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Abstract

A simple Markov random field model with a new implementation scheme is proposed for unsupervised image segmentation

based on image features. The traditional two-component MRF model for segmentation requires training data to estimate

necessary model parameters and is thus unsuitable for unsupervised segmentation. The new implementation scheme solves this

problem by introducing a function-based weighting parameter between the two components. Using this method, the simple

MRF model is able to automatically estimate model parameters and produce accurate unsupervised segmentation results.

Experiments demonstrate that the proposed algorithm is able to segment various types of images (gray scale, color, texture)

and achieves an improvement over the traditional method.
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1. Introduction

Segmentation is a fundamental process in digital image

processing which has found extensive applications in areas

such as content-based image retrieval, medical image pro-

cessing, and remote sensing image processing. Its purpose

is to extract labelled regions or boundaries for targeted ob-

jects for subsequent processing such as surface description

and object recognition.

A segmentation procedure usually consists of two steps.

The first step is to choose a proper set of features which can

identify the same-content regions and meanwhile differen-

tiate different-content regions; the second step is to apply
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a segmentation method to the chosen features to achieve a

segmentation map. Imagery in different applications varies

and may require different methods to extract distinct fea-

tures. Feature extraction is a broad topic and this paper will

focus only on how to develop segmentation methods assum-

ing the features used are sufficient to identify same-content

regions and differentiate different-content regions.

Numerous segmentation methods have been proposed

in the research literature, e.g., thresholding methods [1,2],

clustering methods [3,4], edge-based methods [5], region

splitting and merging methods [6–8], and multi-resolution

techniques [9–11]. This paper addresses a Markov random

field (MRF) based segmentation approach for segment-

ing synthetic aperture radar (SAR) sea ice imagery, color

images and images with textures without supervision.

MRF is considered as a powerful stochastic tool to

model the joint probability distribution of the image

pixels in terms of local spatial interactions [12–14].

MRF models can be used not only to extract texture
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features from image textures but also to model the image

segmentation problem, as from the viewpoint of the random

field a segmentation result is a label distribution in the same

lattice as the original image. Using MRF models for image

segmentation has a number of advantages. First, the spatial

relationship can be seamlessly integrated into a segmenta-

tion procedure. Second, the MRF based segmentation model

can be inferred in the Bayesian framework which is able to

utilize various kinds of image features. Third, the label dis-

tribution can be obtained when maximizing the probability

of the MRF model [14].

There are various MRF based segmentation models that

have been developed. Cohen and Cooper [15] proposed a

doublyMRFmodel for segmenting range images and natural

scenes. The doubly stochastic representation uses a Gaussian

MRF to model textures and an auto-binary MRF to model a

priori information about the local geometry of textured im-

age regions. Won and Derin [16] developed a hierarchical

MRF model for segmenting noisy and textured images. The

model assumes the texture process also as a Gaussian MRF

and can be used to segment images with GMRF-modelled

textures very well. Geman et al. [17] constructed a joint

MRF model according to a constrained optimization crite-

rion. Panjwani and Healey [18] extended the coupled MRF

models to segment textured color images. The MRF based

segmentation model Barker [19] used is dynamic according

to a model selection criterion implemented by a reversible

jump method. Melas and Wilson [20] applied the double

MRF model with modification to segment satellite images.

A common point of the above applications is that the seg-

mentation is highly dependent on the representability of the

MRF parameters estimated from textures. Due to the vari-

ety of textures and non-stationarity property in most tex-

tures, the above MRF based segmentation models cannot

work well for segmenting these images in which the tex-

tures cannot be modelled by MRF models. A practical MRF

based model should be able to use different kinds of image

features for different segmentation tasks [21].

This work formulates a simple MRF model which can

easily utilize different kinds of image features. This MRF

model consists of two components: a region labelling com-

ponent and a feature modelling component. The region la-

belling component imposes a homogeneity constraint on the

image segmentation process, while the feature modelling

component functions as fitting the feature data. A constant

weighting parameter is generally used to combine the two

components. This model works very well if training data

is available to estimate the parameters of both components.

Practical applications are however increasingly required to

work under unsupervised environment. That is to say, no

training data is available and the segmentation procedure

should have the ability to learn its parameters without hu-

man intervention. Under such unsupervised environment,

the above model is not able to work consistently.

The root cause comes from how the two components in-

teract to each other. Both components are probability dis-

tributions and the interaction between them is represented

by the product of two probability distributions. Each com-

ponent therefore functions as a constraint for the other. A

weighting parameter (as the power of the probability or the

weight to its energy function) must be assigned to com-

bine the two components in order to determine how much

each component contributes to the whole system. With a

constant weighting parameter, segmentation results can fall

into three cases. If the constant parameter makes the re-

gion labelling component dominant, the values of parame-

ters estimated may deviate too much from the real feature

data. If the constant parameter makes the feature modelling

component dominant, the spatial relationship information is

ignored in the final segmented result. If a balance can be

achieved between both components by choosing a proper

constant parameter, the estimated parameters are not glob-

ally but locally optimal. All of these cases may generate

inaccurate segmentation results.

This paper explores a new implementation scheme to

combine the two components by introducing a variable

weighting parameter between them. The variable parameter

will first function as learning approximately globally op-

timal parameters. A balance is then achieved between the

two components such that the spatial relationship informa-

tion can be taken into consideration to refine the parameters

when using a simulated annealing scheme for optimiza-

tion. This approach is demonstrated to eventually generate

more accurate segmentation results than the model with a

constant parameter.

The rest of the paper is organized as follows. Section

2 discusses inference of a simple MRF based segmenta-

tion model for feature space and Section 3 discusses how

to implement the segmentation model. Section 4 presents

experiments of applying the segmentation model with the

new implementation scheme to segment SAR sea ice im-

agery, color images, and images with textures. Conclusions

are drawn in Section 5.

2. Segmentation model

2.1. MRF basics

In order to make this paper self-contained, a number of

important concepts for MRF models are restated here. Read-

ers are referred to [12–14] for details.

Let S={s = (i, j)|1�i�H, 1�j �W, i, j, H, W∈I }
be the set of image lattice sites, where H and W are the

image height and width in pixels. In the two-dimensional

image lattice S, the pixel values x = {xs |s ∈ S} are a
realization of random variables X = {Xs |s ∈ S}.

Definition 1. A neighborhood system N = {Ns , s ∈ S} is a
collection of subsets of S for which s /∈ Ns and r ∈ Ns ⇔
s ∈ Nr . Ns are the neighbors of s.
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(a) (b)

Fig. 1. (a) The fifth-order neighborhood system. (b) All cliques for

the second-order neighborhood system.

Definition 2 (modified [22]). A n-th order neighbor-

hood system is Nn
s = {s + r|s + r ∈ Ns , |r|2� F [n]},

where |r| denotes the Euclidian distance between sites
s and s + r , F [n] is a member of the set of all possi-
ble integers defined as F = {F [n]|F [n] = i2 + j2, i, j ∈
I, i + j > 0, F [k] > F [l] if k > l > 0}.

The fifth order neighborhood system is displayed in Fig.

1(a).

Definition 3. A clique c is a subset of S for which every

pair of sites are neighbors.

Definition 4. A clique set C in the neighborhood system

Ns is C = {c|c ⊂ Ns}.

All possible cliques for the second-order neighborhood

system is displayed in Fig. 1(b).

Definition 5. A random field X is a Markov random field

(MRF)with respect to the neighborhood systemN={Ns , s ∈
S} iff

1. P (X = x) > 0 for all x ∈ �X , where �X is the set of

all possible x on S;

2. P (Xs = xs |Xr = xr , r �= s) = P (Xs = xs |Xr = xr ,

r ∈ Ns).

Definition 6. X is a Gibbs random field (GRF) with respect

to the neighborhood system N = {Ns , s ∈ S} iff

P (X = x) = 1

Z
exp

[

− 1
T

U(x)

]

, (1)

whereZ=
∑

x∈� exp [−(1/T )U(x)] is a normalization con-

stant, T is the temperature parameter. U(x) is the energy

function with the form U(x) =
∑

c∈SVc(x), where Vc(x) is

a potential function.

Theorem 1 (Hammersley-Clifford). A random field X

is a GRF with respect to the neighborhood system

N = {Ns , s ∈ S} iff X is an MRF with respect to

N = {Ns , s ∈ S}.

The proof of Theorem 1 can be found in [13]. The theo-

rem allows one to use a GRF which describes global char-

acteristics of an image to represent the corresponding MRF

that describes local characteristics of the image.

2.2. A simple MRF based segmentation model

The segmentation problem can be expressed in the

Bayesian framework. Denote the feature vector extracted

from a random image (X = x) by F = f , where F denotes

a random variable and f is an instance of F. Y = y stands

for a segmented result based on the feature vector F = f .

According to the Bayes rule, the segmentation problem

is formulated as

P (Y = y|F = f ) = p(F = f |Y = y)P (Y = y)

p(F = f )
, (2)

where P (Y =y|F =f ) is the posteriori probability of Y =y

conditioned onF=f , p(F=f |Y=y) denotes the probability

distribution of F = f conditioned on Y = y, P (Y = y) is a

priori probability of Y = y, and p(F = f ) is the probability

distribution of F = f .

A couple of assumptions should be made here to derive a

simple MRF based segmentation model. The first assump-

tion is that each component of F = f be independent on

the other components with respect to Y = y (conditional

independence). Suppose there are K components in the

feature vector f = {f k |k = 1, 2, . . . , K}. Eq. (2) is then
transformed into:

P (Y = y|F = f ) =
∏K

k=1[p(f k |Y = y)]P (Y = y)

p(F = f )
, (3)

where p(f k |Y = y) stands for the probability distribution

of the extracted feature component f k conditioned on the

segmented result Y = y.

As F =f is known, p(F =f ) does not vary with respect

to any solution Y = y and hence can be disregarded since

only the relative probability is of concern when maximizing

P (Y = y|F = f ). P (Y = y) describes the label distribution

of a segmented result only and is normally referred to as

the region labelling component. Most MRF based segmen-

tation models use the MLL (multi-level logistic) model for

modelling the label distribution. Generally, for a segmenta-

tion task, the second order pairwise MLL model is chosen

and the potentials of all non-pairwise cliques are defined to

be zeros [14]. The energy of the pairwise MLL model is as

follows.

ER(y) =
∑

s



�
∑

t∈Ns

�(ys , yt )



 , (4)

where �(ys , yt ) = −1 if ys = yt , �(ys , yt ) = 1 if ys �=
yt , and � is a constant which can be specified a priori

[13]. ER(y) denotes the energy regarding image regions. By

choosing this pairwise MLL model as the region labelling
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component in Eq. (2), the GRF form of P (Y = y) is then

expressed:

P (Y = y) = 1

ZR
exp

[

− 1
T

ER(y)

]

, (5)

where ZR =
∑

y∈�Y
(1/ZR) exp [−(1/T )ER(y)] is a nor-

malization constant. �Y stands for the set of all possible

Y = y on S.

Now only p(f k |Y = y) is unknown. Although most fea-

ture extraction methods are designed to extract a uniform

response for all pixels in the class, the image features ex-

tracted often vary due to the existence of noise in the image

and/or a non-stationary distribution of pixels in the same-

content region (Fig. 4). The feature data for one class can

generally be assumed to be a normal distribution. Even if

the distribution of a feature data is not a Gaussian distribu-

tion, the Gaussian function can still be used to approximate

it since a unimodular distribution is expected. Here, the sec-

ond assumption in this paper is to assume the distribution of

all feature data be a Gaussian function with different means

�k
m and standard deviations �k

m. That is,

p(f k
s |Ys = m) = 1

√

2��k
m
2
exp

[

− (f k
s − �k

m)2

2�k2
m

]

, (6)

where �k
m and �k

m are the mean and standard deviation for

the mth class in the kth feature component.

The product of all p(f k
s |Ys = m) therefore describes the

features for an image and are often referred to as the feature

modelling component in Eq. (2). An energy form of this

product is:

EF =
∑

s,m=Ys







K
∑

k=1

[

(f k
s − �k

m)2

2(�k
m)2

+ log(
√
2��k

m)

]







. (7)

The energy of P (Y = y|F = f ) is then derived

E = ER + �EF , (8)

where � is a weighting parameter to determine how much

ER and EF individually contribute to the entire energy E.

Its Gibbs form is P (Y = y|F = f ) = (1/Z) exp[−(1/T )E],
where Z =

∑

�Y
exp[−(1/T )E]. As there are two assump-

tions to simplify the feature data, the model in Eq. (8) is a

simple MRF model.

3. Implementation scheme

3.1. Maximum a posteriori criterion and simulated

annealing

One of the most important criteria for implementing MRF

models is the maximum a posteriori (MAP) criterion [13].

For the model (8), the MAP may be any of the following:

ŷ=arg max
y∈�Y

P (Y = y|F = f )

= arg max
y∈�Y

1

Z
exp

[

− 1
T

E

]

= arg min
y∈�Y

E. (9)

Eq. (9) means that maximizing the posteriori conditional

probability distribution or Gibbs distribution is equivalent

to minimizing the energy of the model.

If the energy function is convex, it is easy to achieve the

global minimum of the energy by deterministic algorithms

(such as ICM [12]). In most cases, however, the energy

function is non-convex, hence the above algorithms may

settle at a local minimum [23]. Two sampling methods are

generally used to implement the MAP criterion: the Gibbs

sampler [13] and the Metropolis sampler [24]. With an an-

nealing scheme used for the Gibbs/Metropolis sampler, the

convergence to the global minimum (energy) is guaranteed

[13,25].

When an annealing scheme is used in the Gibbs

sampler/Metropolis sampler, its convergence holds un-

der two conditions: infinite time or iterations for the

Gibbs/Metropolis sampler and a decreasing temperature

schedule which meets the condition T (t) � N�/ log(t + 1),
for t � 1, where N is the image size and � is a norm of

the difference between the maximum and minimum energy

[13,25]. Readers are referred to [23] and [25] for the the-

orem about the necessary and sufficient conditions for the

annealing scheme. Unfortunately, those theoretical schemes

are of little practical use since (a) � is impossible to calcu-

late in practice and (b) too many iterations are required to

descend over a sufficient range of temperatures [23,25].

Scientists have attempted to find fast annealing schemes.

The most commonly used fast simulated annealing (SA)

scheme is the logarithmic scheme proposed by Geman and

Geman [13],

T (t) = C

log(t + 1) , C is a constant, and t � 1. (10)

Numerous applications have demonstrated that using this

logarithmic scheme can reach a suboptimal result within

limited iterations [13,25]. This paper employs this logarith-

mic scheme to optimize the simple MRF model and generate

segmentation results.

3.2. Parameter estimation

Four parameters should be estimated: � (from Eq.

(4)), � (from Eq. (8)), �, �. Estimation of � and � for

each class requires training data. However, under unsu-

pervised environment, training data is not available. The

expectation–maximization (EM) algorithm [26,27] is used

to estimate � and � and is able to obtain a segmenta-

tion map. The EM algorithm for the simple MRF model
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(Eq. (8)) is outlined as follows:

1. A random segmentation image is initialized.

2. E-step: Estimate � and � from the feature data F = f

based on the segmented image:

�k
m= 1

N

∑

s,Ys=m

f k
s , �k

m=





1

N−1
∑

s,Ys=m

(f k
s − �k

m)2





1
2

.

3. M-step: Use the estimated � and � to obtain a refined

segmentation image by minimizing Eq. (8) using the

Metropolis sampling with a simulated annealing scheme.

4. Repeat the above two steps until a stopping criterion is

satisfied.

The difficulty is that there is no closed-form solution for

� and � in the EM algorithm. A commonly used strategy

[13] is to priorily assign values to them by experience be-

fore executing the EM algorithm. Both parameters � and �

function in the same manner by assigning weights to their

corresponding energy components, and hence one of them

can be fixed. Here, � is fixed to be 1 and only � is required

to be adjusted. As the weighting parameter � is normally set

as a constant parameter, the segmentation result often falls

into three cases.

First, if the constant parameter makes the region labelling

component dominant, the values of estimated parameters

� and � may deviate much from the feature data and the

segmented result is not consistent. Fig. 3 demonstrates out-

comes using the MLL model alone (which is equal to setting

� = 0) to generate segmented results. Two tests are shown:
(1) starting from the same random image but at different it-

erations and (2) starting from different random images but

at the same number of iterations. These tests demonstrate

that the segmented results are quite different for the same

segmentation task due to the lack of feature data.

Second, if the constant parameter makes the feature mod-

elling component dominant, spatial relationship information

would be ignored in the final segmented result. For exam-

ple, if setting � = 0 and � �= 0, the MRF model has the

feature modelling component only and is unable to produce

a segmented result. Third, if a balance can be achieved be-

tween both components by choosing a proper constant pa-

rameter, the estimated parameters are normally not globally

but locally optimal. An example for segmenting a checker-

board image can demonstrate that. Fig. 4(a) is a three-class

checkerboard image corrupted by an additive noise. Three

modes can be clearly found in the histogram (Fig. 4(b)) of

this noisy checkerboard image. With a random initial label

image and choosing a proper constant for the parameter �

(� = 8), the result shown in Fig. 4(c) is incorrect in that the
estimated parameters (means) of two classes are confused.

The root cause is that the simple MRF based segmentation

model is very easily trapped in local maxima due to the im-

posed spatial homogeneity constraint by the region labelling

component. As a result, the feature modelling component

might not be able to learn the global parameters (i.e. � and

� for each class). Stewart et al. [28] analyzed the relation-

ship between the two terms in their MRF model in detail

and proposed a specific solution for the weighting param-

eter (they called it shape parameter) according to a priori

information of the size of region shapes.

A new implementation scheme is proposed here to solve

this problem by making the weighting parameter � vary

during unsupervised segmentation. The introduction of the

variable weighting parameter can not only enable the seg-

mentation procedure to learn the global parameters of the

feature modelling component but also impose spatial ho-

mogeneity constraint on the label distribution (through the

region labelling component). For such purpose, the param-

eter should vary with respect to the annealing procedure.

This work chooses the following function for the variable

weighting parameter �:

�(t) = c10.9
t + c2, (11)

where c1 and c2 are constants. In this experiment, c1 = 80
and c2 = 1. The later experiments also demonstrate c1 = 80
is appropriate for most cases and c2 = 1/K where K is

the number features used for segmentation. With the above

function, the feature modelling component will first (when

�(t) is larger) dominate the simple MRF model in order to

learn its global parameters and then (when �(t) is close to

c2) interacts with the region labelling component to refine

the segmented result.

Thus the energy of the simple MRF model can be rewrit-

ten as:

E = ER + �(t)EF . (12)

By using the simple MRF model with the variable weight-

ing parameter, Fig. 4(a) can be well segmented. The result

displayed in Fig. 4(d) demonstrates the mean and standard

deviation of each class are properly estimated and the seg-

mented regions are uniform respectively. This is a dramatic

improvement over the standard model displayed in Fig. 4(c).

4. Experimental results

4.1. Testing methodology

Three methods are used for image segmentation: (1) the

simple MRF model with a variable weighting parameter, (2)

the simple MRF model with a constant weighting parameter,

and (3) the K-means clustering method [29].

The first two segmentation methods are implemented by

the EM algorithm: an iteration of E- and M-step as discussed

earlier (in Section 3). The constant C (i.e., the initial temper-

ature) of the logarithmic annealing scheme is set to 2 in the

M-step following Geman and Geman’s experiments [13]. A

fixed number of iterations is used as the stopping criterion in
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Fig. 2. (a) Histogram of the image in Fig. 5. (b) Histogram of the image in Fig. 9 (up-left).

Fig. 3. First Row—Segmented results from the same random initial at different iterations: (a) 50 iterations; (b) 100 iterations; (c) 200

iterations; (d) 400 iterations. Second Row (e)–(h): Segmented results from different random initials at the 300th iteration, respectively.

the following experiments. The tests conducted in this work

indicate that segmented results will change appreciably af-

ter 150 iterations and the result at the 150th iteration can be

considered as final. The K-means clustering method is also

iterative. Its stopping criterion is that the clustering proce-

dure stops when there is no change for the label of every

pixel. The initial seed for the clustering is chosen randomly.

Three types of images are tested: synthetic aperture radar

(SAR) sea ice images, color images, and images with tex-

tures. All three segmentation methods are provided the num-

ber of classes depending on the specific image. The final

segmented results will be presented in a segmented map (for

segmentation of images with textures) or boundaries super-

imposed over the original image (for SAR sea ice imagery

and color image segmentation).

4.2. SAR sea ice imagery segmentation

Operationally, numerous SAR images are interpreted

daily in support of sea ice monitoring. One important

application of the SAR sea ice imagery is to measure,

monitor, and understand of sea ice evolution during the

seasons and a fundamental step of this application requires

generation of ice type maps. In the future, computer as-

sisted segmentation techniques are expected to contribute to

this task.

There are two types of sea ice images considered in this

work for segmentation. One kind of sea ice images consist of

ice and water regions. The task for segmenting the ice–water

images is to separate ice regions from water regions to de-

termine the ice concentration. Another type of sea ice image
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Fig. 4. (a) Original three-class checkerboard image corrupted by an additive noise; (b) histogram; (c) segmented result by the simple MRF

model with a constant weighting parameter (� = 8); (d) segmented result by the simple MRF model with a variable weighting parameter
(�(t) = 80× 0.9t + 1).

consists of different types of sea ice and is required in prac-

tice to extract boundaries between sea ice types and partition

the corresponding regions. The proposed segmentation ap-

proach is applied to segment these sea ice images when us-

ing image intensity only as image feature. Texture features

should be used for more complicated SAR sea ice images,

but there is insufficient space to implement those in this

paper.

Two images extracted from two SAR sea ice scenes re-

spectively are tested. The first image shown in Fig. 5 is

part of the scene of a C-band HH Radarsat ScanSAR data

(100m pixel spacing) covering Baffin Bay and Davis Strait

captured on June 24, 1998. Its histogram of pixel intensity

is shown in Fig. 2(a). The segmentation task for the first

image is to extract ice regions (light gray areas) from open

water regions (dark gray areas). Fig. 6 shows the result seg-

mented by the simple MRF based segmentation model with

the variable weighting parameter. Fig. 7 shows the best re-

sult among these obtained by the simple MRF model using

different constant weighting parameters. It can be seen that

the segmented result has many small regions. This is be-

cause the constant weighting parameter makes the region

labelling component contribute less energy to the whole sys-

tem than the feature modelling component so that the final

segmented result does not incorporate sufficient spatial re-

lationship information. Fig. 8 shows the result obtained by

the K-means clustering method. As the K-means clustering

method does not take into consideration of spatial relation-

ship at all, the segmented result has more small regions.

Since most of these small regions are generally caused by

noise, they should be removed in practice. By visually com-

paring Fig. 6 with Figs. 7 and 8, it is obvious that using
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Fig. 5. Original SAR sea ice image with ice regions (light gray

areas) and open water regions (dark gray areas).

Fig. 6. Segmented result by the simple MRF model with a variable

weighting parameter (�(t) = 80× 0.9t + 1).

the simple MRF model with the variable weighting param-

eter generates much more accurate result than the other two

algorithms.

The second image shown in Fig. 9 (up-left) is part of the

scene of a C-band HH Radarsat ScanSAR data (100m pixel

spacing) covering Baffin Bay and Davis Strait acquired on

February 7, 1998. This image consists of three types of

sea ice (multi-year ice (white areas), rough first-year ice

(light gray areas), and smooth first-year ice (dark gray ar-

eas)) which are required to be partitioned from each other.

Fig. 7. Segmented result by the simple MRF model with a constant

weighting parameter (� = 6).

Fig. 8. Segmented result by the K-means clustering method.

Fig. 2(b) plots its histogram of pixel intensity. The above

three methods are applied and the segmented results are

shown in Fig. 9 (up-right, bottom-left, bottom-right). As

there is large intensity variance in these pixels which actually

belongs to the same ice type, the spatial homogeneity

constraint on neighboring pixels are very important for

clustering the same-class pixels. Therefore, by comparing

the three results, the K-means clustering method generates

the most inaccurate result where the means of three ice

types are confused. The result by the simple MRF model
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Fig. 9. Up-left: Original SAR sea ice image with three types of sea ice (multi-year ice (white areas), rough first-year ice (light gray areas),

and smooth first-year ice (dark gray areas)). Up-right: Segmented result by the simple MRF model with a variable weighting parameter

(�(t) = 80× 0.9t + 1). Bottom-left: Segmented result by the simple MRF model with a constant weighting parameter (�= 8). Bottom-right:
Segmented result by the K-means clustering method.

with a constant weighting parameter has some improve-

ment over that by the K-means clustering method, but

the means of three ice types are still confused. Using the

variable weighting parameter, the simple MRF model can

generate the most accurate result in that the three ice types

are clearly identified.

4.3. Color image segmentation

As an important cue for visual discrimination ability for

human being, color can be used as features for segmenting

natural color images. The segmented map can then be used

to extract object shape or refine extracted features in terms

of object classification. For example, this procedure is an

initial and significant step in content-based image retrieval

systems.

There are a number of color spaces to quantize

color information, e.g., RGB (Red/Green/Blue), HSV

(Hue/Satuation/Value of intensity), L*a*b (Lightness/green-

red/blue-yellow), CMYK (pure Cyan/Magenta/Yellow/

blacK) and so on. RGB and HSV are two commonly

used color spaces. However, colors in the HSV space are

more appropriate to be used as features for classifica-

tion/segmentation purpose because each component in the

RGB color space often has high correlation with the others

and the HSV color space shows very consistency to human

vision systems [30].

In these experiments, each color image is converted

to the HSV color space and the HSV values will be

used as color features to segment the image. Four im-

ages of natural scenes are tested and shown here. The

boundaries between different regions in the segmented

result are superimposed on the original image for a clear

view. The simple MRF model with a variable weighting

parameter is applied. For comparison, the simple MRF

model with a constant weighting parameter is used to

segment the four images. In Fig. 10, the images in the

left column are the four original images, and the im-

ages in the middle column are the results segmented

by the simple MRF model with the variable weighting

parameter (�(t) = 80 × 0.9t + 1
3 ), and the images in

the right column are the segmented results by the sim-

ple MRF model with a constant weighting parameter

(� = 2).
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Fig. 10. Left column: Original color images; middle column: segmented results by the simple MRF model with a variable weighting

parameter (�(t) = 80× 0.9t + 1/3); right column: segmented results by the simple MRF model with a constant weighting parameter (�= 2).

The first image has three objects to be partitioned: car,

road and grass. The simple MRF model with the constant

weighting parameter cannot separate the grass from the road

but generates new classes in the road and in the grass (shown

in the right-hand-side image). This is caused by the large

variation of intensities in the same-class pixels. By using the

variable weighting parameter, the simple MRF model can

successfully differentiate the grass and land (shown in the

middle image).

The second image is assigned to obtain four classes: wa-

ter with inverted sky, water with inverted trees, trees, and

mountainside. Due to being unable to learn a global mean for

each class, the simple MRF model with the constant weight-

ing parameter partitions the single region into other small

different regions (shown in the right-hand-side image). In

contrast, the simple MRF model with the variable weighting

parameter can identify the regions of water with inverted

sky, trees, and mountainside and obtain most of the region

of water with inverted trees (shown in the middle image).

The third image is required to obtain four regions: sky,

light grass, dark mountain with grass, and lake with inverted

sky. The use of the constant weighting parameter makes

the simple MRF model partition the sky region into several

small different regions (shown in the right-hand-side image),

while the use of the variable weighting parameter enables

the simple MRF model to generate a uniform sky region

(shown in the middle image).

The fourth image has three classes to be separated: sky,

trees on island, and water with inverted sky. The simple

MRF model with the constant parameter fails to identify

two of them (shown in the right-hand-side image), but the

use of the variable parameter makes the simple MRF model

segment all regions correctly (shown in the middle image).

4.4. Segmentation of images with textures

Segmentation of images with textures is often a very dif-

ficult task. Although the main difficulty is in finding proper

features to represent textures, another problem about how to

apply a segmentation method to the extracted feature space,

which is normally high-dimensional, can affect the final

segmentation performance directly. Here, the simple MRF
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Fig. 11. (a) Original image with four textures in square regions; (b) segmented result by the simple MRF model with a variable weighting

parameter (�(t) = 80 × 0.9t + 1/24) with 97% accuracy rate; (c) segmented result by the simple MRF model with a constant weighting
parameter (� = 1) with 65% accuracy rate.

Fig. 12. (a) Original image with four textures in different boundary shapes; (b) segmented result by the simple MRF model with a variable

weighting parameter (�(t) = 80 × 0.9t + 1/24) with 91% accuracy rate; (c) segmented result by the simple MRF model with a constant
weighting parameter (� = 1) with 58% accuracy rate.

model is used as a segmentation method to partition images

with textures.

Research has demonstrated that the human visual system

(HVS) is sensitive to both specific orientations and spatial

frequencies. For texture analysis, wavelets have the ability

to model the frequency and orientation sensitivity char-

acteristic of the HVS [31]. The Gabor filter bank can be

designed to mimic a wavelet filter bank. Due to its appeal-

ing simplicity and optimum joint spatial/spatial-frequency

localization, the Gabor function is attractive for com-

puter vision applications, especially texture segmentation

[32,33].

In this work, a total of 24 complex Gabor filters at four

frequencies (22.63, 11.31, 5.66, 2.83 ppc (pixels per cy-

cle)) (corresponding to the frequencies 8
√
2, 16

√
2, 32

√
2,

64
√
2 cycles per image for a 256 × 256 image) and six

orientations (0◦, 30◦, 60◦, 90◦, 120◦, 150◦ are chosen to
filter a test image [34]. The magnitude of each filtered im-

age will be smoothed by an amplitude Gaussian (the scale

is 23 [33]). Thus a 24-D Gabor filter feature vector can be

obtained for each pixel. The simple MRF model with the

variable weighting parameter is applied to the 24-D Gabor

filter feature space to obtain a segmentation map. For com-

parison, the simple MRF model with the constant weighting

parameter is also applied to segment the target images.

Two images with different textures are tested by both

segmentation algorithms. Figs. 11 and 12 display the corre-

sponding results. Fig. 11(a) is an image with four Brodatz

textures [35]. This original image was used as a test image

in Mao and Jain’s paper [36]. It can be seen that the sim-

ple MRF model with the constant parameter is trapped in

local minima and hence cannot identify the means of three

classes (shown in Fig. 11(c) with 65% accuracy rate only).

Using the variable parameter however enables the simple

MRF model to learn the appropriate global mean for each

class and leads to an accurate segmentation result (shown

in Fig. 11(b) with 97% accuracy rate).

The second image (shown in Fig. 12(a)) was used in the

paper [37] which provides a variety of textures and bound-

ary shapes. Four classes of texture regions are required to be

clustered. The simple MRF model with the constant weight-

ing parameter fails to differentiate the four classes (shown

in Fig. 12(c) with 58% accuracy rate only), while using the

variable weighting parameter makes the simple MRF model

successfully identify most of the four classes (shown in Fig.

12(b) with 91% accuracy rate).
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5. Conclusions

By introducing a variable weighting parameter to combine

the region labelling component and the feature modelling

component in a simple MRF based segmentation model, an

unsupervised segmentation can be achieved. Experiments

demonstrated that the new implementation scheme can en-

able the simple MRF model to work more consistently than

a constant weighting parameter. The developed technique

can be efficiently applied to SAR sea ice imagery segmenta-

tion, color image segmentation and segmentation of images

with textures.
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