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ABSTRACT The k-means algorithm is generally the most known and used clustering method. There are

various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to

clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are always

influenced by initializations with a necessary number of clusters a priori. That is, the k-means algorithm

is not exactly an unsupervised clustering method. In this paper, we construct an unsupervised learning

schema for the k-means algorithm so that it is free of initializations without parameter selection and can also

simultaneously find an optimal number of clusters. That is, we propose a novel unsupervised k-means (U-

k-means) clustering algorithm with automatically finding an optimal number of clusters without giving any

initialization and parameter selection. The computational complexity of the proposed U-k-means clustering

algorithm is also analyzed. Comparisons between the proposed U-k-means and other existing methods are

made. Experimental results and comparisons actually demonstrate these good aspects of the proposed U-k-

means clustering algorithm.

INDEX TERMS Clustering, K-means, number of clusters, initializations, unsupervised learning schema,

Unsupervised k-means (U-k-means).

I. INTRODUCTION

Clustering is a useful tool in data science. It is a method for

finding cluster structure in a data set that is characterized

by the greatest similarity within the same cluster and the

greatest dissimilarity between different clusters. Hierarchical

clustering was the earliest clustering method used by biolo-

gists and social scientists, whereas cluster analysis became

a branch of statistical multivariate analysis [1], [2]. It is

also an unsupervised learning approach to machine learning.

From statistical viewpoint, clustering methods are generally

divided as probability model-based approaches and nonpara-

metric approaches. The probability model-based approaches

follow that the data points are from a mixture probability

model so that a mixture likelihood approach to clustering

is used [3]. In model-based approaches, the expectation and

maximization (EM) algorithm is the most used [4], [5]. For

nonparametric approaches, clustering methods are mostly

based on an objective function of similarity or dissimilarity

measures, and these can be divided into hierarchical and

partitional methods where partitional methods are the most

used [2], [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .

In general, partitional methods suppose that the data set

can be represented by finite cluster prototypes with their own

objective functions. Therefore, defining the dissimilarity (or

distance) between a point and a cluster prototype is essential

for partition methods. It is known that the k-means algorithm

is the oldest and popular partitional method [1], [8]. The

k-means clustering has been widely studied with various

extensions in the literature and applied in a variety of sub-

stantive areas [9], [10], [11], [12]. However, these k-means

clustering algorithms are usually affected by initializations

and need to be given a number of clusters a priori. In general,

the cluster number is unknown. In this case, validity indices

can be used to find a cluster number where they are supposed

to be independent of clustering algorithms [13]. Many cluster

validity indices for the k-means clustering algorithm had

been proposed in the literature, such as Bayesian information

criterion (BIC) [14], Akaike information criterion (AIC) [15],

Dunn’s index [16], Davies-Bouldin index (DB) [17],

Silhouette Width (SW) [18], Calinski and Harabasz index

(CH) [19], Gap statistic [20], generalized Dunn’s index

(DNg) [21], and modified Dunn’s index (DNs) [22].

For estimation the number of clusters, Pelleg and

Moore [23] extended k-means, called X-means, by making

local decisions for cluster centers in each iteration of k-means
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with splitting themselves to get better clustering. Users need

to specify a range of cluster numbers in which the true cluster

number reasonably lies and then a model selection, such as

BIC or AIC, is used to do the splitting process. Although

these k-means clustering algorithms can find the number of

clusters, such as cluster validity indices and X-means, they

use extra iteration steps outside the clustering algorithms.

As we know, no work in the literature for k-means can be free

of initializations, parameter selection and also simultaneously

find the number of clusters. We suppose that this is due to its

difficulty for constructing this kind of the k-means algorithm.

In this paper, we first construct a learning procedure for the

k-means clustering algorithm. This learning procedure can

automatically find the number of clusters without any initial-

ization and parameter selection. We first consider an entropy

penalty term for adjusting bias, and then create a learning

schema for finding the number of clusters. The organization

of this paper is as follows. In Section II, we review some

related works. In Section III, we first construct the learning

schema and then propose the unsupervised k-means clus-

tering (U-k-means) with automatically finding the number

of clusters. The computational complexity of the proposed

U-k-means algorithm is also analyzed. In Section IV, several

experimental examples and comparisons with numerical and

real data sets are provided to demonstrate the effectiveness

of the proposed U-k-means clustering algorithm. Finally,

conclusions are stated in Section V.

II. RELATED WORKS

In this section, we review several works that are closely

related with ours. The k-means is one of the most popular

unsupervised learning algorithms that solve the well-known

clustering problem. Let X = {x1, . . . , xn} be a data set in

a d-dimensional Euclidean spac R
d . Let A = {a1, . . . , ac}

be the c cluster centers. Let z = [zik ]n×c, where zik is

a binary variable (i.e. zik ∈ {0, 1}) indicating if the data

point xi belongs to k-th cluster, k = 1, · · · , c. The k-means

objective function is J (z,A) =
∑n

i=1

∑c
k=1 zik ‖xi − ak‖

2.

The k-means algorithm is iterated through necessary condi-

tions for minimizing the k-means objective function J (z,A)

with updating equations for cluster centers and memberships,

respectively, as

ak =

∑n
i=1 zikxij
∑n

i=1 zik
and

zik =

{

1 if ‖xi − ak‖
2 = min

1≤k≤c
‖xi − ak‖

2

0, otherwise.

where ‖xi − ak‖ is the Euclidean distance between the data

point xi and the cluster center ak . There exists a difficult

problem in k-means, i.e., it needs to give a number of clusters

a priori. However, the number of clusters is generally unkown

in real applications. Another problem is that the k-means

algorithm is always affected by initializations.

To resolve the above issue for finding the number c

of cluster, cluster validity issues get much more attention.

There are several clustering validity indices available for esti-

mating the number c of clusters. Clustering validity indices

can be grouped into two major categories: external and

internal [24]. External indices are used to evaluate clustering

results by comparing cluster memberships assigned by a clus-

tering algorithm with the previously known knowledge such

as externally supplied class label [25], [26]. However, internal

indices are used to evaluate the goodness of cluster structure

by focusing on the intrinsic information of the data itself [27]

so that we consider only internal indices. In the paper,

these most widely used internal indices, such as original

Dunn’s index (DNo) [16], Davies-Bouldin index (DB) [17],

Silhouette Width (SW) [18], Calinski and Harabasz index

(CH) [19], Gap statistics [20], generalized Dunn’s index

(DNg) [21], and modified Dunn’s index (DNs) [22] are

chosen for finding the number of clusters and then compared

with our proposed U-k-means clustering algorithm.

The DNo [16], DNg [21], and DNs [22] are supposed to be

the simplest (internal) validity index where it compares the

size of clusters with the distance between clusters. The DNo,

DNg, and DNs indices are computed as the ratio between the

minimum distance between two clusters and the size of the

largest cluster, and so we are looking for the maximum value

of index values. Davies-Bouldin index (DB) [17] measures

the average similarity between each cluster and its most

similar one. The DB validity index attempts to maximize

these between cluster distances while minimizing the dis-

tance between the cluster centroid and the other data objects.

The Silhouette value [18] is a measure of how similar an

object is to its own cluster (cohesion) compared to other

clusters (separation). The silhouette ranges from −1 to +1,

where a high value indicates that the object is well matched

to its own cluster and poorly matched to neighboring clusters.

Thus, positive and negative large silhouette widths (SW)

indicate that the corresponding object is well clustered and

wrongly clustered, respectively. Any objects with the SW

validity index around zero are considered not to be clearly

discriminated between clusters. The Gap statistic [20] is a

cluster validity measure based upon a statistical hypothesis

test. The gap statistic works by comparing the change in

within-cluster dispersion with that expected under an appro-

priate reference null distribution at each value c. The optimal

number of clusters is the smallest c.

For an efficient method about the number of clusters,

X-means proposed by Pelleg and Moore [23], should be

the most well-known and used in the literature, such as

Witten et al. [28], and Guo et al. [29]. In X-means, Pelleg

and Moore [23] extended k-means by making local decisions

for cluster centers in each iteration of k-means with splitting

themselves to get better clustering. Users only need to specify

a range of cluster numbers in which the true cluster number

reasonably lies and then a model selection, such as BIC,

is used to do the splitting process. Although X-means has

been the most used for clustering without given a number

of clusters a priori, it still needs to specify a range of cluster

numbers based on a criterion, such as BIC. On the other hand,
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it is still influenced by initializations of algorithm. On the

other hand, Rodriguez and Laio [30] proposed an approach

based on the idea that cluster centers are characterized by a

higher density than their neighbors and by a relatively large

distance from points with higher densities, which they called

as a clustering by fast search (C-FS) and find of density

peaks. To identify the cluster centers, C-FS uses the heuristic

approach of a decision graph. However, the performance of

C-FS highly depends on two factors, i.e., local density ρi and

cutoff distance δi.

III. THE UNSUPERVISED K-MEANS CLUSTERING

ALGORITHM

There always exists a difficult problem in the k-means algo-

rithm and its extensions for a long history in the literature.

That is, they are affected by initializations and require a given

number of clusters a priori. We mentioned that the X-means

algorithm has been used for clustering without given a num-

ber of clusters a priori, but it still needs to specify a range of

number of clusters based on BIC, and it is still influenced by

initializations. To construct the k-means clustering algorithm

with free of initializations and automatically find the number

of clusters, we use the entropy concept. We borrow the idea

from the EM algorithm by Yang et al. [31]. We first consider

proportions αk in which the αk term is seen as the probability

of one data point belonged to the kth class. Hence, we use

− lnαk as the information in the occurrence of one data point

belonged to the kth class, and so −
∑c

k=1 αk lnαk becomes

the average of information. In fact, the term −
∑c

k=1 αk lnαk
is the entropy over proportions αk . When αk = 1/c, ∀k =

1, 2, . . . , c, we say that there is no information about αk .

At this point, we have the entropy achieve the maximum

value. Therefore, we add this term to the k-means objective

function J (z,A) as a penalty. We then construct a schema

to estimate αk by minimizing the entropy to get the most

information for αk . To minimize −
∑c

k=1 αk lnαk is equiv-

alent to maximizing
∑c

k=1 αk lnαk . For this reason, we use
∑c

k=1 αk lnαk as a penalty term for the k-means objective

function J (z,A). Thus, we propose a novel objective function

as follows: β ≥ 0

JUKM1
(z,A, α) =

n
∑

i=1

c
∑

k=1

zik ‖xi − ak‖
2 − βn

c
∑

k=1

αk lnαk

(1)

In order to determine the number of clusters, we next consider

another entropy term. We combine the variables membership

zik and the proportion αk . By using the basis of entropy

theory, we suggest a new term in the form of zik lnαk . Thus,

we propose the unsupervised k-means (U-k-means) objective

function as follows:

JU−k−means(z,A, α)=

n
∑

i=1

c
∑

k=1

zik ‖xi−ak‖
2−βn

c
∑

k=1

αk lnαk

−γ

n
∑

i=1

c
∑

k=1

zik lnαk (2)

We know that, when β and γ in Eq. (2) are zero, it becomes

the original k-means. The Lagrangian of Eq. (2) is

J̃ (z,A, α, λ) =

n
∑

i=1

c
∑

k=1

zik ‖xi − ak‖
2 − βn

c
∑

k=1

αk lnαk

−γ

n
∑

i=1

c
∑

k=1

zik lnαk − λ

(

c
∑

k=1

αk − 1

)

(3)

We first take the partial derivative of the Lagrangian (3) with

respect to zik , and setting them to be zero. Thus, the updating

equation for zik is obtained as follows:

zik =











1 if ‖xi − ak‖
2 − γ lnαk = min

1≤k≤c
‖xi − ak‖

2

− γ lnαk
0, otherwise.

(4)

The updating equation for the cluster center ak is as follows:

ak =
∑n

i=1
zikxij

/

∑n

i=1
zik (5)

We next take the partial derivative of the Lagrangian

with respect to αk , we obtain ∂ J̃
∂αk

= −βn (lnαk + 1)

−γ
∑n

i=1
zik
αk

− λ = 0 and−βnαk (lnαk + 1)−γ
∑n

i=1 zik−

λαk = 0. Thus, we have −
∑c

k=1 nβαk lnαk −
∑c

k=1 nβαk − γ
∑c

k=1

∑n
i=1 zik −

∑c
k=1 λαk = 0 with λ =

−nβ
∑c

k=1 αk lnαk−nβ−nγ.Weobtain−βnαk (lnαk+1)−

γ
∑n

i=1 zik − (−nβ
∑c

k=1 αk lnαk − nβ − nγ ) αk = 0 and

then we get the updating equation for αk as follows:

α
(t+1)
k =

n
∑

i=1

zik/n+ (β/γ )α
(t)
k

(

lnα
(t)
k −

c
∑

s=1

α(t)
s lnα(t)

s

)

(6)

where t denotes the iteration number in the algorithm.

We should mention that Eq. (6) created above is important

for our proposed U-k-means clustering method. In Eq. (6),
∑c

s=1 αs lnαs is the weighted mean of lnαk with the weights

α1, . . . , αc. For the kth mixing proportion α
(t)
k , if lnα

(t)
k is

less than the weighted mean, then the new mixing propor-

tion α
(t+1)
k will become smaller than the old α

(t)
k . That is,

the smaller proportionwill decrease and the bigger proportion

will increase in the next iteration, and then competition will

occur. This situation is similar as the formula in Figueiredo

and Jain [32]. If αk ≤ 0 or αk < 1/n for some 1 ≤ k ≤ c(t),

they are considered to be illegitimate proportions. In this

situation, we discard those clusters and then update the cluster

number c(t) to be

c(t+1) = c(t) −

∣

∣

∣

{

α
(t+1)
k

∣

∣

∣
α

(t+1)
k < 1

/

n, k = 1, . . . ,c(t)
}∣

∣

∣

(7)

where |{}| denotes the cardinality of the set {}. After

updating the number of clusters c, the remaining mixing
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proportion α∗
k and corresponding z∗ik need to be

re-normalized by

α∗
k = α∗

k

/

∑c(t+1)

s=1
α∗
s (8)

z∗ik = z∗ik

/

∑c(t+1)

s=1
z∗is (9)

We next concern about the parameter learning of γ and β

for the two terms of
∑n

i=1

∑c
k=1 zik lnαk and

∑c
k=1 αk lnαk .

Based on some increasingly learning rates of cluster

number with e−c
(t)/100, e−c

(t)/250, e−c
(t)/500, e−c

(t)/750, and

e−c
(t)/1000, it is seen that e−c

(t)/100 decreases faster, but

e−c
(t)/500, e−c

(t)/750 and e−c
(t)/1000 decreases slower. We sup-

pose that the parameter γ should not decrease too slow or too

fast, and so we set the parameter γ as

γ (t) = e−c
(t)/250 (10)

Under competition schema setting, the algorithm can auto-

matically reduce the number of clusters, and also simultane-

ously gets the estimates of parameters.

Furthermore, the parameter β can help us control the com-

petition. We discuss the variable β as follows. We first apply

the rule −e−1 ≤ αk lnαk < 0. If 0 < αk ≤ 1∀k , and let E =
c
∑

s=1

αs lnαs < 0, then we have αkE = αk

c
∑

s=1

αs lnαs < 0.

Thus, we obtain

−e−1β < βαk (lnαk −

c
∑

s=1

αs lnαs) < β(−αkE) (11)

Under the constraint
∑c

k=1 αk = 1, and only when αk < 1/2,

we can have that (lnαk −
∑c

s=1 αs lnαs) < 0. To avoid the

situation where all αk ≤ 0, the left hand of inequality (14)

must be larger than −max{αk |αk < 1/2, k = 1, 2, · · · , c}.

We now have an elementary condition of β as follows:

−e−1β > −max{αk |αk < 1/2, k = 1, 2, · · · , c}. Thus,

we have Thus, we have β < max{αke|αk < 1/2, k =

1, 2, · · · , c} < e/2. Therefore, to prevent β from being too

big, we can use β ∈ [0, 1]. Furthermore, if the difference

between α
(t+1)
k and α

(t)
k is small, then β must become large

in order to enhance its competition. If the difference between

α
(t+1)
k and α

(t)
k is large, then β will become small to maintain

stability. Thus, we define an updating equation for β with

β =
∑c

k=1
exp{−ηn|α

(t+1)
k − α

(t)
k |}/c (12)

where η = min
{

1, 1/t⌊d/2−1⌋
}

and ⌊a⌋ represents the largest

integer that is no more than a and t denotes the iteration

number in the algorithm.

On the other hand, we consider the inequations

max
1≤k≤c

α
(t+1)
k ≤ max

1≤k≤c

(

1
n

∑n
i=1 zik

)

+
β
γ

max
1≤k≤c

α
(t)
k

(

ln max
1≤k≤c

α
(t)
k −

∑c
s=1 α

(t)
s lnα

(t)
s

)

and

max
1≤k≤c

(

1
n

∑n
i=1 zik

)

+
β
γ

max
1≤k≤c

α
(t)
k

×

(

ln max
1≤k≤c

α
(t)
k −

∑c

s=1
α(t)
s lnα(t)

s

)

< max
1≤k≤c

(

1
n

∑n
i=1 zik

)

+β

(

−

(

max
1≤k≤c

α
(t)
k

∑c

s=1
α(t)
s lnα(t)

s

))

.

If

max
1≤k≤c

(

1
n

∑n
i=1 zik

)

− β max
1≤k≤c

α
(t)
k

∑c

s=1
α(t)
s lnα(t)

s ≤ 1,

then the restriction of max
1≤k≤c

α
(t+1)
k ≤ 1 is held, and then we

obtain

β ≤

(

1 − max
1≤k≤c

(

1
n

∑n
i=1 zik

)

)/

(

− max
1≤k≤c

α
(t)
k

∑c

s=1
α(t)
s lnα(t)

s

)

(13)

According to Eqs. (12) and (13), we can get

β(t+1) = min







∑c
k=1 exp(−ηn

∣

∣

∣
α
(t+1)
k − α

(t)
k

∣

∣

∣
)

c
,

1 − max
1≤k≤c

(

1
n

∑n
i=1 zik

)

(− max
1≤k≤c

α
(t)
k

∑c
k ′=1 lnα

(t)
k ′ )






(14)

Because the β can jump at any time, we let β = 0 when

the cluster number c is stable. When the cluster number c

is stable, it means c is no longer decreasing. In our setting,

we use all data points as initial means with ak = xk , i.e.

cinitial = n, and we use αk = 1/cinitial, ∀k = 1, 2, ..., cinitial

as initial mixing proportions. Thus, the proposed U-k-means

clustering algorithm can be summarized as follows:

U-k-means clustering algorithm

Step 1: Fix ε > 0. Give initial c(0) = n, α
(0)
k = 1/n, a

(0)
k =

xi, and initial learning rates γ (0) = β(0) = 1. Set

t = 0.

Step 2: Compute z
(t+1)
ik using a

(t)
k , α

(t)
k , c(t), γ (t), β(t) by (4).

Step 3: Compute γ (t+1) by (10).

Step 4: Update α
(t+1)
k with z

(t+1)
ik and α

(t)
k by (6).

Step 5: Compute β(t+1) with α(t+1) and α(t) by (14).

Step 6: Update c(t) to c(t+1) by discard those clusters with

α
(t+1)
k ≤ 1/n and adjust α

(t+1)
k and z

(t+1)
ik by (8)

and (9).

IF t ≥ 60 and c(t−60) − c(t) = 0, THEN let β(t+1) =

0.

Step 7: Update a
(t+1)
k with c(t+1) and z

(t+1)
ik by (5).

Step 8: Compare a
(t+1)
k and a

(t)
k .

IF max
1≤k≤c(t)

∥

∥

∥
a
(t+1)
k − a

(t)
k

∥

∥

∥
< ε, THEN Stop.

ELSE t = t+1 and return to Step 2.

Before we analyze the computational complexity for the

proposed U-k-means algorithm, we give a brief review
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of another clustering algorithm that had also used the

idea from the EM algorithm by Yang et al. [31]. This

is the robust-learning fuzzy c-means (RL-FCM) proposed

by Yang and Nataliani [33]. In Yang and Nataliani [33],

they gave the RL-FCM objective function J (U, α,A) =
∑n

i=1

∑c
k=1 µik ‖xi − ak‖

2 − r1
∑n

i=1

∑c
k=1 µik lnαk +

r2
∑n

i=1

∑c
k=1 µik lnµik − r3n

∑c
k=1 αk lnαk with µik , not

binary variables, but fuzzy c-memberships with 0 ≤ µik ≤ 1

and
∑c

k=1 µik = 1 to indicate fuzzy memberships for the

data point xi belonging to k-th cluster. If we compare the

proposed U-k-means objective function JU−k−means(z,A, α)

with the RL-FCM objective function J (U, α,A), we find

that, except µik and zik with different membership represen-

tations, the RL-FCM objective function J (U, α,A) in Yang

and Nataliani [33] gave more extra terms and parameters

and so the RL-FCM algorithm is more complicated than the

proposed U-k-means algorithm with more running time. For

experimental results and comparisons in the next section,

we make more comparisons of the proposed U-k-means

algorithm with the RL-FCM algorithm. We also analyze

the computational complexity for the U-k-means algorithm.

In fact, the U-k-means algorithm can be divided into three

parts: (1) Compute the hard membership partition zik with

O (ncd); (2) Compute the mixing proportion αk with O (nc);

(3) Update the cluster center ak with O (n). The total compu-

tational complexity for the U-k-means algorithm is O (ncd),

where n is the number of data points, c is the number of

clusters, and d is the dimension of data points. Compared

with the RL-FCM algorithm [33], the RL-FCM has the total

computational complexity fwith O
(

nc2d
)

.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section we give some examples with numerical and

real data sets to demonstrate the performance of the proposed

U-k-means algorithm. We show these unsupervised learn-

ing behaviors to get the best number c∗ of clusters for the

U-k-means algorithm. Generally, most clustering algorithms,

including k-means, are employed to give different numbers

of clusters with associated cluster memberships, and then

these clustering results are evaluated by multiple validity

measures to determine the most practically plausible clus-

tering results with the estimated number of clusters [13].

Thus, we will first compare the U-k-means algorithm with

the seven validity indices, DNo [16], DNg [21], DNs [22],

Gap statistic (Gap-stat) [20], DB [17], SW [18] and CH [19].

Furthermore, the comparisons of the proposed U-k-means

with k-means [8], robust EM [31], clustering by fast search

(C-FS) [30], X-means [23], and RL-FCM [33] are also made.

For measuring clustering performance, we use an accuracy

rate (AR) with AR =
∑c

k=1 n (ck)/n, where n (ck) is the

number of data points that obtain correct clustering for the

cluster k and n is the total number of data points. The larger

AR is, the better clustering performance is.

Example 1: In this example, we use a data set of 400 data

points generated from the 2-variate 6-component Gaussian

mixture model f (x; α, θ) =
∑c

k=1 αk f (x; θk ) with

parameters αk = 1/6, ∀k, µ1 =
(

5 2
)T

, µ2 =
(

3 4
)T

,

µ3 =
(

8 4
)T

, µ4 =
(

6 6
)T

, µ5 =
(

10 8
)T

, µ6 =
(

7 10
)T
, and

∑

1 = · · · =
∑

6 =

(

0.4 0

0 0.4

)

with

2 dimensions and 6 clusters, as shown in Fig. 1(a). We imple-

ment the proposed U-k-means clustering algorithm for the

data set of Fig. 1(a) in which it obtains the correct number

c∗ = 6 of clusters with AR=1.00, as shown in Fig. 1(f),

after 11 iterations. These validity indices of CH, SW, DB,

Gap statistic, DNo, DNg, and DNs are shown in Table 1.

All indices give the correct number c∗ = 6 of clusters,

except DNg.

FIGURE 1. (a) Original data set; (b)-(e) Processes of the U-k-means
after 1, 2, 4, and 9; (f) Convergent results.

Moreover, we consider the data set with noisy points to

show the performance of the proposed U-k-means algorithm

under noisy environment. We add 50 uniformly noisy points

to the data set of Fig. 1(a), as shown in Fig. 2(a). By imple-

menting the U-k-means algorithm on the noisy data set of

Fig. 2(a), it still obtains the correct number c∗ = 6 of clusters

after 28 iterations with AR=1.00, as shown in Fig. 2(b).

These validity index values of CH, SW, DB, Gap-stat, DNo,

DNg, and DNs for the noisy data set of Fig. 2(a) are shown

in Table 2. The five validity indices of CH,DB,Gap-stat, DNo

and DNs give the correct number of clusters. But, SW and

DNg give the incorrect numbers of clusters.
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TABLE 1. Validity index values of CH, SW, DB, Gap-stat, DNo, DNg, and
DNs for the data set of Fig. 1(a).

FIGURE 2. 6-cluster dataset with 50 noisy points; (b) Final results from
U-k-means.

TABLE 2. Validity index values of CH, SW, DB, Gap-stat, DNo, DNg, and
DNs for the noisy data set.

Example 2: In this example, we consider a data set

of 800 data points generated from a 3-variate 14-component

Gaussian mixture with 800 data points with 3 dimensions

and 14 clusters, as shown in Fig. 3(a). To estimate the num-

ber c of clusters, we use CH, SW, DB, Gap-stat, DNo, DNg,

and DNs. To create the results of the seven validity indices,

we consider the k-means algorithm with 25 different initial-

izations. These estimated numbers of clusters from CH, SW,

DB, Gap statistic, DNo, DNg, and DNs with percentages are

shown in Table 3. It is seen that all validity indices can give

the correct number c∗ = 14 of clusters, except DNg, where

the Gap-stat index gives the highest percentage of the correct

number c∗ = 14 of clusters with 64%.We also implement the

proposedU-k-means for the data set, and then compare it with

the R-EM, C-FS, k-means with the true number of clusters,

X-means, and RL-FCM clustering algorithms. We mention

that U-k-means, R-EM, and RL-FCM are free of parameter

selection, but others are dependent on parameter selection for

finding the number of clusters. Table 4 shows the comparison

FIGURE 3. 14-cluster dataset; (b) Final results from U-k-means.

TABLE 3. Results of the seven validity indices.

results of the U-k-means, R-EM, C-FS, k-means with the true

cluster number c = 14, X-means, and RL-FCM algorithms.

Note that C-FS, k-means with the true number of clusters, and

X-means algorithms are dependent of initials or parameter

selection, and so we consider their average AR (AV-AR)

under different initials or parameter selection. From Table 4,

it is seen that the proposed U-k-means, R-EM, and RL-FCM

clustering algorithms are able to find the correct number of

clusters c∗ = 14 with AR=1.00. While C-FS obtained the

correct c∗ = 14 with 96% and AV-AR=0.9772. The k-means

with the true c gave AV-AR=0.8160. The X-means obtained

the correct c∗ = 14 with 76% and AV-AR=1.00. Note that the

numbers in parentheses indicate the percentage in obtaining

the correct number of clusters for clustering algorithms under

25 different initial values.

Example 3: To examine the effectiveness of the proposed

U-k-means for finding the number of clusters, we generate

a data set of 900 data points from a 20-variate 6-component

Gaussian mixture model. The mixing proportions, mean val-

ues and covariance matrices of the Gaussian mixture model

are listed in Table 5. The validity indices of CH, SW, DB,

Gap-stat, DNo, DNg, and DNs are used to estimate the

number c of clusters. The k-means algorithm with 25 differ-

ent initializations are considered to create the results of the

seven validity indices. These estimated numbers of clusters

from the seven validity indices with percentages are shown

in Table 6 where the parentheses are indicating the percent-

ages of validity indices in giving the correct number of clus-

ters under 25 different initial values. It is seen that CH, SW,

and Gap-stat give the correct number c∗ = 6 of clusters with

the highest percentage. We also implemented the U-k-means

and compare it with R-EM, C-FS, k-means with the true

number c, X-means, and RL-FCM algorithms. The obtained

numbers of clusters and ARs of these algorithms are shown

in Table 7. As it can be seen, the proposed U-k-means, C-FS

andX-means correctly find the number of clusters for the data

set. The R-EM and RL-FCM underestimate the number of
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TABLE 4. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, and RL-FCM for the data set of Fig. 3(a).

TABLE 5. Mixing proportions, mean values and covariance matrices of Example 3.

TABLE 6. Results of the seven validity indices for the data set of Example 3.

TABLE 7. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, RL-FCM for Example 3.

TABLE 8. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, RL-FCM for Example 4.

clusters for the data set. Both U-k-means and X-means get

the best AR.

Example 4: In this example, we consider a synthetic data

set of non-spherical shape with 3000 data points, as shown

in Fig. 4(a). The U-k-means is implemented for this data

set with the clustering results as shown in Figs. 4(b)-4(f).

The U-k-means algorithm decreases the number of clus-

ters from 3000 to 2132 after the iteration is implemented

once. From Figs. 4(b)-4(f), it is seen that the U-k-means

algorithm exhibits fast decreasing for the number of clus-

ters. After 11 iterations, the U-k-means algorithm obtains

its convergent result with c∗ =9 and AR= 1.00, as shown

in Fig. 4(f). We next compare the proposed U-k-means algo-

rithm with R-EM, C-FS, k-means with true c, X-means, and

RL-FCM. All the experiments are performed 25 times with

parameter selection where the average AR results under the

correct number of cluster are reported in Table 8. As shown

in Table 8, U-k-means gives the correct number c∗ =9 of
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TABLE 9. Descriptions of the eight data sets used in Example 5.

FIGURE 4. (a) 9-diamonds data set; (b)-(e) Results of the U-k-means
after 1, 3, 5, and 7 iterations; (f) Final results of the U-k-means
after 11 iterations.

clusters with AR=1.00, followed by k-means with true c=9

achieves an average AR=0.9190 and C-FS with c∗ =9 (96%)

achieves averageAR=0.7641. While R-EMoverestimates the

number of clusters with c∗ =12, but X-means and RL-FCM

underestimate the number of clusters with c∗ =2.

We next consider real data sets. These data sets are from

the UCI Machine Learning Repository [34].

Example 5: In this example, we use the eight real data

sets from UCI Machine Learning Repository [34], known

as Iris, Seeds, Australian credit approval, Flowmeter D,

Sonar, Wine, Horse, and waveform (version 1). Detailed

information on these data sets such as feature characteristics,

the number c of classes, the number n of instances and the

number d of features is listed in Table 9. Since data features

in Seeds, Flowmeter D, Wine and Waveform (version 1) are

distributed in different ranges and data features in Australian

(credit approval) are mixed feature types, we first preprocess

data matrices using matrix factorization technique [35]. This

preprocessed technique can give these data in uniform to get

good quality clusters and improve accuracy rates of clustering

algorithms. Clustering results from the U-k-means, R-EM,

C-FS, k-means with the true c, k-means+Gap-stat, X-means,

and RL-FCM algorithms for different real data sets are shown

in Table 10, where the best results are presented in boldface.

It is seen that the proposed U-k-means gives the best result in

estimating the number c of clusters and accuracy rate among

them except for Australian data. The C-FS algorithm gives

the corrected numbers of clusters for Iris, Seeds, Australian,

Flowmeter D, Sonar, Wine, and Horse data sets while it

underestimates the number of clusters for the waveform data

set with c∗ =2. The X-means algorithm only obtains the

correct number of clusters for Seeds, Wine and Horse data

sets. The R-EM obtains the correct number of clusters for Iris

and Seeds data sets. The k-means+Gap-stat only obtains a

correct number of clusters for the Seed data set. The RL-FCM

algorithm obtains the correct number of clusters for the Iris,

Seeds and Waveform (version 1) data sets. Note that the

results in parentheses are the percentages of algorithms to

get the correct number c of clusters.

Example 6: In this example, we use the six medical

data sets from the UCI Machine Learning Repository [34],

known as SPECT, Parkinsons, WPBC, Colon, Lung and

Nci9. Detailed descriptions on these data sets with feature

characteristics, the number c of classes, the number n of

instances and the number d of features are listed in Table 11.

In this experiment, we first preprocess the SPECT, Parkinson,

WPBC, Colon, and Lung data sets using the matrix
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TABLE 10. Clustering results from various algorithms for different real data sets with the best results in boldface.

TABLE 11. Descriptions of the six medical data sets used in Example 6.

TABLE 12. Results from various algorithms for the six medical data sets with the best results in boldface.

factorization technique.We also conduct experiments to com-

pare the proposed U-k-means with R-EM, C-FS, k-means

with the true c, k-means+Gap-stat, X-means, and RL-FCM.

The results are shown in Table 12. For C-FS, k-means

with the true c, k-means+Gap-stat and X-means, we make

experiments with 25 different initializations, and report their

results with the average AR (AV-AR) and the percent-

ages of algorithms to get the correct number c of clusters,

as shown in Table 12. It is seen that the proposed U-k-means

gets the correct number of clusters for SPECT, Parkinsons,

WPBC, Colon, and Lung. While for the Nci9 data set,

the U-k-means algorithm gets the number of clusters with

c∗ = 8 which is very closed to the true c=9. In terms

of AR, the U-k-means algorithm significantly performs

much better than others. The R-EM algorithm estimates the

correct number of clusters on SPECT. However, it under-

estimates the number of clusters on Parkinsons, and over-

estimates the number of clusters on WPBC. We also

reported that the results of R-EM on Colon, Lung and

Nci9 data sets are missing because the probability of one

data point belonged to the kth class on these data sets

are known as illegitimate proportions at the first iteration.
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TABLE 13. Clustering results from various algorithms for different real data sets with the best results in boldface.

TABLE 14. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, and RL-FCM for the 100 images sample of the CIFAR-10 data set.

The C-FS algorithm presents better than k-means+

Gap-stat and X-means. The RL-FCM algorithm estimates the

correct number of clusters c for the SPECT, Parkinsons, and

WPBC data sets. While RL-FCM overestimates the number

of clusters on Colon, Lung and Nci9 with c∗ =62, c∗ =9,

and c∗ =60, respectively.

FIGURE 5. Yale Face 32 × 32.

Example 7: In this example, we apply the U-k-means

clustering algorithm for Yale Face 32 × 32 data set,

as shown in Fig. 5. It has 165 grayscale images in GIF

format of 15 individuals [36]. There are 11 images per

subject with different facial expression or configuration:

center-light, with/glasses, happy, left-light, w/no glasses, nor-

mal, right-light, sad, sleepy, surprised, and wink. In the

experiment, we use 135 images of 165 grayscale images.

FIGURE 6. The 100 Images Sample of CIFAR-10.

The results from different algorithms are shown in Table 13.

From Table 13, although U-k-means cannot correctly esti-

mate the true number c=15 of clusters for the Yale face

data set, but it gives the number of clusters c∗ =16 in

which it is closed to the true c=15. The R-EM algo-

rithm is missing because the probability of one data point

belonged to the kth class on this data set are known as
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TABLE 15. Comparison of average running times (in seconds) of
U-k-means, R-EM, C-FS, k-means with the true c, and RL-FCM
for all data sets. The fastest running times are highlighted.

illegitimate proportions at the first iteration. The C-FS gives

c∗ =12 and X-means gives c∗ =2 or 3. The k- means clus-

tering with the true c=15 gives AV-AR=0.34, while RL-FCM

gives c∗ =2.

Example 8: In this example, we apply the U-k-means

clustering algorithm to the CIFAR-10 color images [37]. The

CIFAR-10 data set consists of 60000 32 × 32 color images

in 10 classes, i.e., each pixel is an RGB triplet of unsigned

bytes between 0 and 255. There are 50000 training images

and 10000 test images. Each red, green, and blue channel

value contains 1024 entries. The 10 classes in the data set

are airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, and truck. Specifically, we take the first 100 color

images (10 images per class) and training 40 multi-way from

CIFAR-10 60K images data set for our experiment. The

rest 59900 images as the retrieval database. Fig. 6 shows

the 100 images sample from the CIFAR-10 images data set.

The results for the number of clusters and AR are given

in Table 14. From Table 14, it is seen that the proposed

U-k-means and k-means with the true c=10 give better results

on the 100 images sample of the CIFAR-10 data set. The

U-k-means has the correct number c∗ =10 of clusters with

42.5% and AV-AR=0.28 and k-means with c=10 gives the

same AV-AR=0.28. For the C-FS, the percentage with the

correct number c∗ =10 of clusters is only 16.7% with AV-

AR=0.24. X-means underestimates the number of clusters

with c∗ =2. The results from R-EM and RL-FCM on this

data sets are missing because the probability of one data point

belonged to the kth class on these data sets are known as

illegitimate proportions at the first iteration.

We further analyze the performance of U-k-means,

R-EM, C-FS, and RL-FCM by comparing their average

running times of 25 runs for these algorithms, as shown

in Table 15. All algorithms are implemented in MATLAB

2017b. From Table 15, it is seen that the proposed U-k-means

is the fastest for all data sets among these algorithms, except

that the C-FS algorithm is the fastest for the Waveform data

set. Furthermore, in Section III, we had mentioned that the

proposed U-k-means objective function is simpler than the

RL-FCM objective function with saving running time. From

Table 15, it is seen that the proposed U-k-means algorithm is

actually running faster than the RL-FCM algorithm.

V. CONCLUSION

In this paper we propose a new schema with a learning

framework for the k-means clustering algorithm. We adopt

the merit of entropy-type penalty terms to construct a compe-

tition schema. The proposed U-k-means algorithm uses the

number of points as the initial number of clusters for solving

the initialization problem. During iterations, the U-k-means

algorithm will discard extra clusters, and then an optimal

number of clusters can be automatically found according to

the structure of data. The advantages of U-k-means are free

of initializations and parameters that also robust to different

cluster volumes and shapes with automatically finding the

number of clusters. The proposed U-k-means algorithm was

performed on several synthetic and real data sets and also

compared with most existing algorithms, such as R-EM,

C-FS, k-means with the true number c, k-means+gap, and

X-means algorithms. The results actually demonstrate the

superiority of the U-k-means clustering algorithm.
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