parallelized computing. So we

design the parallelization methods for all the sub-processes in PSO.

1. Compute fitness values: Fitness values calculation is the most important task in the entire

process, where the computation intensity is determined by the number of particles and the

size of each particle. It should be carefully designed for parallelization so as to improve

the overall efficiency of the algorithm. The steps for fitness value calculation are shown as

follows:

a. Set the block size and grid size with the number of threads equal to the number of
particles N.

b. Load the position data of each particle from global memory to local memory of each
thread.

c. Apply arithmetical operations to each thread for fitness function in parallel.

d. Store the final fitness values of all particles to an array fitness which stores the fitness
value for each particle.

2. Update pbest and gbest: After the fitness values are computed, each particle may result in

a better value than ever before in its history and new global best particles may be found.

So pbest and gbest must be updated according to the current information of the particles.

The updating of pbest can be done as follows:

a. Transfer pbest position, pbest fitness, and fitness data from global to shared memory of
each block.

b. Map each thread to each particle.

c. If fitness value of any thread is better than its pbest fitness, then the new fitness value
replaces the old one for each dimension d do.
The update of gbest is different from that of pbest. Its parallel implementation is shown
as below:

a. Transfer pbest fitness data from global to shared memory.

b. Apply the reduction on each block for minimum element; store the minimum elements
of each block to one array.

c. Apply the reduction again for the array we got in step b.

d. Update gbest fitness and gbest position by one thread.

3. Update velocity and position: After the pbest and gbest position of all the particles have

been updated, the velocities and positions should also be updated according to Eqs. (8)

and (9), respectively. The update is critical in the whole algorithm which makes use of the

new information provided by pbest and gbest.

a. Map each thread to each particle.

b. For each dimension d do

Transfer the gbest position, pbest position, position, and random number to share memory of
each block.

Update each particle on dimension d.
end for.

4 Experiments

4.1 Computing Facilities and Dataset

The CPU machine used in the experiments is an Intel Pentium4 3.40 GHz with Hyper thread and

2 GB of memory. The GPU is NVidia’s GeForce GTX285 that has 240 cores with 1 GBmemory.

The Linux-based cluster used in the experiments has 2048 cores which is composed of 512

Sun Microsystems SunFire X2200 M2 servers, each with two dual-core AMD Opteron
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2218 processors (2.6 GHz) and 8 GB of memory. All of the computing nodes are diskless. The

system uses gigabit ethernet to connect the 32 nodes in each rack together and 10 GbE to connect

the 16 racks to one another. The parallel algorithms on the cluster are implemented in the C++

with the message passing interface (MPI) and EIGN library. The GPU versions are implemented

in the CUDA.

The airborne visible/infrared imaging spectrometer (AVIRIS) data used in this experiment, as

shown in Fig. 2, was taken from the Lunar Crater Volcanic Field in Northern Nye County,

Nevada, with 200 × 200 pixels and 158 bands after low-SNR and water-absorption bands

were removed. The spatial resolution is about 20 m, which means that a significant number

of pixels are mixed pixels. According to prior information, there are five classes: cinders,

playa, rhyolite, shade, vegetation.

Since all five spectral signatures are available, we could use them for band selection. The

OSP classifier was chosen for soft classification,26 and spatial correlation coefficient was

calculated between the corresponding classifications maps using all the original bands and

the selected bands. The averaged correlation coefficient versus the number of selected bands

was plotted in Fig. 3. It also shows that the performance of PSO is better than the widely

used SFS.

In this experiment, we set the number of particle swarm size of 10,000 to fully explore the

computational power of GPU. The maximum iteration was set as 500 which was large enough in

this case. The number of selected bands was changed from 5 to 25. The average running time in

Fig. 2 AVIRIS lunar lake scene.

Fig. 3 Supervised band selection with MEAC metric for AVIRIS lunar lake experiment.
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the cluster and GPU is shown in Table 1, and the speedup comparison of both parallel computing

is shown in Fig. 4. From these results, we can see that the GPU achieved slightly better

performance than the cluster with 32 cores, and generating random numbers in CPU is slightly

better than in GPU.

4.2 Running Time and Speedup Versus Number of Selected Bands

Now we fixed the swarm population to a constant number and varied the number of bands to be

selected. Analysis about the relationship between running time (as well as speedup) and the

number of selected bands was conducted. The parallel PSO was run five times, and the average

results are shown in Table 2 (N ¼ 10000, Iter ¼ 500).

As seen from Fig. 5, the speedup of the cluster system has not been affected a lot by the

number of bands selected, or the particle dimension. Figure 6 shows the speedup of GPU, and

the accelerations were decreased as the number of selected bands increased. This is because

when the number of selected bands is increased, it directly leads to the increase of particle

dimension, which greatly degraded the speedup performance of GPU.

Table 2 further shows that the computation time all increased but that of GPU increased

greatly in proportion compared with the serial algorithm. In other words, we could say the cluster

has fast computation speed and speedy data transfer mechanism, thus the increase of particle

dimension does not induce more computational burden.

4.3 Running Time and Speedup Versus Swarm Size

Now we fixed the number of selected bands to a constant number and explored the effect of

swarm size on the parallel performance. Corresponding analysis of the results of running

Table 1 Average parallel band selection running time (in second).

Number of Processors 1 4 8 16 32

Cluster 31.95 10.87 4.82 2.45 1.20

GPU 1.14

GPU with CA PRNG 1.29

Fig. 4 Speedup of the parallel band selection algorithm.
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Fig. 5 Speedup performance with different number of band selected for cluster.

Table 2 Results of parallel band selection running time (in second).

Number of selected band 5 10 15 20 25

1 processor 25.289 28.853 34.302 34.929 36.790

4 processor 8.710 9.664 11.169 11.2909 13.324

8 processor 3.833 4.312 4.857 5.444 5.854

16 processor 1.840 2.065 2.347 2.537 2.808

32 processor 0.981 1.078 1.214 1.329 1.427

GPU 0.609 0.805 1.139 1.504 1.649

GPU with CA PRNG 0.710 0.828 1.242 1.696 1.871

Fig. 6 Speedup performance with different number of band selected for GPU.
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Table 3 Results of parallel band selection running time (in second).

Swarm size 10000 5000 1000

1 processor 36.790 18.845 3.976

4 processor 13.324 6.639 1.367

8 processor 5.854 2.962 0.646

16 processor 2.808 1.469 0.362

32 processor 1.427 1.017 0.262

GPU 1.649 1.084 0.519

GPU with CA PRNG 1.881 1.173 0.615

Fig. 7 Speedup performance with different swarm size for cluster.

Fig. 8 Speedup performance with different swarm size for GPU.
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time on different swarm size was performed. The parallel PSO was run five times, and the

average results are shown in Table 3 (Dimension ¼ 25, Iter ¼ 500).

As we can see from Fig. 7, the speedup of the cluster system was largely affected by

the parameter of swarm size in PSO, especially when the number of processors was increased.

This illustrates that as the swarm size allocated on each processor was decreased, the

overhead between the processors became dominant and thus reduced the related speedup.

The speedup of GPU, as shown in Fig. 8, shows the accelerations also decreased as the

swarm size was reduced which is, again, due to the communication overhead between

the host and device.

The detailed running time of GPU is shown in Table 3. Although the decrease of swarm

size directly brought down the computational intensity, the performance was also affected

due to the proportion of the communication overhead which was enlarged in whole computation

process.

5 Conclusions

In this paper, we propose GPU parallel implementation for MEAC-based supervised

hyperspectral band selection. By employing the idea of optimization search method of

PSO, the optimal combination of bands can be searched given that the number of selected

bands is known. However, to reduce the workload of PSO, its implementation on GPU is

presented, and its performance is compared with the cluster-based parallel implementation.

The experimental results show that GPU implementation has high scalability and is compar-

able to cluster implementation. In addition, we notice that the running time and swarm

population size take an approximately linear relationship, which is also true for running

time and dimension. However, the swarm size has a major impact on the speedup perfor-

mance; to fully explore the power of GPU, a large size of swarm should be adopted.

As for future work, we will further improve the performance of parallel PSO with several

strategies including the parallel simulated annealing approach in Ref. 27.

References

1. R. Pouncey, K. Swanson, and K. Hart, ERDAS Field Guide, 5th ed., ERDAS Inc., Atlanta,

GA (1999).

2. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction, 4th ed.,

Springer-Verlag, Berlin, Germany (2006).

3. A. Ifarraguerri and M.W. Prairie, “Visual method for spectral band selection,” IEEE Geosci.

Remote Sens. Lett. 1(2), 101–106 (2004), http://dx.doi.org/10.1109/LGRS.2003.822879.

4. R. Huang and M. He, “Band selection based on feature weighting for classification of

hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett. 2(2), 156–159 (2005),

http://dx.doi.org/10.1109/LGRS.2005.844658.

5. C. -I Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification,

Kluwer, New York, NY (2003).

6. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swam theory,” in Proc. of

the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan,

pp. 39–43 (4–6 October 1995), http://dx.doi.org/10.1109/MHS.1995.494215

7. R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications,

resources,” in Proc. of the Congress on Evolutionary Computation, Indianapolis, IN,

Vol. 1, pp. 81–86 (2001), http://dx.doi.org/10.1109/CEC.2001.934374

8. X. Hu and R. C. Eberhart, “Solving constrained nonlinear optimization problems with

particle swarm optimization,” in Proc. of 6th World Multiconference on Systemics,

Cybernetics and Informatics (2002).

9. Y.-L. Chang et al., “Band selection for hyperspectral images based on parallel particle

swarm optimization schemes,” in Proc. of IEEE Geosci. and Remote Sens. Symposium,

Cape Town, Vol. 5, pp. V84–V87 (12–17 July 2009), http://dx.doi.org/10.1109/IGARSS

.2009.5417728

Wei, Du, and Younan: Fast supervised hyperspectral band selection using graphics processing unit

Journal of Applied Remote Sensing 061504-11 Vol. 6, 2012

Downloaded from SPIE Digital Library on 15 Jun 2012 to 130.18.64.136. Terms of Use:  http://spiedl.org/terms

http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2003.822879
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/LGRS.2005.844658
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.1109/IGARSS.2009.5417728
http://dx.doi.org/10.1109/IGARSS.2009.5417728
http://dx.doi.org/10.1109/IGARSS.2009.5417728
http://dx.doi.org/10.1109/IGARSS.2009.5417728
http://dx.doi.org/10.1109/IGARSS.2009.5417728
http://dx.doi.org/10.1109/IGARSS.2009.5417728


10. S. T. Monteiro and Y. Kosugi, “A particle swarm optimization-based approach for hyper-

spectral band selection,” in Proc. of the Congress on Evolutionary Computation, Singapore,

pp. 3335–3340 (25–28 Sept. 2007), http://dx.doi.org/10.1109/CEC.2007.4424902

11. H. Yang et al., “An efficient method for supervised hyperspectral band selection,” IEEE

Geosci. Remote Sens. Lett. 8(1), 138–142 (2011), http://dx.doi.org/10.1109/LGRS.2010

.2053516.

12. M. D. McCool, “Signal processing and general-purpose computing on GPUs,” IEEE

Signal Process. Mag. 24(3), 109–114 (2007), http://dx.doi.org/10.1109/MSP.2007.361608;

13. C. Tenllado et al., “Parallel implementation of the 2D discrete wavelet transform on graphics

processing units: filter bank versus lifting,” IEEE. Trans. Parallel. Distr. Syst. 9(3),

299–310 (2008), http://dx.doi.org/10.1109/TPDS.2007.70716.

14. R. Yang and G. Welch, “Fast image segmentation and smoothing using commodity graphics

hardware,” J. Graph. Tool. 7(4), 91–100 (2002).

15. K. E. Hoff et al., “Fast computation of generalized Voronoi diagrams using graphics

hardware,” in Proc. of SIGGRAPH, 277–286, ACM Press/Addison-Wesley Publishing

Co, New York, NY (1999), http://dx.doi.org/10.1145/311535.311567

16. Z. W. Luo, H. Z. Liu, and X. C. Wu, “Artificial neural network computation on graphic

process unit,” in Proc. of International Joint Conference on Neural Networks, Wuhan,

China, Vol. 1, pp. 622–631 (31 July–4 Aug. 2005).http://dx.doi.org/10.1109/IJCNN

.2005.1555903

17. J. Setoain et al., “Real-time onboard hyperspectral image processing using programmable

graphics hardware,” in High Performance Computing in Remote Sensing, A.Plaza and C.-I.

Chang, Eds., Chapman & Hall/CRC, Boca Raton, FL (2008).

18. J. Setoain et al., “Parallel morphological endmember extraction using commodity graphics

hardware,” IEEE Geosci. Remote Sens. Lett. 4(3), 441–445 (2007), http://dx.doi.org/10

.1109/LGRS.2007.897398.

19. A. Paz and A. Plaza, “Clusters versus GPUs for parallel target and anomaly detection in

hyperspectral images,” EURASIP J. Adv. Signal Process. 2010 (2010), http://dx.doi.org/10

.1155/2010/915639

20. L. de P. Veronese and R. A. Krohling, “Swarm’s flight: accelerating the particles using

C-CUDA,” in Proc. of IEEE Congress on Evolutionary Computation, Trondheim,

pp. 3264–3270 (18–21 May 2009).http://dx.doi.org/10.1109/CEC.2009.4983358

21. Y. Zhou and Y. Tan, “GPU-based parallel particle swarm optimization,” in Proc. of IEEE

Congress on Evolutionary Computation, Trondheim, pp. 1493–1500 (18–21 May 2009),

http://dx.doi.org/10.1109/CEC.2009.4983119

22. L. Mussi, S. Cagnoni, and F. Daolio, “GPU-based road sign detection using particle swarm

optimization,” in Proc. of Ninth International Conference on Intelligent Systems Design and

Applications, Pisa, pp. 152–157 (30 Nov.–2 Dec. 2009), http://dx.doi.org/10.1109/ISDA

.2009.88

23. W. Zhu and J. Curry, “Particle swarm with graphics hardware acceleration and local pattern

search on bound constrained problems,” in Proc. of IEEE Swarm Intelligence Symposium,

Nashville, TN, pp. 1–8 (30 March–2 April 2009), http://dx.doi.org/10.1109/SIS.2009

.4937837

24. R. A. Johnson and D. W. Wiechern, Applied Multivariate Statistical Analysis, 6th ed.,

Prentice-Hall, Upper Saddle River, NJ (2007).

25. W. -M. Pang, T. -T. Wong, and P. -A. Heng, “Generating massive high-quality random

numbers using GPU,” in Proc. of IEEE Congress on Evolutionary Computation, Hong

Kong, pp. 841–847 (1–6 June 2008), http://dx.doi.org/10.1109/CEC.2008.4630894

26. J. Harsanyi and C. -I Chang, “Hyperspectral image classification and dimensionality

reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote

Sens. 32(4), 779–785 (1994), http://dx.doi.org/10.1109/36.298007.

27. Y. -L. Chang et al., “A parallel simulated annealing approach to band selection for high-

dimensional remote sensing images,” IEEE J. Select. Topic. Appl. Earth Observat. Rem.

Sens. 4(3), 579–590 (2011), http://dx.doi.org/10.1109/JSTARS.2011.2160048

Biographies and photographs of the authors are not available

Wei, Du, and Younan: Fast supervised hyperspectral band selection using graphics processing unit

Journal of Applied Remote Sensing 061504-12 Vol. 6, 2012

Downloaded from SPIE Digital Library on 15 Jun 2012 to 130.18.64.136. Terms of Use:  http://spiedl.org/terms

http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/CEC.2007.4424902
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/LGRS.2010.2053516
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/MSP.2007.361608
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1109/LGRS.2007.897398
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983358
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/ISDA.2009.88
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/SIS.2009.4937837
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/CEC.2008.4630894
http://dx.doi.org/10.1109/36.298007
http://dx.doi.org/10.1109/36.298007
http://dx.doi.org/10.1109/36.298007
http://dx.doi.org/10.1109/36.298007
http://dx.doi.org/10.1109/36.298007
http://dx.doi.org/10.1109/JSTARS.2011.2160048
http://dx.doi.org/10.1109/JSTARS.2011.2160048
http://dx.doi.org/10.1109/JSTARS.2011.2160048
http://dx.doi.org/10.1109/JSTARS.2011.2160048
http://dx.doi.org/10.1109/JSTARS.2011.2160048
http://dx.doi.org/10.1109/JSTARS.2011.2160048

