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Abstract. A widely used approach to hyperspectral image classification
is to model a mixed-pixel vector as a linear superposition of substances
resident in a pixel with additive Gaussian noise. Using this linear mixture
model many image processing techniques can be applied, such as linear
unmixing or orthogonal subspace projection. However, a third source not
considered in this model, called interference (clutter or structured noise),
may sometimes give rise to more serious signal deterioration than the
additive noise. We address this issue by introducing the interference into
the linear mixture model. Including interference in the model enables us
to treat the interference as another undesired source, like a passive
jammer, so that it can be eliminated prior to detection and classification.
This is particularly useful for hyperspectral images, which tend to have a
high SNR but a low signal-to-interference ratio with the interference dif-
ficult to identify. To find and reject interference, we propose an unsuper-
vised vector quantization-based interference rejection (UIR) approach in
conjunction with either an orthogonal subspace projection (OSP) or an
oblique subspace projection (OBSP) to simultaneously project a pixel
into signature space as well as to null out interference. Since there is no
prior knowledge about the interference, the UIR is implemented in an
unsupervised manner to generate the desired interference clusters so
that they can be annihilated by the OSP or OBSP. The proposed ap-
proach is shown by evaluation with Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) data to exhibit considerable improvement
in comparison to linear unmixing or the OSP where interference is not
considered. © 1998 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Recently, remote sensing has advanced to the point where a

new generation of sensors, called imaging spectrometers,

has been developed to fine-tune spectral resolution so that

materials with very similar spectra, which can not be re-

solved by multispectral imagers such as the multispectral

scanner ~MSS! and Thematic Mapper ~TM!, can be dis-

criminated and quantified. Examples of such sensors in-

clude the airborne visible/infrared imaging spectrometer

~AVIRIS! developed by the National Aeronautics and

Space Administration ~NASA! Jet Propulsion Laboratory

and the Hyperspectral Digital Imagery Collection Experi-

ment ~HYDICE! sensor developed by Naval Research

Laboratory. The concept of developing such high-

resolution spectral sensors, typically with 20 to 40-nm

spectral resolution, is to take advantage of contiguous, in-

herently registered spectral bands to capture diagnostic

narrow-band spectral features present in the pixels so that

their corresponding materials can be uniquely identified.1

Spectral unmixing has been widely used in the remote
sensing community to quantify and identify the materials
resident in multispectral and hyperspectral images.2 A re-
cent approach, orthogonal subspace projection3 ~OSP!, was
also proposed for hyperspectral image classification and
has shown promise in HYDICE data exploitation. The OSP
has been further extended and generalized in various
contexts.4–6 All these approaches are based on the fact that
an image pixel is linearly mixed by the materials within the
pixel and corrupted by an additive Gaussian noise. By tak-
ing advantage of this linear mixture model, many existing
image processing techniques that cannot be directly applied
to multispectral/hyperspectral image analysis can now be
adapted and modified to fit different applications in remote
sensing. However, the assumed linear mixture model in-
volves only signal and noise sources with interference gen-
erally discarded or included in noise/signals. Since hyper-
spectral sensors use as many as 200 contiguous bands to
capture the subtle discrepancies between spectral signa-
tures, it may also extract many unwanted signatures such as
clutter and background. These unwanted signatures can be
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viewed as interferers and must be eliminated before data
processing. Consequently, this presents another mixing
problem and further complicates the situation. It has been
noted in HYDICE data that hyperspectral images tend to
have a high SNR but a low signal-to-interference ratio. As
a result, including interference as another distinct source in
the linear mixture model can be beneficial. In this paper, we
address this issue by modeling interference as a separate
third source in addition to target signatures and noise. The
advantage of introducing interference into the model is that
it can separate the unwanted interference from signatures of
interest so that they can be removed early. To do so, an
unsupervised vector quantization ~VQ!-based interference
rejection ~UIR! approach is proposed in conjunction with
either an OSP ~Ref. 3! or an oblique subspace projection6

~OBSP!. The UIR is a clustering and interference genera-
tion process which produces a desired set of interference
signatures that can be annihilated or suppressed prior to
detection and classification so as to achieve signal enhance-
ment. Due to the fact that no prior knowledge about the
interference is available, the UIR employs unsupervised
VQ ~Ref. 5! to generate interference clusters, each of which
represents a certain type of interference. These clusters are
then annihilated by either the OSP or the OBSP. The num-
ber of interference clusters required for the UIR is deter-
mined by rank curves that are generated based on two dif-
ferent criteria, orthogonal projection divergence for OSP
and eigenvalues for OBSP. It is shown through HYDICE
data that the UIR approach is a significant improvement
over the OSP or OBSP approaches with no interference
considered in the linear mixture model.

This paper is organized as follows. Section 2 formulates
the hyperspectral image classification as a linear mixing
problem and Sec. 3 briefly reviews subspace projection ap-
proaches including OSP and OBSP. Section 4 describes a
VQ-based clustering process. Section 5 presents the com-
plete implementation of a UIR approach, where the OSP
and OBSP classifiers are used for target classification. Sec-
tion 6 conducts experiments using HYDICE data to dem-
onstrate the advantage of the UIR. Finally, a conclusion is
given in Sec. 7.

2 Linear Mixture Model

Linear spectral mixing is a widely used approach in re-
motely sensed imagery to determine and quantify multi-
components. Since every pixel is comprised of discrete
spectral bands, it can be represented by a column vector
whose components are pixels in these individual spectral

bands. More precisely, suppose that l is the number of

spectral bands. Let ri be an l31 column vector and denote

the i’th pixel in a hyperspectral image where the bold face

is used for vectors. So, each pixel is represented by a pixel

vector with dimensionality l and a hyperspectral image can

be viewed as an image cube. Assume that M is an l3p

signature matrix denoted by (m1m2•••mp), where mj

is an l31 column vector, which represents the j’th signa-

ture ~substance! resident in the pixel ri and p is the number

of these signatures. These signatures are generally

target signatures of interest to be classified. Let ai

5(a i1a i2•••a ip)T be a p31 abundance column vector as-

sociated with ri , where a i j denotes the abundance concen-

tration of the j’th signature in the pixel ri .

A widely used linear mixture model in linear unmixing
assumes that the substances present in a pixel vector are
linearly superpositioned. Statistically, it can be represented
by a linear regression model as follows:

ri5Ma i1ni , ~1!

where ni is an l31 column vector representing additive

white Gaussian noise with zero mean and variance s2I and

I is the l3l identity matrix.

3 Subspace Projection Approaches to
Hyperspectral Image Classification

A classical approach to solving Eq. ~1! is to find a matrix
inverting Eq. ~1! so that the multicomponents mixed in the

pixel vector ri can be identified separately. This procedure

is generally referred to as linear unmixing. Since the num-

ber of bands l is usually much greater than that of signa-

tures p in hyperspectral images, Eq. ~1! is overdetermined

and not full rank. Simply inverting the signature matrix will
result in singularities. In that case, singular value decompo-
sition ~SVD! could be used to proceed.7 In a recent study,3

an OSP approach was shown to be a promising alternative
and has proved to be effective in AVIRIS and HYDICE
data exploitation. In this section, we first review the OSP
technique and then another subspace projection,6 called
OBSP.

3.1 OSP

First, we rewrite the model of Eq. ~1! as

r5dap1Ug1n, ~2!

where the subscript i is suppressed, U5(m1m2•••mp21) is

the undesired spectral signature matrix comprising a set of

the first p21 signatures, and d5mp is a desired signature.

Here, we assume without loss of generality that the last
signature is the desired signature d to be classified. Note
that Eq. ~2! can be extended straightforwardly to more than
one desired signature. The reason of separating U from M
is to enable us to design an orthogonal subspace projector
to annihilate U from an observed pixel prior to classifica-
tion. One such projector is an undesired signature annihila-

tor, denoted by PU
' , given by

PU
'

5I2UU♯, ~3!

where U♯
5(UTU)21UT is the pseudoinverse of U and the

notation U
' in PU

' indicates that the projector PU
' maps the

observed pixel r into the space ^U&', the orthogonal

complement of ^U& ~Ref. 3!.

Now, applying PU
' to the model of Eq. ~2! results in a

new spectral signature model

PU
'

r5PU
'

dap1PU
'

n, ~4!
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where the undesired signatures in U have been eliminated

and the original noise has been suppressed to PU
'

n.

Equation ~4! represents a standard signal detection prob-
lem. If the optimal criterion for the signal detection prob-
lem specified by Eq. ~4! is chosen to maximize the SNR
given by

SNR5

~x
TPU

'
d!ap

2~d
TPU

'
x!

x
TPU

'E~nn
T!PU

'
x

, ~5!

over x, then the maximum SNR of Eq. ~5! can be obtained

by a matched filter, denoted by Md using x5kd with a

constant k and the matched signal d.
Based on the approach outlined by Eqs. ~4! and ~5!, a

mixed pixel classification can be carried out by a two-stage

process, an undesired signature annihilator PU
' followed by

a matched filter, Md . More precisely, if we want to classify

a desired signature, say d in a mixed pixel based on the

model of Eq. ~1!, we first apply PU
' to the model of Eq. ~2!

to eliminate U, then we use the matched filter Md to extract

d from the signal detection model of Eq. ~4!. The operator

coupling PU
' with Md is called an orthogonal subspace clas-

sifier, POSP derived in Ref. 3 and denoted by

POSP5MdPU
'

5d
TPU

' . ~6!

3.2 Linear Spectral Signal-Interference Mixture
Model

According to experiments using HYDICE data, it was
found that hyperspectral images generally had a high SNR
but a low signal-to-interference ratio. This means that the
interference sometimes presents more serious contribution
than noise to performance degradation. However, from the
model of Eq. ~1!, the interference is either assumed to be
discarded or included in noise or signals. In the latter case,
if the interference is included in the noise, it cannot be
additive and independent as assumed in the model Eq. ~1!.
If the interference is included in signals, it must be speci-
fied. On the other hand, if it is ignored, the interference
serves as a passive jammer. Therefore, it must be consid-
ered separately and further be removed prior to detection
and classification. In either case, the model of Eq. ~1! may
not be adequate for hyperspectral images. To take care of
this problem, we introduce the interference as a third sepa-
rate source in the model of Eq. ~1!. In this formulation, the
signatures in M are only those required to be classified and
the interference will be treated separately as unknown but
unwanted signatures in the image. In addition, the noise is
additive Gaussian noise independent of signature and inter-
ference. Such a model is called a linear spectral signature-
interference mixture model in this paper and can be de-
scribed as follows.

Let S5(s1s2 . . .sq)T be the interference matrix where sk

is the k’th interference signature and fi5(f1f2 . . .fq)T is

the corresponding abundance vector of the interference sig-
natures in S. A linear spectral signature-interference mix-

ture model for ri modified from the model of Eq. ~1! can be

derived by

ri5Mai1Sfi1ni . ~7!

3.3 OBSP

The OBSP was developed based on a concept of enhancing
signals while nulling interference. Several applications of
the OBSP were discussed and studied in array processing
and communications.8 A new application of the OBSP to
hyperspectral image classification was recently reported,6

which can be viewed as an a posteriori OSP method. The
idea is to take advantage of the ability of the OBSP in
signal enhancement, noise suppression, and interference an-
nihilation. By relying on Eq. ~7! we can develop a method
that uses the OBSP as an interference rejecter to eliminate
interference signatures in S before target detection.

Let ^M& and ^S& be the spaces linearly spanned by M and
S, respectively. The OBSP is applied to hyperspectral im-
age pixels by specifying ^M& as its range space and ^S& as
its null space. As a result S will be eliminated via the
OBSP while the pixel will be projected into the signature
space M. From Ref. 7, a desired OBSP-based interference
rejecter can be derived by

EMS5M~MTPS
'M!21MTPS

' , ~8!

where the first and second subscripts in EMS denote the

range space M and the null space S respectively and

EMSM5M and EMSS50. The PS
' in Eq. ~8! is referred to

as the interference annihilator and is defined in the same
fashion as Eq. ~3! by

PS
'

5I2SS♯
5I2PS , ~9!

and

PS5SS♯, ~10!

where S♯
5(STS)21ST is the pseudoinverse of S.

4 VQ

In the model of Eq. ~7!, the interference matrix S is as-
sumed to be known. Unfortunately, a description of S is
generally not available in practice and must be obtained
from the data. In this section, an unsupervised VQ-based
clustering process5 is proposed to automatically generate a
desired interference matrix S for the model of Eq. ~7!. The
only assumption made in this approach is that the number
of interference signatures must be given a priori. However,
this number can be determined by rank curves as demon-
strated in experiments. The VQ procedure described next is
based on the well-known Linde-Buzo-Gray ~LBG!
algorithm9 and the criterion for optimality to be used is the
mean squared error ~MSE!.

4.1 VQ

Assuming that q is the number of codewords to be gener-

ated for a codebook, the VQ algorithm is as follows

1. Initialization: Code1
5$xj

1% j51
q , where $xj

1% j51
q is a

set of q initial clusters generated by an algorithm.10

2. Iterative procedure for reclustering at step i.1 to

generate the i’th code book Codei
5$xj

i% j51
q :

xj
i
5E~XuXPR j

i21! ~11!
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where R j
i21 is the j’th cluster produced by the code

book at step i21, Codei21
5$xj

i21% j51
q .

3. Stopping rule: The reclustering will be terminated
when no more data vectors are shuffled from one
cluster to another. More specifically, as the algorithm
iterates, the MSE between data vectors and their
nearest cluster centers will be reduced until there is
no change in the codebook. As a result, either the
MSEs in two consecutive iterations remain un-
changed or their difference is below a prescribed
threshold. In this case, no data vector will be
shuffled.

5 UIR Approaches

After a desired set of q interference clusters is generated by

the VQ algorithm, two approaches can be used to annihilate

these q interference signatures. One is the OSP-based un-

supervised interference rejection ~OSPUIR! approach,
which treats the interference signatures as part of undesired
signatures. In this case, the U described in Eq. ~2! is aug-
mented by including the interference matrix S in U. A sec-
ond approach, called oblique subspace-based unsupervised

interference rejection ~OBSPUIR!, uses the OBSP EMS in

Eq. ~8! to annihilate these q interference signatures. After

interference elimination, the signature matrix M is further
decomposed into a target signature, denoted by d and un-
desired signature vectors in U as described in the model of

Eq. ~2!. Then a second OBSP operator defined by EdU

5 d(d
TPU

'
d)21

d
TPU

' via Eq. ~8! is applied again to extract

the target signature. Thus, in the OBSP approach, the first

OBSP, EMS , is served as an interference annihilator and

the second OBSP, EdU , is used as a target classifier. The

major difference between OSPUIR and OBSPUIR is that
the former is an a priori approach, which assumes the
abundance of all signatures in the model of Eq. ~7! is
known a priori, while the latter is considered to be an
a posteriori approach, where the abundance of signatures in
M and S must be estimated from the data. As shown in Ref.
6, the OSP and OBSP classifiers detected different fractions
of abundance for target signatures despite the fact that they
both produced the same classification feature vector. How-
ever, for the OSPUIR to generate desired interference
signatures for annihilation, we apply an operator

PM
'

5I2MM♯, which is defined in a similar fashion to Eq.

~3! to project all image pixels into the orthogonal comple-
ment space of the signature space generated by M. As a

result4 of PM
' , the a priori OSPUIR becomes a posteriori

classifier as is the OBSPUIR classifier and both the OSP-
based and OBSP-based classifiers will produce nearly the
same results. This fact will be demonstrated by HYDICE
data in Sec. 6. Note that the interference considered in this
paper is not limited to background interference, which usu-
ally can be determined by inspection, e.g., grass, trees, but
also includes interferers that can be difficult to identify
from the data.

In contrast to the OSPUIR, the OBSPUIR is carried out
in a two stage process. The first stage is to design an inter-
ference annihilator and then develop an OBSP-based clas-
sifier in the second stage to eliminate the undesired signa-

tures. The OSPUIR and OBSPUIR are summarized as
follows.

5.1 OSPUIR

1. Initial condition: Select a set of target signatures M.

2. Find the orthogonal complement space of M. Apply

PM
'

5I2MM♯
5I2M(MTM)21MT via Eq. ~3! to all

image pixel vectors r.

3. Find interference signatures using VQ. Use VQ to

generate q clusters with the j’th center or centroid

denoted by sj . These centers constitute a set of q

interference signatures $s1 ,s2 ,s3 , . . . ,sq%. Let S

5(s1s2 . . .sq).

4. Apply the OSP classifier given by Eq. ~6! with U

5(m1m2 . . .mp21S) to extract d.

The complete execution of OSPUIR can be expressed in
terms of the following mathematical operations

POSPUIR5POSP~VQ!PM
'

5d
TPU

'~VQ!PM
' , ~12!

where M5(m1m2 . . .mp21d) and U5(m1m2 . . .mp21S).

5.2 OBSPUIR

1. Initial condition: Select a set of target signatures M.

2. Find the orthogonal complement space of M. Apply

PM
' via Eq. ~9! to all image pixel vectors r.

3. Find interference classes using VQ. Use VQ to gen-

erate q clusters with the j’th center or centroid de-

noted by sj . These centers constitute a set of q inter-

ference signatures $s1 ,s2 ,s3 , . . . ,sq%. Let S

5(s1s2 . . .sq).

4. Eliminate the interference classes using the interfer-

ence rejecter EMS . Now apply an OBSP operator

EMS given by Eq. ~8! with M5(m1m2 . . .mp21d).

5. Null the undesired signatures in U

5(m1m2 . . .mp21) and extract the target using the

OBSP classifier EdU .

The OBSPUIR is carried out by two oblique subspace pro-
jections in conjunction with a VQ-based clustering process
described as follows.

POBSPUIR5EdUEMS~VQ!PM
' . ~13!

Note that the OBSP used in step 5 of the OBSPUIR can be
replaced by the OSP given by Eq. ~6! to achieve the nearly
the same classification results. This is because it was
shown4,6 that when the OBSP and the OSP are applied to
the model of Eq. ~2!, they both produce the same classifi-

cation feature vector d
TPU

' with a constant difference in

their magnitudes given by (d
TPU

'
d)21. This constant alters

only the fraction of abundance detected in the classified
pixels but does not affect the classification performance.
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6 Experiments Using HYDICE Data

In this section, we describe experiments using hyperspec-
tral images that illustrate the advantages of using the linear
signature-interference spectral mixture model @Eq. ~7!#.

The HYDICE data used in the experiments are an image
scene taken in Maryland in August 1995 using 210 bands
of 10-nm spectral resolution with the coverage 0.4 to 2.5
mm and the average ground sampling distance ~GSD! rang-
ing from 1 to 4 m. However, for illustrative purposes we
selected an image scene collected by a low-altitude flight

and the GSD is approximately 0.78 m. A 1283128 subim-

age was cropped from this image and is shown in Fig. 1.
This figure shows a single-band image scene ~band 30!
with tree lines along the left one eighth and a grass field in
the right seven eighths. This grass field also contains a road
running along the right edge of the image. Four vehicles
along the tree line are vertically aligned. The top three are
treaded vehicles and the bottom one is a wheeled vehicle.

The size of treaded vehicles is approximately 438 m and

the size of the wheeled vehicle is about 336 m. There is

one object located near the center of the scene. The experi-
ment is designed to demonstrate a situation when only par-
tial knowledge of the signatures is available.

Suppose that three signatures are of interest and they
will serve as the targets to be classified: the three treaded
vehicles, the wheeled vehicle, and the object. There are
some partial knowledge about the background, which can
help to determine background interference signatures. Let
the trees, the grass, and the road be such background sig-
natures. Let @the first treaded vehicle signature, the wheeled
vehicle signature, the object signature# be the target matrix,
denoted by T and @tree signature, grass signature, road sig-
nature# be the background matrix denoted by B. The first
experiment was conducted to see how B affects the classi-
fication performance. The images in the first, second and

third columns of Fig. 2 were obtained by the OSP with M

5T, the OSP with M5TøB and the OBSP using EMS

with M5TøB, respectively, where one of the target sig-

natures was designated as the desired signature d and U
consisted of the other two undesired target signatures. As
can be seen, the classification was greatly improved by in-
cluding the background matrix B. In addition, the figure
also shows that both OSP and OBSP produced nearly the
same results. It is interesting to note that in Fig. 2, the third
treaded vehicle was missed when the treaded vehicles were
classified. Instead, it was picked up in the wheeled vehicle
classification. This occurrence is not surprising because the
spectrum of the third treaded vehicle is very similar to that
of the wheeled vehicles as shown in Fig. 3. As a result,
classifying one will detect the other.

In the HYDICE image scene, we could obtain by inspec-
tion some partial interference from the data such as back-
ground signatures. However, there are many other types of
unknown interference signatures, which deteriorate the
classification performance. To identify possible interfer-
ence signatures including unobservable ones, an unsuper-
vised VQ-based clustering process was used to generate a
class of clusters that is used to form the interference matrix
S. The images in the first column of Fig. 4 were obtained
by the OSPUIR with 10 interference signatures generated

Fig. 1 HYDICE image scene.

Fig. 2 First column is the results produced by the OSP with M5T,
the second column is the results produced by the OSP with M

5TøB, and the third column is the results produced by the OBSP
with M5TøB.
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by VQ to form the interference matrix S as part of the

signature matrix M ~i.e., M5TøBøS!. The second col-

umn of Fig. 4 shows the images obtained by OBSPUIR

with M5TøB as the signature matrix and with S as the

interference matrix. Comparing Fig. 4 to Fig. 2, the image
classification in Fig. 4 is significantly improved because the
images in Fig. 4 have eliminated interference signatures,
which were not considered in Fig. 2.

Since there is no knowledge about how many interfer-
ence signatures needed to be generated by VQ, the quantity

h5d
TPU

'
d, called orthogonal projection correlation index

is used as a criterion for OSPUIR to determine a desired
number of interference signatures to achieve the best pos-

sible classification. The rationale of choosing h5d
TPU

'
d is

based on the orthogonal projection correlation between d

and U. It gives a clue to determining how many additional
interference signatures are required for classification and
how much orthogonal projection a new signature can con-
tribute. Thus, h can be used as a measure of the informa-
tion about how many interference signatures need to be
generated. If h is small, it implies that most of the signifi-
cant interference signatures are already contained in the
current interference signature set S. That is, it indicates that
the number of generated interference signatures is sufficient
to warrant good classification results. Figures 5~a!, 5~b!,
and 5~c! are the rank curves generated by h with the
treaded vehicles, the wheeled vehicle, and the object as the
designated desired targets, respectively. These are plotted
on the basis of the value of h versus the number of inter-
ference signatures. Each curve was calculated by using dif-
ferent numbers of VQ-generated interference signatures
ranging from 1 to 20. A major disadvantage is computa-
tional complexity due to the fact that the VQ-based cluster-
ing process must be carried out for each given number of
clusters. The classes of interference clusters generated by
VQ for different numbers of clusters do not necessarily

embrace one another. For example, the three interference

signatures generated by VQ based on q53 are not neces-

sarily included in the class of the five interference signa-

tures based on q55. Some of them may be overlapped, but

not necessarily all. This is demonstrated in Fig. 5 where the
rank curve is not monotonically decreasing. Figure 6
~where the first column designates treaded vehicles as the
desired signature, the second column designates the
wheeled vehicle as the desired signature, and the third col-
umn designates the object as the desired signature! shows
the OSPUIR classification results with 5, 10, 15, and 20
interference signatures. If we choose the number of inter-
ference signatures required for classification to be the num-
ber at which the rank curve shown in Fig. 5 drops rapidly
and sharply, then they are 6 or 10 for the treaded vehicles,
5 for wheeled vehicle, and one of $3,7,11% for the object.
Comparing the results in Fig. 6, these numbers may be
overestimated a little bit. But they seem still good estimates
by considering the fact that no information about interfer-
ence was given a priori. Nevertheless, the number of inter-
ference signatures should not be too greatly overestimated.
For example, the rank curve of the object classification
shown in Fig. 5~c! is completely flat after 11 interference
signatures were generated. This is because the h is very

Fig. 3 Spectra of the three treaded vehicles, the wheeled vehicles,
and the object.

Fig. 4 First column is the results produced by the OSPUIR using
M5TøBøS and the second column is the results produced by the
UIR using M5TøB and S as the interference matrix, where S con-
sists of 10 interference signatures generated by VQ.
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small and kept at a constant value, which implies that no
improvement can be made by including more interference
signatures. While this is true, more interference signatures
used for annihilation may even degrade performance as no-
ticed in the third column of Fig. 6 with 20 interference
signatures being used. This can be explained as follows.
Since the spectrum of the object is very distinct, only a few
interference signatures such as natural background are sig-
nificant and must be nulled prior to classification. These
signatures are generally strong interferers and are distinct
from the target signatures. If more interference signatures
are generated than are needed, we are then forced to find
some interference signatures whose spectral characteristics
may be similar to that of the target to be classified. As a
result, eliminating these signatures may also eliminate part

of the spectral characteristics of the target, thus deteriorat-
ing the performance. The results justify that the selection of
the number of interference signatures as already suggested
is indeed a good rule despite the fact that it may be not an
optimal one.

Unlike the OSPUIR, which uses h as a criterion for
determination of number of interference signatures, the

OBSP used the trace(EMS
T EMS) as a measure to determine

how many interference signatures one needs to generate
since the eigenvalues represent the energies of signatures in

M and the trace(EMS
T EMS) is the sum of eigenvalues of the

interference rejecter EMS . The more interference signatures

that are nulled, the less energy is contained in the image,

and thus the smaller the trace(EMS
T EMS). This does not im-

ply that the rank curve of trace(EMS
T EMS) is monotonically

decreasing as the number of interference signatures grows

due to the same reason given above for h5d
TPU

'
d. Figure

7 shows the rank curve produced by the OBSPUIR using
from 1 to 20 interference signatures. It is plotted based on

the value of trace(EMS
T EMS) versus the number of interfer-

ence signatures. Note that there is only one rank curve be-

cause the trace(EMS
T EMS) used for the OBSPUIR depends

Fig. 5 Rank curves produced by OSPUIR in (a) the treaded vehicle,
(b) the wheeled vehicle, and (c) the object classification using from 1
to 20 interference signatures.

Fig. 6 Images in the first column for the treaded vehicle classifica-
tion, images in the second column for the wheeled vehicle classifi-
cation, and images in the third column for the object classification
using 5, 10, 15, and 20 interference signatures.

Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .

741Optical Engineering, Vol. 37 No. 3, March 1998



only on the target signature matrix M and the interference
matrix S, but not the specific targets. The curve drops
sharply at 3, increases a little bit at 4, drops again at 5, then
gradually decreases until 10, where the curve becomes flat.
In this case, we may choose 10 to be the desired number of
interference signatures. Figure 8 shows OBSPUIR gener-
ated images for each target with 5, 10, 15, and 20 interfer-
ence signatures. As shown in these images, there is no vis-
ible difference between images using more than 10
interference signatures. The results seem to confirm that the
proposed eigenvalue criterion successfully predicts an ad-
equate number of interference signatures required for good
classification. Since the object has distinctive spectral char-
acteristics different from the treaded and wheeled vehicles,
it did not require as many interference signatures as did the
vehicles. The same observation made for the object classi-
fication using the OSPUIR holds true for the OBSPUIR.
This further justifies that the number of interference signa-
tures for target detection and classification depends on the
spectral characteristics of the target to be classified.

7 Conclusion

In this paper, a UIR approach was presented to improve the
performance of an OSP method,3 which has been success-
fully applied to AVIRIS and HYDICE data. The idea be-
hind the UIR is to reformulate the commonly used linear
spectral mixture model as a linear spectral signature-
interference mixture model where the interference is sepa-
rated from the signature matrix and noise, and treated as a
third source. Two UIR-based approaches were presented
for this purpose, the OSPUIR and the OBSPUIR. The ex-
perimental results show that the OSPUIR and the OB-
SPUIR significantly improve the OSP-based methods,
which use the traditional linear mixture model and discard
the interference.
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