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Abstract. We propose a kernel function estimation strategy to support machine
learning tasks by analyzing the input samples using Renyi’s Information Metrics.
Specifically, we aim to identify a Reproducing Kernel Hilbert Space spanning the
most widely the information force among data points by the maximization of the
information potential variability of Parzen-based pdf estimation. So, a Gaussian
kernel bandwidth updating rule is obtained as a function of the forces induced
by a given dataset. Our proposal is tested on synthetic and real-world datasets
related to clustering and classification tasks. Obtained results show that presented
approach allows to compute RKHS’s favoring data groups separability, attaining
suitable learning performances in comparison with state of the art algorithms.

1 Introduction

Kernel functions allow enhancing random data representation for supporting machine
learning systems. Moreover, kernel-based methods are powerful tools for developing
better performing solutions by adapting the kernel to a given problem, instead of learn-
ing data relationships from explicit raw vector representations. The kernel function is
a very flexible container to express knowledge about the problem as well as to capture
meaningful data relationships [1]. However, building suitable kernels requires some
user prior knowledge about input data, which is not available in most of the practical
cases; this situation becomes worse when handling unsupervised inferring tasks.

Among many feasible kernels, the Gaussian function is preferred since it aims to
find a Reproducing Kernel Hilbert Space - RKHS with universal approximating capa-
bility [3]. However, its use highly relies on the appropriate selection of the kernel pa-
rameters that are not easy to fix when dealing with complex data structures. In fact, the
Gaussian Kernel bandwidth (scale) must be accurately tuned as to estimate an RKHS
that should hold the main data relationships; otherwise, an unappropriate scale value
leads to distinct RKHS not fulfilling the learning task. To cope with this issue and
specifically devoted to unsupervised tasks, authors in [11,12] propose to adjust the ker-
nel parameter by making use of local scales instead of a global one allowing to exploit
the spatial-varying data properties. Yet, these methods do not guarantee the Mercer’s
properties required for building kernel functions [6].
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Nonetheless, most of of kernel estimation approaches are limited to the
conventional concepts of second order statistics (mainly L2 distances). Instead, some
Information Theoretic Learning (ITL) frameworks have been developed based on in-
formation theoretic underpinnings, which more generally quantify data uncertainty. In
fact, information-based approaches can improve interpretation of random data struc-
tures, making salient connections between information measures and RKHS [8]. In ITL
methods, the kernel building task reduces to estimation of the probability density func-
tion (pdf) that is rarely known due to the only available information comes from data
samples at hand. Here, the kernel estimator involves a symmetrical window sliding
along a sequence with its weighted values being smoothed inside. In particular, author
in [7] proposes to estimate the pdf using the Renyi’s entropy along with a Gaussian
kernel Parzen estimator. However, both the pdf estimation success and the learning per-
formance are highly dependent on the kernel parameter, namely, the bandwidth value.
Some ITL-based approaches have been also proposed to fix the kernel scale value by
optimizing information quantities [4, 10, 13], nevertheless, supervised data is required.

We propose a new kernel function estimation strategy to build a suitable Gaussian
kernel-based RKHS oriented towards clustering. To this end, we make use of the in-
trinsic information potential variations from a Parzen-based pdf estimator. Namely, we
seek for a RKHS maximizing the global kernel parameter the whole information poten-
tial variability. As a result, we get a scale updating rule as a function of the information
forces, which are induced by a kernel function applied over a finite sample set. We
provide testing of our proposal on two classical machine learning tasks (clustering and
classification) using both synthetic and real data. Obtained results show that presented
approach allows building a RKHS kernel favoring data groups separability and reaching
suitable clustering performance in comparison with other state-of-the-art algorithms.

2 Materials and Methods

2.1 Gaussian-Based Renyi’s Information Metrics

The basis of the ITL framework is the Renyi’s Information quadratic metric that for a
random variable is plainly defined as follows:

H 2 (x) = − log
∫

x∈X
f 2(x)dx , (1)

where f (x) is the pdf of the random variable x ∈X ⊆ R
P. Nevertheless, such a pdf is

usually unknown. Hence, a method to estimate the Renyi’s entropy directly from a set of
N samples, X={x j :∀ j ∈ [1,N]}, can be achieved by using the Parzen’s nonparametric
pdf estimation for x, defined as

f (x) ≈ pX(x|θ) = EEE
{
κ{x − x j, θ} : ∀ j ∈ [1,N]

}
, (2)

where κ{·, θ} ∈ R
+ is a symmetric kernel function with parameter set θ, and notation

EEE {·} stands for averaging operator.
Provided the observation set X and substituting the Parzen’s estimation of Eq. (2)

into Eq. (1), we get the following estimator of the Renyi’s quadratic entropy:
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H 2 (x) ≈ H2 (X) = − log
∑

xi∈X
p2

X(xi|θ) = − log V(X) , (3)

where V(X) is the so termed information potential (IP) of the observation set X.
Though there are many feasible functions, the Gaussian kernel that is defined as

κ{x, θ}=g{x, σ2} � (2πσ2)−P/2 exp(−x�x/(2σ2)) is preferred since it aims to find a Re-
producing Kernel Hilbert Space - RKHS with universal approximating capability and
with a single bandwidth parameter σ ∈ R

+. Since the IP for the Gaussian kernel gets
the following formula

V(X) = EEE
{
g{xi − x j, σ

2} : ∀i, j ∈ [1,N]
}
, (4)

we can infer that the IP yields an entropy estimate that is based on the summation
of pairwise sample interactions through the Gaussian kernel function [4]. Also, the
Information Force (IF), Fi ∈ RP, is defined as the force acting on particle xi due to all
other particles in X and is given by the derivative of the IP with respect to xi:

Fi =
∂

∂xi
V(X) = −(Nσ)−2

∑
x j∈X

g{(xi − x j), σ2}(xi − x j)

= EEE
{
F(xi|x j) : ∀ j ∈ [1,N]

}
, (5)

where F(xi|x j) = (Nσ2)−1g{(xi − x j), σ2}(xi − x j) corresponds to the conditional IF
acting on xi due to x j. Generally, the IFs can be interpreted in light of inner products in
a high dimensional feature space [2].

2.2 Kernel Function Estimation from Information Potential Variability

Two important facts have to be highlighted from Eq. (5). On one hand, given that X
is fixed and the factor (xi − x j) points towards xi, all IF directions are also fixed and
attracting-natured. On the other hand, since Fi turns out to be dependent on the free
parameter σ, the IP and all IF magnitudes become functions of the Gaussian kernel
bandwidth. In fact, the IP follows a monotonically decreasing behavior overσ, while the
conditional IF magnitude tends to zero as σ goes either to zero or infinite and reaching
its maximum at some value in R

+. Hence, the importance of an adequate Gaussian
kernel bandwidth tuning becomes clear.

In this sense, we propose a novel kernel function estimation from the observed data
X, using the Gaussian Parzen estimate in Eq. (2). Namely, we seek for an RKHS maxi-
mizing the overall information potential variability with respect to the kernel bandwidth
parameter, so that all IF magnitudes spread the most widely on X. To this end, the vari-
ability of the estimated pdf pX(x|σ) is maximized in terms of the kernel bandwidth
parameter in the form:

σ∗ = arg max
σ

var {pX(x|σ)} , (6)

where var {pX(x|σ)} = EEE
{
(pX(x|σ) − EEE {pX(x|σ)})2 : ∀x∈X

}
.
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Deriving with respect to σ, the optimal parameter value can be rewritten in terms of
the before introduced Gaussian-based Renyi’s Information Metrics as follows:

d
dσ

var {pX(x|σ)} = 2
N2σ3

(
1 +

1
N

) ⎛⎜⎜⎜⎜⎜⎜⎝
N∑

i, j=1

g2{xi − x j, σ
2}‖xi − x j‖2

−
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
i, j=1

g{xi − x j, σ
2}
⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
i, j=1

g{xi − x j, σ
2}‖xi − x j‖2

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ,

=
2(N2 + N)
σ

⎛⎜⎜⎜⎜⎜⎜⎝σ2
N∑

i, j=1

F2(xi|x j) − V(X)
N∑

i, j=1

(F(xi|x j))
�(xi − x j)

⎞⎟⎟⎟⎟⎟⎟⎠
Lastly, equating the above equation to zero, the fixed point update rule becomes:

σ2(k + 1) =
Vk(X)EEE

{
(Fk(xi|x j))�(xi − x j) : ∀i, j ∈ [1,N]

}
EEE
{
F2

k (xi|x j) : ∀i, j ∈ [1,N]
} , (7)

where Vk(X) and Fk(xi|x j) are the IP and conditional IF obtained when σ = σ(k), re-
spectively. As a result, we get a scale updating rule as a function of the IFs, which
are induced by a kernel function applied over a finite sample set. Thereby, a Gaus-
sian kernel-based RKHS coding the most spread out IF magnitudes can be estimated
from Eq. (7), approach that we term as Kernel Function Estimation from Information
Potential Variability - KEIPV.

3 Experimental Set-up and Results

We test the proposed KEIVP approach on both synthetic and real-world datasets for
the concrete case of a clustering task. The former is a toy set holding two multivari-
ate Gaussian distributions (see Fig. 1(a)): f1 (x)=N(μ1,Σ1) and f2 (x)=N(μ2,Σ2), with
parameters μ1 = 0, μ2=1, Σ1=0.5I and Σ2=0.25I, with μ1, μ2∈R2 and I∈R2×2. To get
the input sample set X∈R200×2, one hundred samples are randomly drawn from each of
both simulated pdfs. As seen in Figs. 1(b) and 1(f) to 1(h), the IP variability cost func-
tion allows identifying different IF configurations. Particularly, for a narrow bandwidth
value, particles are forced to apart each other due to the kernel function strongly reduces
the scaling of the Euclidean-based distance between particles. Hence, low similarities
between pair-wise samples and low magnitude IFs are estimated, as shown in Figs. 1(c)
and 1(f). In contrast, employing a wide bandwidth value yields to an RKHS where all
particles are attracted each other. Namely, the Euclidean distance scaling is strongly
increased, which leads to a data representation space where all samples are closed sim-
ilar, as seen in Fig. 1(e). Such a fact is shown in the IF distribution in Fig. 1(h), where
red cluster particles are more attracted to the green particle. Note that low IP variability
values are achieved for both narrow and wide bandwidths because, in either case, all the
IFs tend to share the same magnitude regardless their direction. Therefore, the proposed
KEIVP finds an RKHS where data samples share widely spread IF magnitudes, that is,
close particles according to the Euclidean distance get high pairwise similarities and
IFs while far ones have low similarities and IFs (see Figs. 1(d) and 1(g)).
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Fig. 1. KEIVP illustrative example. a) Multivariate Gaussian toy set. b) log of IP variability versus
bandwidth. 2nd row: Gaussian kernel for the toy set. 3rd row: IFs acting on a fixed particle
(green). Narrow (1st column), KEIVP (2nd column) and wide (3rd column) bandwidth values.

Also, to provide visual inspection on unsupervised clustering, three well-known syn-
thetic databases are used that represent challenging clustering tasks due to their com-
plex structures: Bull’s eyes, Circle with squares, and Noisy squares (see Fig. 2 rows
one, two, and three, respectively). Here, three baseline approaches for estimating the
Gaussian kernel bandwidth parameter are considered: i) The Sylverman’s rule criterion

that computes the scale value as σS = σX

(
4N−1(2P + 1)−1

)1/(P+4)
, with σX=

∑
i∈N sii

and being sii the diagonal elements of the sample covariance matrix [9]. ii) The Self-
Tuning Spectral Clustering (STSC) estimator that calculates a local scale parameter for
each pair of samples (xi, x j), i � j, by considering nearest neighbor distances as: σi, j

sc =

‖xi−xi
K‖2‖x j−x j

K‖2 , being xi
K the K-th nearest neighbor of xi in terms of the Euclidean

distance and ‖·‖2 stands for the L2-norm [11]. iii) The local density adaptive band-width
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is also tested, which computes a local scale parameter as function of Common Near

Neighbors (CNN) between points (xi, x j), i � j, as: σi, j
cnn = σo

(
γ
(
xi, x j

)
+ 1
)1/2

,

where σo∈R+ and γ
(
xi, x j

)
=
∣∣∣Γi ∩ Γ j

∣∣∣, being Γi={xi
k : k=1, . . . ,K} the set holding the K

nearest neighbors of xi according to the Euclidean distance and | · | stands for the cardi-
nality operator [12]. Here, σo=median{σi, j

sc }, i < j. For each of above introduced band-
width selection approaches, namely Sylverman, STSC, CNN, and KEIVP, the resulting
Gaussian kernel is employed to perform the unsupervised clustering learning by means
of the well-known Spectral Clustering technique [5]. Additionally, the number of neigh-
bors is fixed as K=

√
N in cases of STSC and CNN. For concrete testing, the number

of groups C∈N is fixed as three, three, and five, respectively. Furthermore, for fair com-
parison purposes, the KEIVP approach is calculated only considering data relationships
(distances) belonging to connected samples according to a K-nearest graph. Figs. 2(b)
to 2(d) show that both local scaling-based strategies (STSC and CNN) as well as the pro-
posed KEIPV are able to deal with the Bull’s eyes structure. Such approaches also cor-
rectly perform grouping of the Noisy squares dataset, as seen in Figs. 2(j) to 2(l). That
is, local scaling-based techniques are able to approximate nonlinear structures from
linear analysis over each sample neighborhood. Nonetheless, STSC performs wrong
clustering for the Circle with squares (see Fig. 2(f)). These results can be explained
by the fact that local scaling approximations lead to wrong cluster connections when
dealing with data structures with highly varying densities. Similarly, CNN suffers of the
same drawback, but the σo parameter can deal with it if properly fixed. Nonetheless,
finding a suitable neighborhood size is a difficult task for the user, not mentioning that
using different bandwidth values for each pair-wise sample similarity when estimat-
ing a Gaussian kernel does not guarantee a positive definite kernel function, violating
the Mercer’s conditions [6]. Regarding to the Sylverman-based estimation results, this
method generally yields a biased RKHS due to its statistical assumptions, resulting in
wrong clustering performances (see Figs. 2(a), 2(e) and 2(i)). In turn, KEIPV is able to
find an RKHS coding widely spread IF magnitudes, allowing to close samples belong-
ing to a similar structure while repelling distant points (see fourth column of Fig. 2).

Finally, the real-world databases from the Machine Learning UCI Repository1 are
tested as supervised clustering task (see Table 1). In this case, each computed kernel is
used as similarity representation to learn a classification boundary based on the well-
known k-nearest-neighbors classifier. A 10-folds-cross-validation strategy is carry out
to validate the stability of each kernel function estimation approach. Furthermore, the
k parameter is fixed from the set {1, 3, 5, 7, 9, 11} according to the training error. As
seen in Fig. 3, the proposed KEIPV allows to compute an RKHS favoring the cluster
separability. STSC and CNN algorithms get competitive results in terms of classifica-
tion accuracy. Nonetheless, they need a suitable graph representation, which practically
can be difficult to estimate. Moreover, their local scaling approximation of the Gaussian
kernel can not be correct theoretically as mentioned before. Again, the Sylverman’s rule
estimation suffers of biased kernel representations, particularly, when the input dimen-
sionality P is considerably high (see obtained results by the mnist and orl datasets).

1 http://archive.ics.uci.edu/ml/
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Fig. 2. Synthetic data sets clustering results. First column: Sylverman’s rule. Second column:
STSC. Third column: CNN. Fourth column: KEIPV.

Table 1. Employed UCI dataset description

Dataset iris sonar mnist orl diabetes breast arrhythmia ionosphere heart wine glass

N 150 208 1000 400 768 699 420 351 303 178 214
P 4 60 784 10304 8 9 278 34 13 13 9
C 3 2 10 40 2 2 13 2 2 3 4
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Fig. 3. Classification results using the fourth bandwidth selection approaches

4 Concluding Remarks

A new kernel function estimation based on an information potential variability frame-
work is presented. Our approach, termed KEIPV, aims to estimate an RKHS to span
the most widely information force magnitudes among data points. Particularly, KEIPV
relates different kernel functions with the intrinsic information potential variations in
Parzen-based pdf estimations [7]. Thereby, we seek for an RKHS that maximizes the
overall information potential variability with respect to the global kernel parameter.
As a case of interest, an updating rule for estimating the Gaussian kernel bandwidth
parameter is proposed as a function of the forces induced by the distances among sam-
ples. Proposed strategy is tested on both unsupervised and supervised clustering tasks.
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Performed results show that the presented approach allows computing RKHS’s favoring
data groups separability in comparison with other state-of-the-art alternatives.
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