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Unsupervised image segmentation using a telegraph

parameterization of Pickard random fields

Jérôme Idier, Yves Goussard and Andrea Ridolfi

Abstract

This communication presents a non-supervised three-dimensional segmentation method based upon a discrete-level
unilateral Markov field model for the labels and conditionaly Gaussian densities for the observed voxels. Such models
have been shown to yield numerically efficient algorithms, for segmentation and for estimation of the model parameters
as well. Our contribution is twofold. First, we deal with the degeneracy of the likelihood function with respect to the
parameters of the Gaussian densities, which is a well-known problem for such mixture models. We introduce a bounded
penalized likelihood function that has been recently shown to provide a consistent estimator in the simpler cases of
independent Gaussian mixtures. On the other hand, implementation with EM reestimation formulas remains possible
with only limited changes with respect to the standard case. Second, we propose a telegraphic parameterization of the
unilateral Markov field. On a theoretical level, this parameterization ensures that some important properties of the
field (e.g., stationarity) do hold. On a practical level, it reduces the computational complexity of the algorithm used
in the segmentation and parameter estimation stages of the procedure. In addition, it decreases the number of model
parameters that must be estimated, thereby improving convergence speed and accuracy of the corresponding estimation
method.

I. Introduction

In this paper, we present a method for segmenting images modeled as N -ary Markov random fields
(MRFs). Such image representations have proved useful for segmentation because they can explicitly
model important features of actual images, such as the presence of homogeneous regions separated
by sharp discontinuities. However, Markov-based segmentation methods are often computationally
intensive and therefore difficult to apply in a three-dimensional (3D) context. In addition, specification
of the MRF parameter values is often difficult to perform. This can be done in a heuristic manner, but
such an approach is strongly application-dependent and becomes very burdensome for complex models
(i.e., large neighborhoods and large number of levels). Deriving unsupervised methods in which the
MRF parameters are estimated from the observed data is more satisfactory, but such a task generally
requires approximations in order to be mathematically feasible [1], and the corresponding amount of
computations is generally much higher than for a segmentation operation.

In order to overcome such difficulties, Devijver and Dekesel [2] proposed an unsupervised segmen-
tation approach based on a hidden markov model (HMM) that belongs to a special class of unilateral

MRFs: Pickard random fields (PRFs). The PRF is observed through an independent Gaussian process
and the labels as well as the model parameters are estimated using maximum likelihood techniques.
Because of the specific properties of PRF models, a significant reduction of the computational burden
is achieved, and application of such methods to 3D problems can be envisioned. However, three kinds
of difficulties remain: firstly, from a theoretical standpoint, the estimated MRF parameters are not
necessarily consistent with the assumed stationarity of the model; secondly, the likelihood function of
the observation parameters presents attractive singular points, as it is well-known in Gaussian mixture
identification problems [3], and this hinders the convergence of the estimation procedure; thirdly, the
convergence of the estimation procedure is made even more difficult by the fairly large number of
parameters that need to be estimated.
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Here, we present a segmentation method that extends the technique introduced by Devijver and
Dekesel and corrects some of its deficiencies. First, the method is based upon a parsimonious pa-
rameterization of PRFs, referred to as a telegraph model, which simplifies the parameter estimation
procedure, speeds up its convergence and ensures that some necessary conditions (such as marginal
stationarity of the rows and columns) are fulfilled. Second, the singularity of the likelihood function of
the parameters is dealt with by using a well-behaved penalized likelihood function that lends itself to
the derivation of an efficient maximization procedure. Therefore, the resulting unsupervised segmen-
tation method presents a safe overall convergence and exhibits a moderate amount of computations,
which makes it suitable to process large 3D images as illustrated in the sequel.

II. Approach

Throughout the paper, random variables and realizations of thereof are respectively denoted by
uppercase and corresponding lowercase symbols; in addition, notations such as f(y |x) and Pr(x |y)
are employed as shorthands for fY |X(y |x) and Pr(X = x |Y = y), whenever unambiguous.

As stated in the introduction, the image to be segmented is modeled as a hidden N -ary PRF X.
N -ary PRFs were studied by Pickard in a two-dimensional (2D) framework [4], [5]; these fields are
stationary and their joint probability is determined by a measure τ on a four-pixel elementary cell

(

A
C

B
D

)

that must fulfill several symmetry and independence conditions [5]. Conversely, it is shown in [6] that
stationary MRFs on a finite rectangular lattice can be characterized by their marginal distribution on
a four-pixel elementary cell, and that in some important cases (Gaussian fields, symmetric fields), the
only stationary fields are PRFs. As a consequence of the stationarity of X, the marginal probability of
each row and column presents the structure of a stationary and reversible Markov chain whose initial
and transition probabilities can be easily deduced from τ . According to [7], most of the latter results
have three-dimensional (3D) counterparts that apply to 3D PRFs.

Here, we assume that the observations y of PRF X fulfill the following properties:

f(y |x) =
∏

i,j

f(y{i,j} | x{i,j}) , (1)

f(y{i,j} |X{i,j} = n) = Gn , (2)

where i, j and n ∈ {1 , . . . , N} respectively denote the row, column and state indices, and where Gn

represents the Gaussian density with mean un and variance vn.
These assumptions correspond to the common situation of an image degraded by independent Gaus-

sian noise and, as underlined by Devijver and Dekesel [2] in a 2D context, they are well suited to
marginal maximum a posteriori (MMAP) segmentation of X as well as to maximum likelihood (ML)
estimation of the PRF and noise parameters. The key to the derivation of numerically efficient seg-
mentation algorithms is the approximation

Pr(x{i,j} |y) ≈ Pr(x{i,j} |y{i,·}, y{·,j}) , (3)

where y{i,·} and y{·,j} respectively denote i-th row and j-th column of y. The above approximation
amounts to neglecting interactions in the diagonal directions and to rely only on interactions in the
horizontal and vertical directions. This may cause a lower accuracy for segmentation of objects with
diagonally-oriented boundaries. However, this effect is not severe, as shown in [2] and in Section VII of
this article, and with this approximation, the marginal posterior likelihood only involves 1D restrictions
of y which present Markov chain structures. In order to take advantage of this property, Bayes rule is
applied to (3) and the orthogonality properties of measure τ yield the following simplified expression

Pr(x{i,j} |y{i,·}, y{·,j}) ∝ f(y{i,·} | x{i,j}) f(y{·,j} | x{i,j}) Pr(x{i,j}) . (4)



3

The above expression only involves 1D quantities; this has two important consequences. First, due to
the Markov chain structures of X{i,·} and X{·,j}, the first two terms of the right hand side of (4) can
be evaluated in an efficient manner by means of 1D forward-backward algorithms. Second, the only
parameters of interest in the a priori PRF model are those which control the distribution of rows and
columns X{i,·} and X{·,j} thereby simplifying the parameter estimation stage outlined below.

The PRF representation associated with assumptions (1)-(2) is also well suited to ML estimation of

the model parameter vector θ. The ML estimate θ̂ = arg maxθ f(y; θ) cannot be expressed in closed
form. Devijver and Dekesel [2] proposed to evaluate θ through maximization of the following criterion:

J(y; θ) ∝
∏

i

f(y{i,·}; θ)
∏

j

f(y{·,j}; θ) , (5)

They showed that iterative maximization of J can be carried out by an expectation-maximization (EM)
algorithm and that the quantities required for the EM iterations can be evaluated by the same forward-
backward procedures as the ones used for segmentation of X. Even though Devijver and Dekesel
presented J as a mere approximation of the exact likelihood function, it is clear by inspection that J can
be interpreted as a generalization of the pseudo-likelihood function proposed in [8]. More generally, we
conjecture that the above estimator can be cast within the framework of minimum contrast estimation
and that its convergence and consistency properties can be investigated with techniques similar to
those presented in [9, pp.157–162].

This method, in the form proposed by Devijver and Dekesel [2], proved to provide interesting seg-
mentation results in a non supervised framework at a reasonable computational cost. It nonetheless
presents several limitations and deficiencies. First, it is limited to 2D problems; second, the dis-
tributions of X{i,·} and X{·,j} are parameterized in a standard manner by the initial and transition
probabilities. Consequently, the stationarity and reversibility of each row and column of PRF X is not
guaranteed. In addition, O(N2) parameters must be estimated, which requires a significant amount
of computations and induces convergence difficulties, even for moderate numbers of states; third, the
likelihood function used for estimation of θ presents singular points. Intuitively, this is caused by the
normal densities f(y{i,·} |x{i,·}; θ) which enter the right hand side of (5) through decompositions of
the form:

f(y{i,·}; θ) =
∑

x{i,·}

∏

j

f(y{i,j} | x{i,j}; θ) Pr(x{i,·}; θ) , (6)

and which degenerate when x{i,j} = n, un = y{i,j} and vn ց 0 for some n, j. For estimation of
parameters of mixtures of Gaussian densities, this behavior is well known and well documented [3],
[10]. The consequence of this degeneracy is the divergence of the EM procedure if a reestimated value
of θ reaches a neighborhood of any singular point.

The main purpose of this article is to propose several extensions and refinements of the segmentation
method introduced by Devijver and Dekesel [2] in order to alleviate its main limitations. The major
improvements are
1. extension of the technique to a three dimensional (3D) framework;
2. correction of the degeneracy of the likelihood function through adjunction of an appropriate pe-
nalization function, while retaining the possibility of estimating the model parameters with an EM
procedure in a slightly modified form;
3. parameterization of the 1D restrictions of X with a telegraph model (TM) which guarantees their
stationarity and reversibility while remaining compatible with the EM procedure used for model esti-
mation. In addition, convergence of the EM procedure is improved by the reduced dimension (O(N))
of the TM parameter vector with respect to standard parameterization of Markov chains.

Before addressing these three points, we briefly recall the equations of the EM algorithm and derive
two properties that will simplify the subsequent derivations.
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III. EM Reestimation formulas for parameter estimation

A. General EM procedure

The EM algorithm is an iterative procedure which increases the likelihood f(y ; θ) of a parameter
vector θ given observations y at each iteration. Starting from an initial value θ0, a series of successive
estimates θk is generated by alternating the following two steps:

Expectation (E): Evaluate Q(θ, θk ; y) , (7)

Maximization (M): θk+1 = arg max
θ

Q(θ, θk ; y) , (8)

where the function Q is defined as

Q(θ, θ0 ; y)
∆
=

∑

x

Pr(x |y ; θ0) log(f(y |x ; θ) Pr(x ; θ)) , (9)

= E[log(f(y |X ; θ) Pr(X ; θ)) |y ; θ0] , (10)

X being an auxiliary variable whose practical role is to make the extended likelihood

f(y |x ; θ) Pr(x ; θ) easier to compute than the original likelihood f(y ; θ). The above equations
are given for a continuous-valued variable y and a discrete-valued auxiliary variable x, as this cor-
responds to our application. Transposition to a discrete-valued y and/or a continuous-valued x is
straightforward. In all cases, the EM algorithm can be shown to increase the likelihood at each it-
eration and to converge to a critical point of the likelihood function f(y ; θ). A detailed analysis of
the properties of the EM algorithm can be found in [11] in the context of hidden Markov chains and
in [12], [10] in a more general framework. Here, we provide the equations of a complete EM algorithm
for estimation of the parameters of a 1D HMM, as this will be the base for the derivations in Sec-
tions V and VI. The hidden Markov chains X{i,·} and X{·,j} are discrete-valued and in accordance
with assumptions (1)-(2) the observations Y{i,·} and Y{·,j} are conditionally independent and Gaussian.
For a generic discrete-valued hidden Markov chain Xt ∈ {1, . . . , N} , 1 ≤ t ≤ T , with condition-
ally independent Gaussian observations yt, 1 ≤ t ≤ T , the equations of the complete EM algorithm
are given in Table II, in compliance with the compact notations defined in Table I. It should be
underlined that quantity p0

t,n computed by the forward-backward algorithm is precisely the marginal
likelihood Pr(Xt = n |y) used for estimation of X. This illustrates the point made in Section II that
the forward-backward algorithm is the basic tool for both the segmentation step and the parameter
estimation step.

B. Decoupling of the M step

Assume that parameter vector θ can be partitioned into two subvectors θY |X and θX which re-
spectively control the conditional probability function f(y|x) and the probability distribution Pr(x).
Such a situation is commonly encountered and can be taken advantage of in order to decouple the M
step of the EM algorithm into two — hopefully simpler — independent maximization problems.

Under these assumptions, the probability product which enters the definition of Q in (9) can be
expressed as

f(y |x ; θ) Pr(x ; θ) = f(y |x ; θY |X) Pr(x ; θX) . (11)

For any set value of parameter vector θ0, define functions QY |X and QX as

QY |X(θY |X , θ0 ; y)
∆
=

∑

x

Pr(x |y ; θ0) log f(y |x ; θY |X) , (12)

QX(θX , θ0 ; y)
∆
=

∑

x

Pr(x |y ; θ0) log Pr(x ; θX)dx . (13)
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y = [y1, . . . , yT ]t , yt
s = [ys, . . . , yt]

t ,

Gn = f(yt |Xt = n) = (2πvn)−1/2 exp [−(y − un)2/2vn] ,

pn = Pr(X1 = n ; θ), Pmn = Pr(Xt = n |Xt−1 = m ; θ),

p0
n = Pr(X1 = n ; θ0), P 0

mn = Pr(Xt = n |Xt−1 = m ; θ0),

p0
t,n = Pr(Xt = n |y ; θ0), p0

t,mn = Pr(Xt−1 = m, Xt = n |y ; θ0),

α0
n =

∑T
t=1

p0
t,n, β0

n =
∑T−1

t=2
p0

t,n, s0
n =

∑T
t=2

p0
t,nn,

η0
n = (α0

n + β0
n)/2, γ0

n = η0
n − s0

n,

Ft,n = P (Xt = n |yt
1 ; θ0), Nt,n = f(yt |y1,T−1), Bt,n =

f(yT
t+1 |Xt = n ; θ0)

f(yT
t+1 |y

t
1 ; θ0)

.

TABLE I

Notations.

It can be immediately deduced from (9) and (11) that function Q can be expressed as

Q(θ, θ0 ; y) = QY |X(θY |X , θ0 ; y) + QX(θX , θ0 ; y) , (14)

which shows that the M step of the EM algorithm can be decoupled into two operations: maximization
of QY |X with respect to θY |X and maximization of QX with respect to θX .

C. Independent realizations

Another special case of interest occurs when y is made up of independent realizations yi ; 1 ≤ i ≤ I.
For instance, this corresponds to the case of the pseudo-likelihood defined in (5). As a consequence,
the corresponding auxiliary processes X i are also independent and it is not difficult to obtain

Q(θ, θ0 ; y) =

I∑

i=1

Qi(θ, θ0 ; yi) , (15)

where functions Qi are defined by

Qi(θ, θ0 ; yi)
∆
=

∑

xi

Pr(xi |yi ; θ0) log(f(yi |xi ; θ) Pr(xi ; θ)) , (16)

= E[log(f(yi |Xi ; θ) Pr(X i ; θ)) |yi ; θ0] . (17)

In addition, if parameter vector θ can be partitioned into two subvectors θY |X and θX , it is straight-
forward to check in the same manner as in Paragraph III-B that each function Qi can be decomposed
as

Qi(θ, θ0 ; yi) = Qi
Y |X(θY |X, θ0 ; yi) + Qi

X(θX , θ0 ; yi) , (18)

where the expressions of Qi
Y |X and Qi

X can be deduced from (12) and (13) by substituting yi and xi

for y and x, respectively.
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• Forward step :

N1 =
∑N

n=1
p0

n Gn,

for n = 1, . . . , N : F1,n = p0
n Gn/N1,

for t = 2, . . . , T :

Nt =
∑N

n=1

(
∑N

m=1
Ft−1,m P 0

mn

)

Gn,

for n = 1, . . . , N : Ft,n =
(
∑N

m=1
Ft−1,m P 0

mn

)

Gn/Nt.

• Backward step :

for n = 1, . . . , N : BT,n = 1,

for t = T − 1, . . . , 1 :

for n = 1, . . . , N : Bt,n =
∑N

m=1
Bt+1,m P 0

nm Gm/Nt+1.

• For t = T − 1, . . . , 1 :

for n = 1, . . . , N : p0
t,n = Ft,nBt,n,

for m, n = 1, . . . , N : p0
t,mn = Ft−1,mP 0

nmBt,nGn/Nt.

• Reestimation step :

for n = 1, . . . , N : pn = p0
1,n,

for m, n = 1, . . . , N : Pmn =
∑T

t=2
p0

t,mn/
∑T−1

t=1
p0

t,m,

for n = 1, . . . , N : un =
∑T

t=1
p0

t,n yt/α
0
n, vn =

∑T

t=1
p0

t,n (yt − un)2/α0
n.

TABLE II

Standard reestimation EM formulas that yield θ =
(

{pn} , {Pmn} , {un} , {vn}
)

as the maximizer of

Q(., θ0, y) for a finite state homogeneous HMM with Gaussian observations. The Forward-Backward

algorithm provided here takes the normalized form given in [2].

IV. 3D extension

A. Segmentation of 3D PRFs

This paragraphs relies on an extension of the construction of stationnary MRFs and PRFs presented
in [4], [5] to the 3D case. The results are available in [7] and will not be derived here. We model X

as a 3D Pickard random field and we consider MMAP estimation of a voxel X{i,j,k} of the 3D array
under approximations similar to those outlined in Section II. More specifically, the marginal likelihood
Pr(x{i,j,k} |y) is approximated as

Pr(x{i,j,k} |y) ≈ Pr(x{i,j,k} |y{i,·,k}, y{·,j,k}, y{i,j,·}) , (19)

where y{i,·,k}, y{·,j,k} and y{i,j,·} denote the three 1D restrictions of y which contain voxel y{i,j,k}. Here
again, this approximation amounts to neglect interactions in the diagonal directions. It can be shown
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that (see [7]):

Pr(x{i,j,k} |y{i,·,k}, y{·,j,k}, y{i,j,·}) ∝ Pr(x{i,j,k})f(y{i,·,k} | x{i,j,k})

f(y{·,j,k} | x{i,j,k})f(y{i,j,·} | x{i,j,k}) . (20)

As in the 2D case, the terms in the right hand side of (20) only involve 1D quantities. More specifically,
due to the hidden Markov chain structures of the 1D restrictions of y, the conditional probabilities
in the right hand side of (20) can be evaluated using the same 1D forward-backward algorithms as in
the 2D case, and the only parameters of interest of the PRF prior model are those which control the
behavior of 1D Markov chains X{i,·,k}, X{·,j,k} and X{i,j,·}.

B. Parameter estimation

Here again, the ML estimator of θ cannot be expressed in closed form and an EM procedure is
applied to the pseudo-likelihood obtained by taking the product of marginal likelihoods of all 1D
restrictions of Y . Therefore, we have :

f(y ; θ) ∝
∼

∏

r∈R1

f(y(r) ; θ) , (21)

where {y(r); r ∈ R1} is a shorthand notation for {y{i,·,k}; i, k} ∪ {y{·,j,k}; j, k} ∪ {y{i,j,·}; i, j}, the set of
all 1D restrictions of y. Choosing x as the auxiliary variable of the EM algorithm and applying the
result of Paragraph III-C yields

Q(θ, θ0 ; y) =
∑

r∈R1

Q(r)(θ, θ0 ; y(r)) , (22)

=
∑

r∈R1

E[ln(f(y(r) |X(r) ; θ) Pr(X(r) ; θ)) |yr ; θ0] . (23)

The process y(r) has the structure of a 1D hidden Markov model with hidden process X(r), and (23)

shows that functions Q(r) are identical to those obtained for EM estimation of the parameters of 1D
hidden Markov models. In other words, the reestimation formulas essentially operate on 1D quantities,
which is the key to a tractable numerical implementation. We now precisely define these quantities and
derive the corresponding EM algorithm, keeping in mind that parameter vector θ can be partitioned
into {θY |X, θX} which allows decoupling of the maximization step.

V. Telegraph model

In this section, we introduce the telegraph model whose purpose is to reduce the computational cost
of parameter estimation and to ensure that the necessary condition of stationarity of the 1D restrictions
of PRF X are fulfilled. As indicated by (20) and (21), the prior model needs only to specify the
distribution of 1D quantities. Therefore the process we consider, i.e., the telegraph model (TM),
is strictly a 1D Markov chain model, the 3D nature of the problem being accounted for through the
aforementioned equations. We now define the TM and its parameter vector θX and then derive the
corresponding EM reestimation formulas.

A. Telegraph model definition

The TM is a straightforward generalization of a class of discrete-valued Markov chains proposed
in [13] for segmentation of seismic signals. The transition probability matrix P = (Pmn) of the model
is defined by

P = Λ + (1 − λ)µt , (24)
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with λ
∆
= vect(λn), Λ

∆
= diag(λn), 1 = (1, . . . , 1)t .

From an intuitive ground, the telegraphic parameterization θX = {µ, λ} can be interpreted as
follows. The transition from one state to another is the result of a two-stage sampling experiment.
On the basis of the first toss, the decision of keeping the current state m is made with probability λm.
Otherwise, a new state n is chosen with probability µn, independently from the previous state. Since,
in the latter case, n may be equal to m with probability µm, the probability of keeping the current
state m is actually λm + µm − λmµm. According to such values, typical trajectories of the TM are
more or less “blocky”. This is a one-dimensional counterpart to well-known spatial Gibbsian models
available for unordered colors [1].

In order to ensure that the resulting Markov chain is well defined and irreducible, it is straightforward
to check that the following constraints form a set of sufficient conditions:

∑N

n=1
µn = 1, (25)

∀n = 1, . . . , N, µn > 0, (26)

∀n = 1, . . . , N, λn < 1, (27)

∀n = 1, . . . , N, λn > −µn/(1 − µn). (28)

Note that λn is not necessarily positive, although λn > 0, n = 1, . . . , N was understood in the above
interpretation of the TM.

The stationary probability vector of the TM is readily obtained as

p =
(

I − Λ + µλt
)

−1
µ , (29)

where I is the identity matrix. Componentwise, such a vector also reads

pn =
µn

1 − λn

/

N
∑

m=1

µm

1 − λm

. (30)

Moreover, it can be verified that matrix diag(p)P is symmetric, so the TM is reversible in its stationary
state. Therefore, as long as the initial state probability vector is equal to p and that constraints (25)-
(28) are fulfilled, (24) defines a stationary and reversible Markov chain that we choose to parameterize
with θX = {λ, µ}. The resulting number of degrees of freedom is 2N − 1, which is linear w.r.t. the
number of states, as opposed to the standard HMM case, which yields N2 − 1 free parameters.

B. Reestimation formulas for θX

One of the reasons for introducing the TM is to simplify the forward-backward algorithm used to
evaluate marginal likelihood values Pr(Xt = n |y ; θ). As seen in Table II (evaluation of quantities Ft,
Bt and p0

t ), each of the T − 1 recursions of the algorithm requires matrix products involving transition
matrix P 0. As seen in the sequel, expressing P according to (24) allows us to bring the computational
complexity of each recursion down from O(N2) to O(N).

B.1 E-step

From the definition of QX (13), we have

QX(θX , θ0 ; y) =
∑

x

Pr(x |y ; θ0) log Pr(x ; θX)

=

N
∑

n=1

p0

1,n log pn +

N
∑

m,n=1

T
∑

t=2

p0

t,mn log pmn ,
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where

p0

t,n

∆
= Pr(Xt = n |y ; θ0),

p0

t,mn

∆
= Pr(Xt−1 = m, Xt = n |y ; θ0) .

Then, expressions (24) and (30) allow us to express the explicit dependence of QX on λ, µ:

QX(θX , θ0 ; y) =

N∑

n=1

α0

n log µn + β0

n log(1 − λn) + s0

n log

(
1 +

λn

µn(1 − λn)

)
− log

N∑

n=1

µn

1 − λn

, (31)

with

α0

n

∆
=

T∑

t=1

p0

t,n , β0

n

∆
=

T−1∑

t=2

p0

t,n , s0

n

∆
=

T∑

t=2

p0

t,nn . (32)

B.2 Approximate M-step

The major difficulty lies in the M step, which consists of maximizing QX under constraints (25)-
(28). Because of the last term in (31), explicit maximization is intricate. On the other hand, relative
simplification occurs if QX is approximated by

Q̃X(θX , θ0 ; y)
∆
= QX(θX , θ0 ; y) − E

[
log P (X1 ; θX)P (XT ; θX) |y ; θ0

]
/2

= E
[
log P (X2, . . . , XT |X1 ; θX)P (X1, . . . , XT−1 |XT ; θX) |y ; θ0

]
/2

= E
[
log P (X2, . . . , XT |X1 ; θX) | y1, . . . , yT ; θ0

]
/2

+E
[
log P (X2, . . . , XT |X1 ; θX) | yT , . . . , y1 ; θ0

]
/2 .

Apart from the fact that the difference between QX and Q̃X is moderate, it is not difficult to check
that Q̃X itself is an exact auxiliary function associated to a modified likelihood function. The latter
reads

fπ,λ,µ(y1, . . . , yT )fπ,λ,µ(yT , . . . , y1) , (33)

where fπ,λ,µ is the probability density function of the data when the initial probability vector of the
TM is an arbitrary vector π, while the transition matrix is parameterized by (λ, µ) according to (24).

The latter property ensures that the fixed-point EM procedure based on Q̃X does converge (towards
a stationary point of (33)).

First, let us express Q̃X as an explicit function of λ and µ:

Q̃X(θX , θ0 ; y) =

N∑

n=1

Q̃n ,

with

Q̃n
∆
= η0

n log µn(1 − λn) + s0

n log

(
1 +

λn

µn(1 − λn)

)
, (34)

and

η0

n

∆
= (α0

n + β0

n)/2 . (35)
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It is easy to maximize Q̃X w.r.t. λ when µ is held constant, since each function Q̃n depends on λn

only, and its maximum is reached at a unique point

λ̂n =
s0

n/η0
n − µn

1 − µn

. (36)

Moreover, constraints (27), (28) are fulfilled by λ̂ = (λ̂n) since s0
n < α0

n and s0
n < β0

n according to (32),

provided that θ0 meets (25)-(28). Substituting (36) into (34) allows us to express Q̃n as a function of
µn to within an additive constant factor:

Q̃n = γ0
n log

µn

1 − µn

, (37)

with γ0
n

∆
= η0

n−s0
n ≥ 0. The Lagrange multiplier technique is used for maximization of Q̃X with respect

to µ under constraints (25) and (26). Equating the gradient of the corresponding criterion to zero
yields:

∀n, νµ̂2
n − νµ̂n + γ0

n = 0 , (38)

where ν denotes the Lagrange multiplier. When ν > 4γ0
n, the above equation has two distinct roots,

µ+
n (ν) and µ−

n (ν), located in (0, 1) on either side of 1/2:

µ±

n (ν) =
1

2

(
1 ±

√
1 − 4γ0

n/ν
)

.

At first glance, the set of all possible combinations of µ−

n and µ+
n provides 2N different forms for

µ̂ = (µ̂n). However, according to (25) and (26), µ̂ may only contain one µ+
n . This brings the number

of possible combinations down to N + 1. Furthermore, among the N combinations that include one

µ+
n , Q̃X is maximized if and only if the corresponding state n is chosen among the maximizers of (γ0

n):
∀m, γ0

m ≤ γ0
n . Such a result stems from the following property: let us assume that constraint (25) is

fulfilled by
µ(ν) =

(
µ−

1 (ν), . . . , µ−

n−1(ν), µ+
n (ν), µ−

n+1(ν), . . . , µ−

N(ν)
)

for some value of ν, and, for instance, that γ0
1 > γ0

n. Then, for the same value of ν, constraint (25)
is still fulfilled after the permutation of µ−

1 (ν) and µ+
n (ν) in µ(ν), while it is easy to check from (37)

that QX is increased by the positive amount

(γ0
1 − γ0

n) log
µ+

n (ν)
(
1 − µ−

1 (ν)
)

µ−

1 (ν) (1 − µ+
n (ν))

.

Only two possible forms of combination remain:

µ−, defined by: ∀m, µm = µ−

m ,

µ+
n , defined by:





∀m 6= n, µm = µ−

m ,
µn = µ+

n ,
∀m, γ0

m ≤ γ0
n .

Note that there is as much different combinations µ+
n as maximizers of (γ0

n). Further analysis of the
properties of the remaining combinations brings the following existence and uniqueness result: the

maximum of Q̃X =
∑N

n=1 Q̃n (where Q̃n is given by (37)), under constraints (25) and (26), is reached

by a unique vector µ̂(ν̂), where ν̂ is uniquely determined by
∑N

n=1 µ̂n(ν̂) = 1, and

µ̂ =

{
µ− if

∑N

n=1 ω0
n ≤ N − 2 ,

µ+
arg max

n
γ0

n

otherwise ,
(39)
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with
ω0

n =
√

1 − γ0
n/ max

n
γ0

n .

Since 0 ≤ ω0
n < 1 for all n, and ω0

m = 0 if γ0
m = maxn γ0

n, it is not difficult to check that
∑N

n=1
ω0

n ≤ N−2
if γ0

n admits more than one maximizer. Hence, the (unique) maximizer arg maxn is well defined in (39).
In practice, ν̂ cannot be expressed in closed form, but tight lower and upper bounds can be easily

derived and classical numerical interpolation techniques can then be employed to refine the approxi-
mation. A summary of the forward-backward algorithm and of the reestimation formulas for µ and λ

is given in Table III.

for n = 1, . . . , N : p0
n =

µ0
n/(1 − λ0

n)
∑N

m=1
µ0

m/(1 − λ0
m)

, P 0

nn = λ0

n + µ0

n − λ0

nµ0

n.

• Forward step :

N1 =
∑N

n=1
p0

n Gn,

for n = 1, . . . , N : F1,n = p0
n Gn/N1,

for t = 2, . . . , T :

Nt =
∑N

n=1

(
λ0

n Ft−1,n +
(
1 −

∑N

m=1
λ0

m Ft−1,m

)
µ0

n

)
Gn,

for n = 1, . . . , N : Ft,n =
(
λ0

n Ft−1,n +
(
1 −

∑N

m=1
λ0

m Ft−1,m

)
µ0

n

)
Gn/Nt,

• Backward step :

for n = 1, . . . , N : BT,n = 1,

for t = T − 1, . . . , 1 :

for n = 1, . . . , N : Bt,n =
(
λ0

n Bt+1,n Gn +
(∑N

m=1
(1 − λ0

m)Bt+1,m Gm

)
µn

)
/Nt+1.

• For t = T − 1, . . . , 1 :

for n = 1, . . . , N : p0
t,n = Ft,nBt,n,

p0
t,nn = Ft−1,nP 0

nnBt,nGn/Nt.

• Reestimation step :

approximate ν̂ s.t.
∑N

n=1
µ̂n(ν̂) = 1 by interpolation, where, for n = 1, . . . , N :

µ̂n(ν) =






(
1 +

√
1 − 4γ0

n/ν
)
/2 if γ0

n = max
m

γ0
m and

∑N

m=1

√
1 − γ0

m/γ0
n > N − 2,

(
1 −

√
1 − 4γ0

n/ν
)
/2 otherwise ;

for n = 1, . . . , N : µn = µ̂n(ν), λn = (s0
n/η0

n − µn)/(1 − µn),

for n = 1, . . . , N : un =
∑

t p
0
t,n yt/α

0
n, vn =

(
2a +

∑
t p

0
t,n (yt − un)2

)
/(2b + α0

n).

TABLE III

Penalized EM formulas for a telegraphic HMM with Gaussian observations.
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VI. Mixture of Gaussians

We now address the question of the degeneracy of the likelihood with respect to parameters θY |X .
Maximizing f (y ; θ) with respect to

θY |X = (u, v) = (u1, . . . , uN , v1, . . . , vN) ∈ Θ = RN ×R∗
+

N

is indeed a degenerate problem since f (y ; θ) is not bounded above: for an arbitrary state n and an
arbitrary data sample yt, it is clear that f (y ; θ) can take arbitrary large values as vn comes close to
0, when un = yt and every other unknowns are held fixed to arbitrary constants. This is a well known
problem for the maximum likelihood approach to the identification of some mixture models [10], [3]. In
order to cope with the degeneracy in the case of an independent identically distributed (i.i.d.) mixture
model, Hathaway proposed to restrict the admissible domain, and he showed that an EM strategy
could still be implemented to solve the resulting constrained maximization problem [14], [15].

Here, we adopt a slightly different approach, based on the maximization on Θ of a penalized version
of the likelihood function:

F (y ; θ) = f (y ; θ)G (v)

where G (v) is an ad hoc prior distribution for v that compensates for the degeneracy at vn ց 0, n =
1, . . . , N . For this purpose, the solution of choice is the i.i.d. inverted gamma model:

G (v) =
N
∏

n=1

g (vn) , (40)

with

g (vn) =
ab−1

Γ (b − 1)

1

vb
n

exp
{

−
a

vn

}

1[0,+∞), (41)

which is ensured to be proper if b > 1 and a > 0. The justification is twofold:
• For small values of v, g(v) vanishes fast enough to compensate for the corresponding degeneracy of
f (y ; θ). More precisely, it can be established that F is a bounded function on Θ, which tends to
zero when v vanishes. Thus, the global maximum of F is finite and it is reached for strictly positive
components of v, whereas the degeneracy points of f are not even local maxima for F . In the case
of independent Gaussian mixtures, it has been recently shown that the global maximizer of F is a
strongly consistent estimator [16].
• Substituting F for f allows us to maintain explicit reestimation equations in the classical EM scheme
for Gaussian mixtures. The underlying reason is that the inverse gamma distribution G(v) is con-

jugate for the complete-data distribution f (y |x ; u, v) Pr (x). Contrarily to Hathaway’s constrained
formulation, our penalized version is as simple to derive and to implement as the original EM scheme.
The resulting reestimation formula for each vn is

vn =
2a +

∑T

t=1 Pr
(

Xt = n |y ; θ0
)

(yt − un)
2

2b +
∑T

t=1 Pr
(

Xt = n |y ; θ0
) ,

while the other reestimation equations are unaltered.
The equations of the complete EM algorithm are given in Table III. Note that the MMAP segmentation
stage directly follows from (20) and forward-backward evaluation of quantity p0

t,n.

VII. Results

The unsupervised segmentation method described above was successfully tested on synthetic and
real 2D and 3D images. In this section, we present a limited set of results in order to illustrate two
points: the ability of the penalized approach to cope with the degeneracy of the likelihood and the
performance of the method in real-size 3D data processing.
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 Original MRI image
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Fig. 1. Original magnetic resonance image of the heart region, size 128 × 128. The structures of interest are the
ventricles whose approximate boundaries have been superimposed on the image.

A. Likelihood degeneracy

The unsupervised segmentation method was applied to the 128×128 2D magnetic resonance image of
the heart region1 presented in Fig. 1. The structures of interest are the ventricles whose approximate
boundaries have been superimposed on the image. The model parameters were initialized in the
following manner: the histogram of the original image was separated into N equal quantiles, and the
values of θY |X = {u, v} were set to the empirical mean and variance of each quantile; all elements of
µ were set to 1/N , and all elements of λ were set to the same value λ0 < 1/2.

Without penalization of the likelihood, the method diverged after 12 iterations of the EM algorithm.
The trajectories of the elements of θX and θY |X are shown in Fig. 2. As can be observed, the divergence
occurs when one of the components of the variance parameters v approaches zero. This result is
consistent with the analysis of the degeneracy presented in Section VI.

The penalized method was applied to the magnetic resonance image with the same initial conditions.
The parameters of the inverse gamma distribution were set to a = 25, b = 1.01. The trajectories of
the estimated parameters and the resulting MMAP segmented image are shown in Figs. 3 and 4,
respectively. It can be observed that convergence was reached after about 150 iterations and that
even though several components of variance vector v were small, none of them approached zero closely
enough for divergence to occur, thanks to the penalization term. More complete simulation results
about likelihood degeneracy can be found in [17].

Regarding implementation issues, it should be underlined that with N = 15 labels, the TM induces
a reduction of the computational cost of about one order of magnitude with respect to a standard
parameterization of the Markov chains.

It should also be noted that for the particular example of Fig. 1, the best results were obtained
with N = 13 labels. In these conditions, even the non penalized method happens to converge. The
results obtained with the penalized algorithm are presented in Figs. 5 and 6. It can be observed that
convergence takes place after less than 100 iterations and that in the MMAP segmented images, the
two structures of interest can be clearly identified.

1Data courtesy of Dr. Alain Herment, INSERM U494, Hôpital de la Pitié-Salpêtrière, Paris, France
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Fig. 2. Trajectories of the components of parameters θX and θY |X without penalization of the likelihood, N = 15.

Divergence occurs after 12 iterations of the EM algorithm, as component 15 of variance vector v approaches zero.
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Fig. 3. Trajectories of the components of parameters θX and θY |X with a penalized likelihood, N = 15. Convergence
takes place after about 150 iteration of the EM procedure.
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 Segmented image,  N  = 15, penalized likelihood
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Fig. 4. MMAP unsupervised segmentation result, N = 15. The parameters were obtained with a penalized likelihood.
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Fig. 5. Trajectories of the components of parameters θX and θY |X with a penalized likelihood, N = 13. Convergence
takes place after less than 100 iteration of the EM procedure.

B. Segmentation of 3D data

The 3D data to be segmented were obtained with a power Doppler ultrasound echograph. This

imaging modality is used for analysis of blood flow. The data set2 presented here was collected on

a synthetic blood vessel which exhibits a strongly stenosed area. It consisted of 80 frames of size

2Data courtesy of Dr. Guy Cloutier, Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada.
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 Segmented image,  N  = 13, penalized likelihood
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Fig. 6. MMAP unsupervised segmentation result, N = 13. The parameters were obtained with a penalized likelihood.
The two ventricles can be clearly identified in the segmented image.

166× 219, and segmentation was used to assess the dimension of the stenosis.
The number N of labels was set to four as such a number is sufficient to separate the various velocity

regions present in the data, and the penalized version of the method was used.
Fig. 7 shows a longitudinal slice of the original power Doppler data and of the segmented data. This

representation is adopted because of the approximately cylindrical symmetry of the medium. The
trajectories of the estimated parameters is presented in Fig. 8. It can be observed that convergence
occurs after a number of iterations that is much smaller than in the 2D case. This can be interpreted as
the consequence of smaller number of labels and of the larger number of observations. The value of the
stenosis diameter inferred from the segmented data was closer to the actual value than results provided
by conventional methods of the field, thereby indicating a satisfactory behavior of our technique. It
should be underlined that each iteration of the EM algorithm took approximately 100 seconds on a
desktop Pentium II/300 computer, which shows that the proposed 3D method is usable even with a
moderate computing power.
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 Power Doppler data
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Fig. 7. Longitudinal slice of 3D data. Left: original power Doppler data; right: MMAP segmented data, N = 4.
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Fig. 8. Trajectories of the components of parameters θX and θY |X with a penalized likelihood, N = 4. Convergence
takes place after less than 10 iteration of the EM procedure.



18

VIII. Conclusion

In this paper, we have presented a fully unsupervised method for segmenting 2D and 3D images,
provided that the number N of levels is known. Following Devijver and Dekesel [2], local dependencies
were taken into account through a unilateral hidden Markov model with a conditionally Gaussian
distribution of the observed pixels.

In [2], an EM strategy was introduced in order to carry out ML estimation of the model parameters.
However, because of its heavy computational cost and of hazardous behavior [3], the authors finally
preferred to perform joint estimation of model parameters and of the image, even though this technique
presents controversial statistical properties [18].

Compared to [2], our contribution makes the EM strategy truly practicable for parameter estimation.
On the one hand, we adopted a more parsimonious description of the hidden Markov model. It is a
generalized version of the telegraph Markov chain model found in [13], whose number of parameters is
of order O(N) instead of O(N2). On the other hand, we introduced a penalized maximum likelihood
approach that avoids the degeneracy of the usual likelihood function. Moreover, our penalized version
is as simple to derive and to implement as the standard EM scheme.

Implementation of image processing methods based on Markov modeling usually requires heavy
computations, even in supervised contexts. In this respect, the proposed segmentation method is a
noticeable exception. This low numerical cost is obtained at the expense of a clear coarseness of the
prior model, mostly due to its unilateral structure. It was also necessary to neglect diagonal interactions
in the segmentation stage. As a consequence, the proposed method can be placed in the category of
general purpose techniques best suited for automatic batch processing of big data sets. For specific
types of images, more accurate segmentation results can probably be obtained using computationally
more intensive Markov methods.
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