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“Car”

(a) Images downloaded from the Internet (b) Our automatic segmentation results (c) State-of-the-art co-segmentation results [8]

Image

search

Object

discovery

Figure 1. Image datasets collected from Internet search vary considerably in their appearance, and typically include many noise images that

do not contain the object of interest (a small subset of the car image dataset is shown in (a); the full dataset is available in the accompanying

material). Our algorithm automatically discovers and segments out the common object (b). Note how no objects are discovered for noise

images in (b). Most previous co-segmentation methods, in contrast, are designed for more homogeneous datasets in which every image

contains the object of interest, and, therefore, their performance degrades in the presence of noise (c).

Abstract

We present a new unsupervised algorithm to discover

and segment out common objects from large and diverse

image collections. In contrast to previous co-segmentation

methods, our algorithm performs well even in the presence

of significant amounts of noise images (images not contain-

ing a common object), as typical for datasets collected from

Internet search. The key insight to our algorithm is that

common object patterns should be salient within each im-

age, while being sparse with respect to smooth transforma-

tions across images. We propose to use dense correspon-

dences between images to capture the sparsity and visual

variability of the common object over the entire database,

which enables us to ignore noise objects that may be salient

within their own images but do not commonly occur in oth-

ers. We performed extensive numerical evaluation on es-

tablished co-segmentation datasets, as well as several new

datasets generated using Internet search. Our approach is

able to effectively segment out the common object for di-

verse object categories, while naturally identifying images

where the common object is not present.

1. Introduction

We consider the task of jointly segmenting multiple im-

ages containing a common object. The goal is to label each

pixel in a set of images according to whether or not it be-

longs to the underlying common object, with no additional

information on the images or the object class1. Such capa-

bility can be useful for automatic generation of large-scale

training sets for object detectors/classifiers, data-driven im-

age synthesis, as well as for improving image-to-text rele-

vance and image search.

The task of simultaneously segmenting multiple images

is known as co-segmentation, where joint segmentation es-

sentially serves as a means of compensating for the lack of

supervisory data, allowing to infer the visual properties of

the foreground object even in the absence of a priori infor-

mation about the object or the images.

While numerous co-segmentation methods have been

proposed, they were shown to work well mostly on small

datasets, namely MSRC and iCoseg, containing salient and

similar objects. In fact, in most of the images in those

datasets the foreground can be quite easily separated from

the background based on each image alone (i.e. without co-

segmentation, see Section 4.1).

However, Internet image collections, such as the ones

returned by image search engines for a given user query,

are significantly larger and more diverse (Figure 1(a)). Not

only do the objects in images downloaded from the Inter-

net exhibit drastically different style, color, texture, shape,

pose, size, location and view-point; but such image collec-

tions also contain many noise images—images which do

not contain the object of interest at all. These challenges,

as we demonstrate, pose great difficulties on existing co-

segmentation techniques (Figure 1(c)). In particular, most

co-segmentation methods assume every image contains the

object of interest, and hence are unable to handle dataset

noise.
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In this paper, we propose a novel correspondence-based

object discovery and co-segmentation algorithm that per-

forms well even in the presence of many noise images.

Our algorithm automatically discovers the common object

among the majority of images and computes a binary ob-

ject/background label mask for each image. Images that do

not contain the common object are naturally handled by re-

turning an empty labeling (Figure 1(b), Figure 2).

Our algorithm is designed based on the assumption that

pixels (features) belonging to the common object should

be: (a) salient, i.e. dissimilar to other pixels within their

image, and (b) sparse, i.e. similar to pixels (features) in

other images with respect to smooth transformations be-

tween the images. Given an input image dataset, we build

a large-scale graphical model connecting similar images,

where dense pixel correspondences are used to capture the

object’s visual variability. These correspondences between

images allow us to separate the common object from the

background and visual noise.

We performed extensive evaluation of our proposed ap-

proach. Our algorithm produces state-of-the-art results

on the established MSRC and iCoseg co-segmentation

datasets2, and provides considerable improvement over pre-

vious methods on several new challenging Internet datasets

containing rigid and non-rigid object categories. Our In-

ternet datasets, ground truth labels and results are avail-

able for the research community for further investigation at

http://people.csail.mit.edu/mrub/ObjectDiscovery.

2. Related work

Object Discovery. Object discovery has been intensively

studied in computer vision. In a supervised setup, objects

were treated as topics and images as documents, and gener-

ative models such as Latent Dirichlet Allocation (LDA) and

Hierarchical Pitman-Yor (HPY) have been used to learn the

distribution and segmentation of multiple classes simulta-

neously [24, 22]. Winn and Jojic [26] propose a genera-

tive model for the distribution of mask, edge and color for

visual objects with respect to a smooth deformation field.

Although good object recovery results were reported, the

model is limited to particular views of an object.

Recently, PageRank [7] was used to discover regions of

interest in a bounding box representation [10], and self-

similarities were used to discover a common pattern in sev-

eral images [1]. Although in these works no generative

models were used to learn the distribution of visual objects,

reliable matching and saliency are found to be helpful for

object discovery. The notions of matching and saliency

were also successfully applied by Fakor et al. [5], a work

1We note that while we call our method “unsupervised”, we do assume

that the input image dataset contains a common visual category. We use

“unsupervised” to emphasize that, other than this assumption, the algo-

rithm makes no further use of a priori information such as the common

object’s class or image annotations.

done in parallel to ours, for unsupervised discovery of im-

age categories.

Co-segmentation. Co-segmentation was first introduced

by Rother et al. [19], who used histogram matching to si-

multaneously segment the same object in two different im-

ages. Since then, numerous methods were proposed to im-

prove and refine the co-segmentation [16, 6, 2, 8], many of

which work in the context of a pair of images with the exact

same object [19, 16, 6] or require some form of user inter-

action [2, 4].

These techniques were later extended in various ways.

Joulin et al. [8] used a discriminative clustering frame-

work that can handle multiple images, and Kim et al. [12]

proposed an optimization which scales up to even larger

datasets. Vicente et al. [25] introduced the notion of ”ob-

jectness” to the co-segmentation framework, showing that

requiring the foreground segment to be an object often im-

proves co-segmentation results significantly. All these tech-

niques, however, maintain the strong assumption that the

object is present in all of the images, which is not true for

Internet image collections.

Other methods were proposed to handle images which

might not contain the common object, either implicitly [9]

or explicitly [11]. In particular, Kim and Xing [11] show

promising results given additional user input, but do not

show significant improvement in the unsupervised setting.

It is clear that in the context of image search and web brows-

ing, user input cannot be used.

Co-segmentation was also explored in weakly-

supervised setups with multiple object categories [20, 13].

While image annotations may facilitate object discovery

and segmentation, image tags are often noisy, and bounding

boxes or class labels are usually unavailable. In this work

we show that it is plausible to automatically discover visual

objects from the Internet using image search alone.

3. Object Discovery and Segmentation

Let I = {I1, . . . , IN} be the image dataset consisting

of N images. Our goal is to compute the binary masks

B = {b1, . . . ,bN}, where for each image Ii and pixel

x = (x, y), bi(x) = 1 indicates foreground (the common

object), and bi(x) = 0 indicates background (not the ob-

ject) at location x.

Recall our assumption that for an object of interest the

foreground pixels should be salient, i.e. dissimilar to other

pixels within their image, and sparse, i.e. similar to nearest

neighbors (with possible changes in color, size and posi-

tion). We first define terms which capture these two proper-

ties, and then combine them within an optimization frame-

work to solve for the most likely labels for all pixels in the

dataset. An overview of the algorithm is shown in Figure 2.

Image saliency. The saliency of a pixel or a region in

an image can be defined in numerous ways and exten-
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Figure 2. One of these things is not like the others. An illustration of joint object discovery and segmentation by our algorithm on two

small datasets of five images each. The images are shown at the top row, with two images common to the two datasets – the face and horse

images in columns 1 and 2, respectively. Left: when adding to the two common images three images containing horses (columns 3 − 5),

our algorithm successfully identifies horse as the common object and face as “noise”, resulting in the horses being labeled as foreground

and the face being labeled as background (bottom row). Right: when adding to the two common images three images containing faces,

face is now recognized as common and horse as noise, and the algorithm labels the faces as foreground and the horse as background. For

each dataset, the second row shows the saliency maps, colored from black (less salient) to white (more salient); the third row shows the

correspondences between images, illustrated by warping the nearest neighbor image to the source image; and the fourth row shows the

matching scores based on the correspondences, colored from black (worse matching) to white (better matching).

sive research in computer and human vision has been de-

voted to this topic. In our experiments, we used an off-

the-shelf saliency measure—Cheng et al.’s Contrast-based

Saliency [3]—that produced sufficiently good saliency esti-

mates for our purposes, but our formulation is not limited to

a particular saliency measure and others can be used.

Briefly, Cheng et al. [3] define the saliency of a pixel

based on its color contrast to other pixels in the image (how

different it is from the other pixels). Since high contrast

to surrounding regions is usually a stronger evidence for

saliency of a region than high contrast to far away regions,

they weigh the contrast by the spatial distances in the image.

Given a saliency map, M̂i, for each image Ii, we first

compute the dataset-wide normalized saliency, Mi (with

values in [0, 1]), and define the term

Φi
saliency (x) = − logMi(x). (1)

This term will encourage more (resp. less) salient pixels to

be labeled foreground (resp. background) later on.

Pixel Correspondence. To exploit the dataset structure

and similarity between image regions, we need to estab-

lish reliable correspondences between pixels in different

images. This enables us to determine a pixel as background

even when it may be very salient within its own image. We

do this using SIFT flow [15], which has been successfully

applied in the past for label propagation [14, 20]. How-

ever, instead of establishing the correspondence between all

pixels in a pair of images, as done by previous work, we

solve and update the correspondences based on our estima-

tion of the foreground regions. This helps in ignoring back-

ground clutter and ultimately improves the correspondence

between foreground pixels (Figure 3).
Formally, let wij denote the flow field from image Ii to

image Ij . Given the binary masks bi,bj , the SIFT flow
objective function becomes

E (wij ;bi,bj) =
∑

x∈Λi

bi(x)
(
bj(x+wij(x)) ‖Si(x)− Sj(x+wij(x))‖1

+ (1− bj(x+wij(x))C0 +
∑

y∈N i
x

α ‖w(x)−w(y)‖2

)
, (2)

where Si are the dense SIFT descriptors of image Ii, x �→ ‖x‖p
is the Lp distance for p = 1 and 2, Λi is image Ii’s lattice, N i

x is

the neighborhood of x, α weighs the smoothness term, and C0 is

a large constant. We then denote by W the set of all pixel corre-

spondences in the dataset: W = ∪N
i=1 ∪Ij∈Ni

wij .

The difference between this objective function and the original

SIFT flow [15] is that it encourages matching foreground pixels in

image Ii with foreground pixels in image Ij . We also use an L2-

norm for the smoothness term instead of the truncated L1-norm

in the original formulation [15] to make the flow more rigid in or-

der to surface mismatches between the images. Figure 3(a) shows
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Standard Sift flow and warped neighbor

Weighted Sift flow and warped neighbor
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(a) Comparison between standard and weighted Sift flow.

(b) Nearest neighbor ordering (left to right) for the source image

in (a), computed with the standard Gist descriptor.

(c) Nearest neighbor ordering (bottom row; left to right) for the

source image in (a), computed with a weighted Gist descriptor

using the foreground estimates (top row).

Figure 3. Weighted Gist and Sift flow for improved image cor-

respondence. We use the foreground mask estimates to remove

background clutter when computing correspondences (a), and to

improve the retrieval of neighbor images (compared to (b), the

ordering in (c) places right-facing horses first, followed by left-

facing horses, with the (noise) image of a person last).

the contribution of this modification for establishing reliable cor-

respondences between similar images.

For small datasets, we can estimate the correspondences be-

tween any pair of images, however for large datasets such compu-

tation is clearly prohibitive. Therefore, we first find for each image

Ii a set of similar images, Ni, based on global image statistics that

are more efficient to compute, and estimate pixel correspondences

with those images only. For each image Ii, we fix the size of Ni

to the same constant, K. We use the Gist descriptor [17] in our

implementation, and similarly modify it to account for the fore-

ground estimates by giving lower weight in the descriptor to pix-

els labeled as background. Figure 3(b–c) demonstrate that better

sorting of the images is achieved when using this weighted Gist

descriptor, which in turn improves the set of images with which

pixel correspondences are computed.

Based on the computed correspondences, we define the match-

ing term

Φ̂i
match(x) =

1

|Ni|

∑

j∈Ni

‖Si(x)− Si(x+wij(x)‖1 , (3)

where smaller values indicate higher similarity to the correspond-

ing pixels. Similarly to the saliency, we compute a dataset-wide

normalized term (with values in [0, 1]), Φi
match.

Foreground Likelihood. We use the above saliency and

matching terms to define the likelihood of a pixel label:

Φi(x) =

{
Φi

saliency(x) + λmatchΦ
i
match(x), bi(x) = 1,

β, bi(x) = 0,
(4)

where β is a constant parameter for adjusting the likelihood of

background pixels. Decreasing β makes every pixel more likely

to belong to the background, thus producing a more conservative

estimation of the foreground.

Regularization. We would like the masks bi to be spatially

consistent within each image, i.e. neighboring pixels are encour-

aged to have the same label, subject to the image structures. We

thus define the intra-image compatibility between adjacent pixels

x,y in image Ii as [14, 19]

Ψi
int(x,y) = [bi(x) �= bi(y)] exp

(
−‖Ii(x)− Ii(y)‖

2
2

)
, (5)

where the indicator function [·] is 1 when its argument is true, and

0 otherwise.

We would also like the labeling to be consistent between im-

ages, and so we add a term accounting for the inter-image compat-

ibility between a pixel x in image Ii and its corresponding pixel

y = x+wij(x) in image Ij :

Ψij
ext(x,y) = [bi(x) �= bj(y)] exp

(
−‖Si(x)− Sj(y)‖1

)
. (6)

Notice that SIFT features are used for the inter-image similar-

ity metric in Equation 6 whereas RGB intensities are used for the

intra-image similarity in Equation 5.

Finally, once we have an estimate of bi, we can learn the color

histograms of the background and foreground regions of image Ii,
denoted h0

i and h1
i , respectively. We also denote hi =

(
h0
i ,h

1
i

)
,

and H = ∪N
i=1hi. We add the term Φi

color(x) accounting for the

contribution of the pixel x to the foreground or background color

model based on the segmentation estimate bi(x):

Φi
color(x,hi) = − logh

bi(x)
i (x). (7)

We use 3D histograms in color space (with 64 bins in each di-

mension) to model the color distributions instead of the Gaussian

mixture models used in [19].

By combining all the aforementioned terms, we obtain a cost

function, E(B;W,H), for the segmentations B given the corre-

spondences W and the color models H:

E(B;W,H) =

N∑

i=1

∑

x∈Λi

(
Φi(x) + λcolorΦ

i
color(x,hi)

+
∑

y∈N i
x

λintΨ
i
int(x,y) +

∑

j∈Ni

λextΨ
ij
ext(x,x+wij(x))

)
. (8)

Optimization. Our algorithm alternates between optimizing

the correspondences W (Equation 2), and the binary masks B

(Equation 8). Instead of optimizing Equation 8 jointly over all

the dataset images, we use coordinate descent that already pro-

duces good results. More specifically, at each step we optimize

for a single image by fixing the segmentation masks for the rest of

the images. Note that our cost function is non-convex and is not

guaranteed to reach the global minimum. After propagating la-

bels from other images, we optimize each image using a Grabcut-

like [18] alternation between optimizing Equation 8 and estimating

the color models hi. The algorithm then recomputes neighboring

images and pixel correspondences based on the current foreground

estimates, and the process is repeated for a few iterations until con-

vergence (we typically used 5− 10 iterations).
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Figure 4. Segmentation accuracy on MSRC (left) and iCoseg (right), measured as the ratio of correctly labeled pixels (both foreground

and background), and compared to state-of-the-art co-segmentation methods (we performed a separate comparison with Object Cosegmen-

tation [25]; see the text and Table 1). Each plot shows the average per-class precision on the left, followed by a breakdown of the precision

for each class in the dataset.

Figure 5. Sample results on MSRC (top two rows) and iCoseg

(bottom two rows). For each image we show a pair of the orig-

inal (left) and our segmentation result (right). More results and

qualitative comparisons with state-of-the-art are available in the

supplementary material.

4. Results

We conducted extensive experiments to verify our approach,

both on standard co-segmentation datasets and image collections

downloaded from the Internet. We tuned the algorithm’s parame-

ters manually on a small subset of the Internet images, and vary β
to control the performance. Unless mentioned otherwise, we used

the following parameter settings: λmatch = 4, λint = 15, λext =
1, λcolor = 2, α = 2,K = 16. Our implementation of the algo-

rithm is comprised of distributed Matlab and C++ code, which we

ran on a small cluster with 36 cores.

We present both qualitative and quantitative results, as well

as comparisons with state-of-the-art co-segmentation methods on

both types of datasets. Quantitative evaluation is performed

against manual foreground-background segmentations that are

considered as “ground truth”. We use two performance metrics:

precision, P (the ratio of correctly labeled pixels, both foreground

and background), and Jaccard similarity, J (the intersection over

union of the result and ground truth segmentations). Both mea-

sures are commonly used for evaluation in image segmentation

research. We show a sample of the results and comparisons in the

paper, and refer the interested reader to many more results that we

provide in the supplementary material.

4.1. Results on Co-segmentation datasets

We report results for the MSRC dataset [23] (14 object classes;

about 30 images per class) and iCoseg dataset [2] (30 classes;

varying number of images per class), which have been widely used

by previous work to evaluate co-segmentation performance. Both

datasets include human-given segmentations that are used for the

quantitative evaluation.

We ran our method on these datasets both with and without the

inter-image components in our objective function (i.e. when us-

ing the parameters above, and when setting λmatch = λext = 0,

respectively), where the latter effectively reduces the method to

segmenting every image independently using its saliency map and

spatial regularization (combined in a Grabcut-style iterative op-

timization). Interestingly, we noticed that using the inter-image

terms had negligible effect on the results for these datasets. More-

over, this simple algorithm—an off-the-shelf, low-level saliency

measure combined with spatial regularization—which does not

use co-segmentation, is sufficient to produce accurate results (and

outperforms recent techniques; see below) on the standard co-

segmentation datasets!

The reason is twofold: (a) all images in each visual category

in those datasets contain the object of interest, and (b) for most

of the images the foreground is quite easily separated from the

background based on its relative saliency alone. A similar obser-

vation was recently made by Vicente et al. [25], who noticed that

their single image classifier outperformed recent co-segmentation

methods on these datasets, a finding that is reinforced by our ex-

periments. We thus report the results when the inter-image com-

ponents are disabled. Representative results from a sample of the

classes of each dataset are shown in Figure 5.

Comparison with co-segmentation methods. We com-

pare our results with three previously proposed methods [8, 9, 12].

For all three methods we used the original implementations by

the authors that are publicly available, and verified we are able to

reproduce the results reported in their papers when running their

code. The per-class precision is shown in Figure 4 and the Jaccard

similarities are available in the supplemental material. Our over-

all precision (87.66% MSRC, 89.84% iCoseg) shows significant



Method MSRC iCoseg

P̄ J̄ P̄ J̄

Vicente et al. [25] 90.2 70.6 85.34 62.04

Ours 92.16 74.7 89.6 67.63

Table 1. Comparison with Object Cosegmentation [25] on

MSRCV and iCoseg. P̄ and J̄ denote the average precision and

Jaccard similarity, respectively. The per-class performance and vi-

sual results are available in the supplementary material.

improvement over [9] (73.61% MSRC, 70.21% iCoseg) and [12]

(54.65% MSRC, 70.41% iCoseg).

Comparison with Object Cosegmentation [25]. Vicente

et al.’s method [25] is currently considered state-of-the-art on

these datasets2. Their code is not publicly available, however

they provided us with the segmentation masks for the subsets of

MSRC and iCoseg they used in their paper. We performed a sepa-

rate comparison with their method using only the subset of images

they used. Our method outperforms theirs on all classes in MSRC

and 9/16 of the classes in iCoseg (see supplementary material),

and our average precision and Jaccard similarity are slightly better

than theirs (Table 1). We note that despite the incremental im-

provement over their method on these datasets, our results in this

case were produced by segmenting each image separately using

generic, low-level image cues, while their method segments the

images jointly and requires training.

4.2. Results on Internet Datasets

Using the Bing API, we automatically downloaded images for

three queries with query expansion through Wikipedia: car (4, 347
images), horse (6, 381 images), and airplane (4, 542 images).

With K = 16 nearest neighbors, it took 10 hours on average for

the algorithm to process each dataset.

Some discovery results are shown in Figure 6. Overall, our al-

gorithm is able to discover visual objects despite large variation in

style, color, texture, pose, scale, position, and viewing-angle. For

the objects under a uniform background or with distinct colors,

our method is able to output nearly perfect segmentation. Many

objects are not very distinctive from the background in terms of

color, but they were still successfully discovered due to good cor-

respondences to other images. For car, some car parts are occa-

sionally missing as they may be less salient within their image or

not well aligned to other images. Similarly, for horse, the body of

horses gets consistently discovered but sometimes legs are miss-

ing. More flexible transforms might be needed for establishing

correspondences between horses. For airplane, saliency plays a

more important role as the uniform skies always match best re-

gardless of the transform. However the algorithm manages to cor-

rectly segment out airplanes even when they are less salient, and

identifies noise images, such as that of plane cabins and jet en-

gines, as background, since those have an overall worse matching

to other images in the dataset.

For qualitative evaluation, we collected partial human labels

for each dataset using the LabelMe annotation toolbox [21] and a

combination of volunteers and Mechanical Turk workers, resulting

in 1, 306 car, 879 horse, and 561 airplane images labeled. All

labels were manually inspected and refined.

2While writing this paper, Kuettel et al. [13] managed to improve the

state-of-the-art precision on the iCoseg dataset (91.4%).

Method Car (7.5%) Horse (7.8%) Airplane (16%)

P J P J P J

Without corr. 72.25 46.10 74.88 50.06 80.53 51.18

With corr. 83.38 63.36 83.69 53.89 86.14 55.62

Table 2. Segmentation accuracy on the Internet datasets, with

and without utilizing image correspondences. Next to the name

of each dataset is its percentage of noisy images (images that do

not contain the object). P denotes precision and J denotes Jac-

card similarity. Qualitative results for these datasets are shown in

Figure 6 and the supplementary material.

Method Car (11%) Horse (7%) Airplane (18%)

P J P J P J

Baseline 1 68.91 0 81.54 0 87.48 0

Baseline 2 31.09 34.93 18.46 19.85 12.52 15.26

Joulin et al. [8] 58.7 37.15 63.84 30.16 49.25 15.36

Joulin et al. [9] 59.2 35.15 64.22 29.53 47.48 11.72

Kim et al. [12] 68.85 0.04 75.12 6.43 80.2 7.9

Ours 85.38 64.42 82.81 51.65 88.04 55.81

Table 3. Comparison with previous co-segmentation methods

on the Internet datasets.

In Table 2 we show the precision and Jaccard similarity of

our method on each dataset, with and without using image cor-

respondences. The performance on airplane is slightly better than

horse and car as in many of the images the airplane can be easily

segmented out from the uniform sky background. Image corre-

spondences helped the most on the car dataset (+11% precision,

+17% Jaccard similarity), probably because in many of the im-

ages the cars are not that salient, while they can be matched reli-

ably to similar car images to be segmented correctly.

Comparison with co-segmentation methods. We also

compared our results with the same three state-of-the-art co-

segmentation methods as in Section 4.1 by running them on our

datasets. Since the competing methods do not scale to large

datasets, we randomly selected 100 of the images with available

ground truth labels from each dataset. We re-ran our method on

these smaller datasets for a fair comparison. We also compared

to two baselines, one where all the pixels are classified as back-

ground (“Baseline 1”), and one where all pixels are classified

as foreground (“Baseline 2”). Table 3 summarizes this compar-

ison, showing again that our method produces much better results

according to both performance metrics (ours results are not ex-

actly the same as in Table 2 bottom row, since only subsets of

the full datasets are used here). The largest gain in precision by

our method is on the airplane dataset, which has the highest noise

level of these three datasets. Some visual comparisons are shown

in Figure 7 and more are available in the supplementary material.

4.3. Discussion and Limitations

Some failures of the algorithm are shown in Figure 6 (last row

of each dataset) and the supplemental material. False positives

include a motorcycle and a headlight in the car dataset, and a tree

in the horse dataset. This indicates that although matching image

structures often leads to object-level correspondence, exceptions

occur especially when context is not taken into account.

The algorithm also fails occasionally to discover objects with

unique views or background. This is because Gist is a global im-

age descriptor, and unique view and background make it difficult

to retrieve similar objects in the dataset.



Figure 6. Automatic discovery of cars, horses and airplanes downloaded from the Internet, containing 4, 347, 6, 381 and 4, 542
images, respectively. For each image, we show a pair of the original (left) and the segmentation result (right). Notice how images that do

not contain the object are labeled as background. The last row of each dataset shows some failure cases where no object was discovered

or where the discovery is wrong or incomplete. Quantitative results are available in Table 2, and more visual results can be found in the

supplementary material.



Source [8] [9] [12] Ours

Figure 7. Comparison with state-of-the-art co-segmentation

methods on the airplane Internet dataset. More comparisons

can be found in the accompanying material.

Finally, our algorithm makes the implicit assumption of non-

structured dataset noise. That is, repeating visual patterns are as-

sumed to be part of some “common” object. For example, had a

dataset of 100 car images contained 80 images of cars and 20 im-

ages of car wheels, then using K = 16 neighbor images by our

algorithm may result in intra-group connections, relating images

of cars to other images of cars and images of wheels with others

alike. In such case the algorithm may not be able to infer that

one category is more common than the other, and both cars and

wheels would be segmented as foreground. Fortunately, the fixed

setting of K we used seems to perform well in practice, however

in the general case K needs to be set according to what the user

considers as “common”.

5. Conclusion

We explored automatic visual object discovery and segmen-

tation from the Internet using one query of an object category.

Image datasets resulting from such queries are significantly more

diverse and noisy than the ones used to develop and evaluate pre-

vious co-segmentation work. The common object often differs

drastically in appearance, and a significant portion of the images

may not contain the object at all. We demonstrated that existing

co-segmentation algorithms do not perform well in such cases,

and presented a new algorithm that is able to naturally handle

the visual variation and noise in Internet images. We model the

sparsity and saliency properties of the common object, and con-

struct a large-scale graphical model to jointly infer a binary mask

for each image. We demonstrated improvement over existing co-

segmentation techniques on standard co-segmentation datasets and

several challenging Internet datasets.
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