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Abstract

Despite being robust to small amounts of label

noise, convolutional neural networks trained with

stochastic gradient methods have been shown to

easily fit random labels. When there are a mix-

ture of correct and mislabelled targets, networks

tend to fit the former before the latter. This

suggests using a suitable two-component mix-

ture model as an unsupervised generative model

of sample loss values during training to allow

online estimation of the probability that a sam-

ple is mislabelled. Specifically, we propose a

beta mixture to estimate this probability and cor-

rect the loss by relying on the network predic-

tion (the so-called bootstrapping loss). We fur-

ther adapt mixup augmentation to drive our ap-

proach a step further. Experiments on CIFAR-

10/100 and TinyImageNet demonstrate a robust-

ness to label noise that substantially outperforms

recent state-of-the-art. Source code is available

at https://git.io/fjsvE and Appendix at

https://arxiv.org/abs/1904.11238.

1. Introduction

Convolutional Neural Networks (CNNs) have recently be-

come the par excellence base approach to deal with many

computer vision tasks (DeTone et al., 2016; Ono et al., 2018;

Beluch et al., 2018; Redmon et al., 2016; Zhao et al., 2017;

Krishna et al., 2017). Their widespread use is attributable

to their capability to model complex patterns (Ren et al.,

2018) when vast amounts of labeled data are available. Ob-

taining such volumes of data, however, is not trivial and

usually involves an error prone automatic or a manual la-

beling process (Wang et al., 2018a; Zlateski et al., 2018).

These errors lead to noisy samples: samples annotated with

incorrect or noisy labels. As a result, dealing with label
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Figure 1. Cross-entropy loss on CIFAR-10 under 80% label noise

for clean and noisy samples. Left: training with cross-entropy

loss results in fitting the noisy labels. Right: using our proposed

objective prevents fitting label noise while also learning from the

noisy samples. The heavy lines represent the median losses and

the shaded areas are the interquartile ranges.

noise is a common adverse scenario that requires attention

to ensure useful visual representations can be learnt (Jiang

et al., 2018b; Wang et al., 2018a; Wu et al., 2018; Jiang et al.,

2018a; Zlateski et al., 2018). Automatically obtained noisy

labels have previously been demonstrated useful for learn-

ing visual representations (Pathak et al., 2017; Gidaris et al.,

2018); however, a recent study on the generalization capabil-

ities of deep networks (Zhang et al., 2017) demonstrates that

noisy labels are easily fit by CNNs, harming generalization.

This overfitting also arises in biases that networks encounter

during training, e.g., when a dataset contains class imbal-

ances (Alvi et al., 2018). However, before fitting label noise,

CNNs fit the correctly labeled samples (clean samples) even

under high-levels of corruption (Figure 1, left).

Existing literature on training with noisy labels focuses pri-

marily on loss correction approaches (Reed et al., 2015;

Hendrycks et al., 2018; Jiang et al., 2018b). A well-known

approach is the bootstrapping loss (Reed et al., 2015), which

introduces a perceptual consistency term in the learning

objective that assigns a weight to the current network pre-

diction to compensate for the erroneous guiding of noisy

samples. Other approaches modify class probabilities (Pa-

trini et al., 2017; Hendrycks et al., 2018) by estimating the

noise associated with each class, thus computing a loss that

guides the training process towards the correct classes. Still

other approaches use curriculum learning to formulate a

robust learning procedure (Jiang et al., 2018b; Ren et al.,

2018). Curriculum learning (Bengio et al., 2009) is based on

the idea that ordering training examples in a meaningful (e.g.
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easy to hard) sequence might improve convergence and gen-

eralization. In the noisy label scenario, easy (hard) concepts

are associated with clean (noisy) samples by re-weighting

the loss for noisy samples so that they contribute less. Dis-

carding noisy samples, however, potentially removes useful

information about the data distribution. (Wang et al., 2018b)

overcome this problem by introducing a similarity learning

strategy that pulls representations of noisy samples away

from clean ones. Finally, mixup data augmentation (Zhang

et al., 2018) has recently demonstrated outstanding robust-

ness against label noise without explicitly modeling it.

In light of these recent advances, this paper proposes a

robust training procedure that avoids fitting noisy labels

even under high levels of corruption (Figure 1, right), while

using noisy samples for learning visual representations that

achieve a high classification accuracy. Contrary to most

successful recent approaches that assume the existence of a

known set of clean data (Ren et al., 2018; Hendrycks et al.,

2018), we propose an unsupervised model of label noise

based exclusively on the loss on each sample. We argue

that clean and noisy samples can be modeled by fitting a

two-component (clean-noisy) beta mixture model (BMM)

on the loss values. The posterior probabilities under the

model are then used to implement a dynamically weighted

bootstrapping loss, robustly dealing with noisy samples

without discarding them. We provide experimental work

demonstrating the strengths of our approach, which lead

us to substantially outperform the related work. Our main

contributions are as follows:

1. A simple yet effective unsupervised noise label model-

ing based on each sample loss.

2. A loss correction approach that exploits the unsuper-

vised label noise model to correct each sample loss,

thus preventing overfitting to label noise.

3. Pushing the state-of-the-art one step forward by com-

bining our approach with mixup data augmenta-

tion (Zhang et al., 2018).

4. Guiding mixup data augmentation to achieve conver-

gence even under extreme label noise.

2. Related work

Recent efforts to deal with label noise address two scenar-

ios (Wang et al., 2018b): closed-set and open-set label noise.

In the closed set scenario, the set of possible labels S is

known and fixed. All samples, including noisy ones, have

their true label in this set. In the open set scenario, the true

label of a noisy sample xi may be outside S; i.e. xi may

be an out-of-distribution sample (Liang et al., 2018). The

remainder of this section briefly reviews related work in the

closed-set scenario considered in (Zhang et al., 2017), upon

which we base our approach.

Several types of noise can be studied in the closed-set sce-

nario, namely uniform or non-uniform random label noise.

The former is also known as symmetric label noise and im-

plies ground-truth labels flipped to a different class with uni-

form random probability. Non-uniform or class-conditional

label noise, on the other hand, has different flipping prob-

abilities for each class (Hendrycks et al., 2018). Previous

research (Patrini et al., 2017) suggests that uniform label

noise is more challenging than non-uniform.

A simple approach to dealing with label noise is to remove

the corrupted data. This is not only challenging because dif-

ficult samples may be confused with noisy ones (Wang et al.,

2018b), but also implies not exploiting the noisy samples

for representation learning. It has, however, recently been

demonstrated (Ding et al., 2018) that it is useful to discard

samples with a high probability of being incorrectly labeled

and still use these samples in a semi-supervised setup.

Other approaches seek to relabel the noisy samples by mod-

eling their noise through directed graphical models (Xiao

et al., 2015), Conditional Random Fields (Vahdat, 2017),

or CNNs (Veit et al., 2017). Unfortunately, to predict the

true label, these approaches rely on the assumption that a

small set of clean samples is always available, which limits

their applicability. Tanaka et al. (Tanaka et al., 2018) have,

however, recently demonstrated that it is possible to do un-

supervised sample relabeling using the network predictions

to predict hard or soft labels.

Loss correction approaches (Reed et al., 2015; Jiang et al.,

2018b; Patrini et al., 2017; Zhang et al., 2018) modify ei-

ther the loss directly, or the probabilities used to compute

it, to compensate for the incorrect guidance provided by

the noisy samples. (Reed et al., 2015) extend the loss with

a perceptual term that introduces a certain reliance on the

model prediction. Their approach is, however, limited in

that the noise label always affects the objective. (Patrini

et al., 2017) propose a backward method that weights the

loss of each sample using the inverse of a noise transition

matrix T , which specifies the probability of one label being

flipped to another. (Patrini et al., 2017) presents a forward

method that, instead of operating directly on the loss, goes

back to the predicted probabilities to correct them by multi-

plying by the T matrix. (Hendrycks et al., 2018) corrects the

predicted probabilities using a corruption matrix computed

using a model trained on a clean set of samples and their

prediction on the corrupted data. Other approaches focus on

re-weighting the contribution of noisy samples on the loss.

(Jiang et al., 2018b) proposes an alternating minimization

framework in which a mentor network learns a curriculum

(i.e. a weight for each sample) to guide a student network

that learns under label noise conditions. Similarly, (Guo



Unsupervised Label Noise Modeling and Loss Correction

et al., 2018) present a curriculum learning approach based

on an unsupervised estimation on data complexity through

its distribution in a feature space that benefits from train-

ing with both clean and noisy samples. (Ren et al., 2018)

weights each sample in the loss based on the gradient di-

rections in training compared to those on validation (i.e. in

a clean set). Note that, as for relabeling approaches, the

assumption of clean data availability limits the application

of many of these approaches. Conversely, approaches like

(Wang et al., 2018b) do not rely on clean data by performing

unsupervised noise label detection to help re-weighting the

loss, while not discarding noisy samples that are exploited in

a similarity learning framework to pull their representations

away from true samples of each class.

In contrast to the aforementioned literature, we propose to

deal with noisy labels using exclusively the training loss of

each sample without consulting any clean set. Specifically,

we fit a two-component beta mixture model to the training

loss of each sample to model clean and noisy samples. We

use this unsupervised model to implement a loss correction

approach that benefits both from bootstrapping (Reed et al.,

2015) and mixup data augmentation (Zhang et al., 2018) to

deal with the closed-set label noise scenario.

3. Learning with label noise

Image classification can be formulated as the problem of

learning a model hθ(x) from a set of training examples

D = {(xi, yi)}
N

i=1
with yi ∈ {0, 1}C being the one-hot

encoding ground-truth label corresponding to xi. In our

case, hθ is a CNN and θ represents the model parameters

(weights and biases). As we are considering classification

under label noise, the label yi can be noisy (i.e. xi is a

noisy sample). The parameters θ are fit by optimizing a loss

function, e.g. categorical cross-entropy:

ℓ(θ) =

N
∑

i=1

ℓi(θ) = −
N
∑

i=1

yTi log (hθ(xi)) , (1)

where hθ(x) are the softmax probabilities produced by the

model and log(·) is applied elementwise. The remainder of

this section describes our noisy sample modeling technique

and how to extend the loss in Eq. (1) based on this model

to handle label noise. For notational simplicity, we use

ℓi(θ) = ℓi and hθ(xi) = hi in the remainder of the paper.

3.1. Label noise modeling

We aim to identify the noisy samples in the dataset D so

that we can implement a loss correction approach (see Sub-

sections 3.2 and 3.3). Our essential observation is simple:

random labels take longer to learn than clean labels, mean-

ing that noisy samples have higher loss during the early

epochs of training (see Figure 1), allowing clean and noisy
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Figure 2. Empirical PDF and estimated GMM and BMM models

for 50% label noise in CIFAR-10 after 10 epochs with standard

cross-entropy loss and learning rate of 0.1 (remaining hyperparam-

eters see in Subsection 4.1). Clean and noisy samples are colored

for illustrative purposes. The BMM model better fits the skew

toward zero loss of the noisy samples.

samples to be distinguished from the loss distribution alone

(see Figure 2). Modern CNNs trained with stochastic gra-

dient methods typically do not fit the noisy examples until

substantial progress has been made in fitting the clean ones.

Therefore, one can infer from the loss value if a sample

is more likely to be clean or noisy. We propose to use a

mixture distribution model for this purpose.

Mixture models are a widely used unsupervised modeling

technique (Stauffer & Grimson, 1999; Permuter et al., 2006;

Ma & Leijon, 2011), with the Gaussian Mixture Model

(GMM) (Permuter et al., 2006) being the most popular. The

probability density function (pdf) of a mixture model of K
components on the loss ℓ is defined as:

p(ℓ) =
K
∑

k=1

λk p(ℓ | k) , (2)

where λk are the mixing coefficients for the convex combi-

nation of each individual pdf p(ℓ | k). In our case, we can fit

a two components GMM (i.e. K = 2 and ℓ ∼ N (µk,
∑

k))
to model the distribution of clean and noisy samples (Fig-

ure 2). Unfortunately, the Gaussian is a poor approximation

to the clean set distribution, which exhibits high skew to-

ward zero. The more flexible beta distribution (Ma & Leijon,

2011) allows modelling both symmetric and skewed distri-

butions over [0, 1]; the beta mixture model (BMM) better

approximates the loss distribution for mixtures of clean and

noisy samples (Figure 2). Empirically, we also found the

BMM improves ROC-AUC for clean-noisy label classifica-

tion over the GMM by around 5 points for 80% label noise

in CIFAR-10 when using the training objective in Section

3.3 (see Appendix A). The beta distribution over a (max)

normalized loss ℓ ∈ [0, 1] is defined to have pdf:
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p(ℓ | α, β) =
Γ(α+ β)

Γ(α) Γ(β)
ℓα−1 (1− ℓ)

β−1
, (3)

where α, β > 0 and Γ(·) is the Gamma function, and the

mixture pdf is given by substituting the above into Eq. (2).

We use an Expectation Maximization (EM) procedure to fit

the BMM to the observations. Specifically, we introduce

latent variables γk(ℓ) = p(k|ℓ) which are defined to be the

posterior probability of the point ℓ having been generated by

mixture component k. In the E-step we fix the parameters

λk, αk, βk and update the latent variables using Bayes rule:

γk(ℓ) =
λk p(ℓ | αk, βk)

∑K

j=1
λj p(ℓ | αj , βj)

. (4)

Given fixed γk(ℓ), the M-step estimates the distribution

parameters αk, βk using a weighted version of the method

of moments:

βk =
αk

(

1− ℓ̄k
)

ℓ̄k
, αk = ℓ̄k

(

ℓ̄k
(

1− ℓ̄k
)

s2k
− 1

)

(5)

with ℓ̄k being a weighted average of the losses {ℓi}
N

i=1
cor-

responding to each training sample {xi}
N

i=1
, and s2k being a

weighted variance estimate:

ℓ̄k =

∑N

i=1
γk(ℓi) ℓi

∑N

i=1
γk(ℓi)

, (6)

s2k =

∑N

i=1
γk(ℓi)

(

ℓi − ℓ̄k
)2

∑N

i=1
γk(ℓi)

. (7)

The updated mixing coefficients λk are then calculated in

the usual way:

λk =
1

N

N
∑

i=1

γk(ℓi). (8)

The above E and M-steps are then iterated until convergence

or a maximum number of iterations (10 in our experiments)

are reached. Note that the above algorithm becomes numer-

ically unstable when the observations are very near zero

and one. Our implementation simply sidesteps this issue

by bounding the observations in [ǫ, 1− ǫ] instead of [0, 1]

(ǫ = 10−4 in our experiments).

Finally, we obtain the probability of a sample being clean

or noisy through the posterior probability:

p(k | ℓi) =
p(k) p(ℓi | k)

p(ℓi)
, (9)

where k = 0 (1) denotes clean (noisy) classes.

Note that the loss used to estimate the mixture distribution

is always the standard cross-entropy loss (Figure 1) for all

samples after every epoch. This not necessarily the loss used

for training, which may contain a corrective component to

deal with label noise.

3.2. Noise model for label correction

Carefully selecting a loss function to guide the learning pro-

cess is of particular importance under label noise. Standard

categorical cross-entropy loss (Eq. (1)) is ill-suited to the

task as it encourages fitting label noise (Zhang et al., 2017).

The static hard bootstrapping loss proposed in (Reed et al.,

2015) provides a mechanism to deal with label noise by

adding a perceptual term to the standard cross-entropy loss

that helps to correct the training objective:

ℓB = −
N
∑

i=1

((1− wi) yi + wizi)
T
log (hi) , (10)

where wi weights the model prediction zi in the loss func-

tion. (Reed et al., 2015) use wi = 0.2, ∀i. We refer to this

approach as static hard bootstrapping. (Reed et al., 2015)

also proposed a static soft bootstrapping loss (wi = 0.05, ∀i)
that uses the predicted softmax probabilities hi instead of

the class prediction zi. Unfortunately, using a fixed weight

for all samples does not prevent fitting the noisy ones (Ta-

ble 1 in Subsection 4.2) and, more importantly, applying

a small fixed weight wi to the prediction (probabilities) zi
(hi) limits the correction of a hypothetical noisy label yi.

We propose dynamic hard and soft bootstrapping losses by

using our noise model to individually weight each sample;

i.e., wi is dynamically set to p(k = 1 | ℓi) and the BMM

model is estimated after each training epoch using the cross-

entropy loss for each sample ℓi. Therefore, clean samples

rely on their ground-truth label yi (1− wi is large), while

noisy ones let their loss being dominated by their class pre-

diction zi or their predicted probabilities hi (wi is large),

respectively, for hard and soft alternatives. Note that in ma-

ture stages of training the CNN model should provide a good

estimation of the true class for noisy samples. Subsection

4.2 compares static and dynamic bootstrapping, showing

that dynamic bootstrapping gives superior results.

3.3. Joint label correction and mixup data

augmentation

Recently (Zhang et al., 2018) proposed a data augmentation

technique named mixup that exhibits strong robustness to

label noise. This technique trains on convex combinations

of sample pairs (xp and xq) and corresponding labels (yp
and yq):

x = δxp + (1− δ)xq, (11)

ℓ = δℓp + (1− δ)ℓq, (12)

where δ is randomly sampled from a beta distribution

Be (α, β), with α = β set to high values when learning

with label noise so that δ tends to be close to 0.5. This

combination regularizes the network to favor simple linear

behavior between training samples, which reduces oscilla-

tions in regions far from them. Regarding label noise, mixup
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provides a mechanism to combine clean and noisy samples,

computing a more representative loss to guide the training

process. Even when combining two noisy samples the loss

computed can still be useful as one of the noisy samples may

(by chance) contain the true label of the other one. As for

preventing overfitting to noisy samples, the fact that samples

and their labels are mixed favors learning structured data,

while hindering learning the unstructured noise.

Mixup achieves robustness to label noise by appropriate com-

binations of training examples. Under high-levels of noise

mixing samples that both have incorrect labels is prevalent,

which reduces the effectiveness of the method. We propose

to fuse mixup and our dynamic bootstrapping to implement

a robust per-sample loss correction approach:

ℓ∗ = −δ
[

((1− wp) yp + wpzp)
T
log (h)

]

−

(1− δ)
[

((1− wq) yq + wqzq)
T
log (h)

]

, (13)

The loss ℓ∗ defines the hard alternative, while the soft one

can be easily defined by replacing zp and zq by hp and hq.

These hard and soft losses exploit mixup’s advantages while

correcting the labels through dynamic bootstrapping, i.e.

the weights wp and wq that control the confidence in the

ground-truth labels and network predictions are inferred

from our unsupervised noise model: wp = p(k = 1 | ℓp)
and wq = p(k = 1 | ℓq). We compute hp, zp, hq and zq by

doing an extra forward pass, as it is not straightforward to

obtain the predictions for samples p and q from the mixed

probabilities h.

Ideally, the proposed loss ℓ∗ would lead to a better model

by trusting in progressively better predictions during train-

ing. For high-levels of label noise, however, the network

predictions are unreliable and dynamic bootstrapping may

not converge when combined with the complex signal that

mixup provides. This is reasonable as under high levels of

noise most of the samples are guided by the network’s pre-

diction in the bootstrapping loss, encouraging the network

to predict the same class to minimize the loss. We apply

the regularization term used in (Tanaka et al., 2018), which

seeks preventing the assignment of all samples to a single

class, to overcome this issue:

R =

C
∑

c=1

pc log

(

pc

hc

)

, (14)

where pc denotes the prior probability distribution for class

c and hc is the mean softmax probability of the model for

class c across all samples in the dataset. Note that we assume

a uniform distribution for the prior probabilities (i.e. pc =
1/C), while approximating hc using mini-batches as done

in (Tanaka et al., 2018). We add the term ηR to ℓ∗ (Eq. (13))

with η being the regularization coefficient (set to one in

Table 1. Validation accuracy on CIFAR-10 for static bootstrapping

and the proposed dynamic bootstrapping. Key: CE (cross-entropy

loss), ST (static bootstrapping), DY (dynamic bootstrapping), S

(soft), and H (hard). Bold indicates best performance.

Alg./Noise level (%) 0 20 50 80

CE
Best 93.8 89.7 84.8 67.8
Last 93.7 81.8 55.9 25.3

ST-S
Best 93.9 89.7 84.8 67.8
Last 93.9 81.7 55.9 24.8

ST-H
Best 93.8 89.7 84.8 68.0
Last 93.8 81.4 56.4 25.7

DY-S
Best 93.6 89.7 84.8 67.8
Last 93.4 83.3 57.0 27.8

DY-H
Best 93.3 89.7 84.8 71.7
Last 92.9 83.4 65.0 64.2

all the experiments). Subsection 4.3 presents the results of

this approach and Subsection 4.5 demonstrates its superior

performance in comparison to the state-of-the-art.

4. Experiments

4.1. Datasets and implementation details

We thoroughly validate our approach in two well-known im-

age classification datasets: CIFAR-10 and CIFAR-100. The

former contains 10 classes, while the latter has 100 classes.

Both have 50K color images for training and 10K for vali-

dation with resolution 32×32. We use a PreAct ResNet-18

(He et al., 2016) and train it using SGD and batch size of

128. We use two different schemes for the learning rate

policy and number of epochs depending on whether mixup

is used (see Appendix B for further details). We further

experiment on TinyImageNet (subset of ImageNet (Deng

et al., 2009)) and Clothing1M (Xiao et al., 2015) datasets

to test the generality of our approach far from CIFAR data

(Subsection 4.6). TinyImageNet contains 200 classes with

100K training images, 10K validation, 10K test with resolu-

tion 64×64, while Clothing1M contains 14 classes with 1M

real-world noisy training samples and clean training subsets

(47K), validation (14K) and test (10K).

We follow (Zhang et al., 2017; 2018; Tanaka et al., 2018) cri-

terion for label noise addition, which consists of randomly

selecting labels for a percentage of the training data using

all possible labels (i.e. the true label could be randomly

maintained). Note that there is another popular label noise

criterion (Jiang et al., 2018b; Wang et al., 2018b) in which

the true label is not selected when performing random la-

beling. We also run our proposed approach under these

conditions in Subsection 4.5 for comparison.
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Table 2. Validation accuracy on CIFAR-10 (top) and CIFAR-100

(bottom) for joint mixup and bootstrapping. Key: CE (cross-

entropy), M (mixup), DYR (dynamic bootstrapping + regulariza-

tion from Eq. 14), S (soft), and H (hard). Bold indicates best

performance.

Alg./Noise level (%) 0 20 50 80

CE
Best 94.7 86.8 79.8 63.3
Last 94.6 82.9 58.4 26.3

M (Zhang et al., 2018)
Best 95.3 95.6 87.1 71.6
Last 95.2 92.3 77.6 46.7

M-DYR-S
Best 93.3 93.5 89.7 77.3
Last 93.0 93.1 89.3 74.1

M-DYR-H
Best 93.6 94.0 92.0 86.8
Last 93.4 93.8 91.9 86.6

Alg./Noise level (%) 0 20 50 80

CE
Best 76.1 62.0 46.6 19.9
Last 75.9 62.0 37.7 8.9

M (Zhang et al., 2018)
Best 74.8 67.8 57.3 30.8
Last 74.4 66.0 46.6 17.6

M-DYR-S
Best 71.9 67.9 61.7 38.8
Last 67.4 67.5 58.9 34.0

M-DYR-H
Best 70.3 68.7 61.7 48.2
Last 66.2 68.5 58.8 47.6

4.2. Static and dynamic loss correction

Table 1 presents the results for static (ST) and dynamic (DY)

bootstrapping in CIFAR-10. Although ST achieves perfor-

mance comparable to DY (except for 80% noise where DY

is much better), after the final epoch (last) the performance

of DY outperforms ST. The improvements are particularly

remarkable for 80% of label noise (from 25.7% of ST-H to

64.2 of DY-H). Comparing soft and hard alternatives: hard

bootstrapping gives superior performance, which is con-

sistent with the findings of the original paper (Reed et al.,

2015). The overall results demonstrate that applying per-

sample weights (DY) benefits training by allowing to fully

correct noisy labels.

4.3. Joint mixup and dynamic loss correction

The proposed dynamic hard bootstrapping exhibits better

performance than the state-of-the-art static version (Reed

et al., 2015). It is, however, not better than the performance

of mixup data augmentation, which exhibits excellent ro-

bustness to label noise (M in Table 2). The fusion approach

from Eq. (13) (M-DYR-H) and its soft alternative (M-DYR-

S), which combines the per-sample weighting of dynamic

bootstrapping and robustness to fitting noise labels of mixup,

achieves a remarkable improvement in accuracy under high

noise levels. Table 2 reports outstanding accuracy for 80%

of label noise, a case where we improve upon mixup (Zhang

(a) (b) (c)

(d) (e) (f)

Figure 3. UMAP (McInnes et al., 2018) embeddings for training

(top) with 80% of label noise and validation (bottom) on CIFAR-10

with (a)(d) cross-entropy loss from Eq. 1, (b)(e) mixup (Zhang

et al., 2018) and (c)(f) our proposed M-DYR-H.

et al., 2018) in best (last) accuracy of 71.6 (46.7) in CIFAR-

10 and 30.8 (17.6) in CIFAR-100 to 86.8 (86.6) and 48.2

(47.2) using the hard alternative (M-DYR-H). It is impor-

tant to highlight that we achieve quite similar best and last

performance for all levels of label noise in CIFAR datasets,

indicating that the proposed method is robust to varying

noise levels. Figure 3 shows uniform manifold approxima-

tion and projection (UMAP) embeddings (McInnes et al.,

2018) of the 512 features in the penultimate fully-connected

layer of PreAct ResNet-18 trained using our method, and

compares them with those found using cross-entropy and

mixup. The separation among classes appears visually more

distinct using the proposed objective.

4.4. On the limits of the proposed approach

Table 3 explores convergence under extreme label noise

conditions, showing that the proposed approach M-DYR-H

fails to converge in CIFAR-10 with 90% label noise. Here

we propose minor modifications to achieve convergence.

When clean and noisy samples are combined by mixup they

are given the same importance of approximately δ = 0.5
(as α = β = 32). While noisy samples benefit from mixing

with clean ones, clean samples are contaminated by noisy

ones, whose training objective is incorrectly modified. We

propose a dynamic mixup strategy in the input that uses a

different δ for each sample to reduce the contribution of

noisy samples when they are mixed with clean ones:

x =

(

δp
δp + δq

)

xp +

(

δq
δp + δq

)

xq, (15)

where δp = p(k = 0 | ℓp) and δq = p(k = 0 | ℓq), i.e. we

use the noise probability from our BMM to guide mixup in

the input. Note that for clean-clean and noisy-noisy cases,

the behavior remains similar to mixup with α = β = 32,

which leads to δ ≈ 0.5 (i.e. δp ≈ δq ⇒ δp/(δp+δq) ≈ 0.5).
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Table 3. Validation accuracy on CIFAR-10 (top) and CIFAR-100

(bottom) with extreme label noise. Key: M (mixup), MD (dynamic

mixup), DYR (dynamic bootstrapping + reg. from Eq. (14)), H

(hard), and SH (soft to hard). (*) denotes that we have run the

algorithm. Bold indicates best performance.

Alg./Noise level (%) 70 80 85 90

M-DYR-H
Best 89.6 86.8 71.6 40.8
Last 89.6 86.6 71.4 9.9

MD-DYR-H
Best 86.6 83.2 79.4 56.7
Last 85.2 80.5 77.3 50.0

MD-DYR-SH
Best 84.6 82.4 79.1 69.1
Last 80.8 77.8 73.9 68.7

Alg./Noise level (%) 70 80 85 90

M-DYR-H
Best 54.4 48.2 29.9 12.5
Last 52.5 47.6 29.4 8.6

MD-DYR-H
Best 54.4 47.7 19.8 13.5
Last 50.8 41.7 8.3 3.9

MD-DYR-SH
Best 53.1 41.6 28.8 24.3
Last 47.7 35.4 24.4 20.5

This configuration simplifies the input to the network when

mixing a sample whose label is potentially useless, while

retaining the strengths of mixup for clean-clean and noisy-

noisy combinations. This is used with the original mixup

strategy (Eq. (13)) to benefit from the regularization that

an additional label provides. Table 3 presents the results

of this approach (MD-DYR-H), which exhibits more stable

convergence for 90% label noise in both datasets.

Table 2 reported that hard bootstrapping works better than

the soft alternative. Unfortunately, hard bootstrapping un-

der high levels of label noise causes large variations in the

loss that lead to drops in performance. To ameliorate such

instabilities, we propose a decreasing softmax technique

(Vermorel & Mohri, 2005) to progressively move from a

soft to a hard dynamic bootstrapping. This is implemented

by modifying the softmax temperature T in:

hij =
exp(sij/T )

∑N

k=1
exp(sik/T )

, (16)

where sij denotes the score obtained in the last layer of

the CNN model class j of sample xi. By default T = 1
gives the soft alternative of Eq. (13). To move from soft to

hard bootstrapping we linearly reduce the temperature for

hp and hq until we reach a final temperature in a certain

epoch (T = 0.001 and epoch 200 in our experiments). We

experimented with linear, logarithmic, tanh, and step-down

temperature decays with similar results. This decreasing

softmax MD-DYR-SH obtains much improved accuracy

for 90% of label noise (69.1 for CIFAR-10 and 24.3 for

CIFAR-100), while slightly decreasing accuracy compared

to M-DYR-H and MD-DYR-H at lower noise levels. Note

Table 4. Comparison with the state-of-the-art in terms of validation

accuracy on CIFAR-10 (top) and CIFAR-100 (bottom). Key: M

(mixup), MD (dynamic mixup), DYR (dynamic bootstrapping +

reg. from Eq. 14), H (hard) and SH (soft to hard). (*) denotes that

we have run the algorithm. Bold indicates best performance.

Alg./Noise level (%) 0 20 50 80 90

(Reed et al., 2015)*
Best 94.7 86.8 79.8 63.3 42.9
Last 94.6 82.9 58.4 26.8 17.0

(Patrini et al., 2017)*
Best 94.7 86.8 79.8 63.3 42.9
Last 94.6 83.1 59.4 26.2 18.8

(Zhang et al., 2018)*
Best 95.3 95.6 87.1 71.6 52.2
Last 95.2 92.3 77.6 46.7 43.9

M-DYR-H
Best 93.6 94.0 92.0 86.8 40.8
Last 93.4 93.8 91.9 86.6 9.9

MD-DYR-SH
Best 93.6 93.8 90.6 82.4 69.1
Last 92.7 93.6 90.3 77.8 68.7

Alg./Noise level (%) 0 20 50 80 90

(Reed et al., 2015)*
Best 76.1 62.1 46.6 19.9 10.2
Last 75.9 62.0 37.9 8.9 3.8

(Patrini et al., 2017)*
Best 75.4 61.5 46.6 19.9 10.2
Last 75.2 61.4 37.3 9.0 3.4

(Zhang et al., 2018)*
Best 74.8 67.8 57.3 30.8 14.6
Last 74.4 66.0 46.6 17.6 8.1

M-DYR-H
Best 70.3 68.7 61.7 48.2 12.5
Last 66.2 68.5 58.8 47.6 8.6

MD-DYR-SH
Best 73.3 73.9 66.1 41.6 24.3
Last 71.3 73.4 65.4 35.4 20.5

that we significantly outperform the best state-of-the-art we

are aware for 90% of label noise, which is 58.3% and 58.0%

for best and last validation accuracies (reported in (Tanaka

et al., 2018) with a PreAct ResNet-32 on CIFAR-10). The

training process is slightly modified to introduce dynamic

mixup (epoch 106) before bootstrapping (epoch 111) for

MD-DYR-H and MD-DYR-SH.

4.5. Comparison with related approaches

Table 4 compares with related works for different levels

of label noise using a common architecture and the 300

epochs training scheme (see Subsection 4.1) . We introduce

bootstrapping in epoch 105 for (Reed et al., 2015) for the

proposed methods, estimate the T matrix of (Patrini et al.,

2017) in epoch 75 (as done in (Hendrycks et al., 2018)),

and use the configuration reported in (Zhang et al., 2018)

for mixup. We outperform the related work in the pres-

ence of label noise, obtaining remarkable improvements for

high levels of noise (80% and 90%) where the compared

approaches do not learn as well from the noisy samples (see

best accuracy) and do not prevent fitting noisy labels (see

last accuracy).

As noted in Subsection 4.1, when introducing label noise the

true label can be excluded from the candidates. In this case
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Table 5. Comparison with the state-of-the-art in terms of validation

accuracy on CIFAR-10 (top) and CIFAR-100 (bottom). Key: M

(mixup), MD (dynamic mixup), DYR (dynamic bootstrapping +

reg. from Eq. 14), H (hard), SH (soft to hard), WRN (Wide

ResNet), PRN (PreActivation ResNet, and GCNN (Generic CNN).

Bold indicates best performance.

Algorithm Architecture
Noise level (%)

20 40 60 80

(Jiang et al., 2018b) WRN-101 92.0 89.0 - 49.0
(Ma et al., 2018) GCNN-12 85.1 83.4 72.8 -
(Ren et al., 2018) WRN-28 - 86.9 - -
(Wang et al., 2018b) GCNN-7 81.4 78.2 - -
M-DYR-H PRN-18 94.0 92.8 90.3 46.3
MD-DYR-SH PRN-18 93.8 92.3 86.1 74.1

Algorithm Architecture
Noise level (%)

20 40 60 80

(Jiang et al., 2018b) WRN-101 73.0 68.0 - 35.0
(Ma et al., 2018) RN-44 62.2 52.0 42.3 -
(Ren et al., 2018) WRN-28 - 61.3 - -
M-DYR-H PRN-18 70.0 64.4 58.1 45.5
MD-DYR-SH PRN-18 73.7 70.1 59.5 39.5

Table 6. Comparison of test accuracy on TinyImageNet. Key: M

(mixup) , DYR (dynamic bootstrapping + reg. from Eq. 14), H

(hard), and SH (soft to hard). (*) denotes that we have run the

algorithm. Bold indicates best performance.

Alg./Noise level (%) 20 50 80

(Zhang et al., 2018)*
Best 53.2 41.7 18.9
Last 49.4 31.1 8.7

M-DYR-H
Best 51.8 44.4 18.3
Last 51.6 43.6 17.7

MD-DYR-SH
Best 60.0 50.4 24.4
Last 59.8 50.0 19.6

label noise is defined as the percentage of incorrect labels in-

stead of random ones (i.e. the criterion followed in previous

experiments), a criterion adopted by several other authors

(Jiang et al., 2018b; Ma et al., 2018; Ren et al., 2018; Wang

et al., 2018b). We also run our proposed approach under

this setup to allow quantitative comparison (Table 5). The

proposed method outperforms all related work in CIFAR-10

and CIFAR-100 with MD-DYR-SH, while the results for

M-DYR-H are slightly below those of (Jiang et al., 2018b)

for low label noise levels in CIFAR-100. Nevertheless, these

results should be interpreted with care due to the different ar-

chitectures employed and the use of sets of clean data during

training in (Jiang et al., 2018b) and (Ren et al., 2018).

4.6. Generalization of the proposed approach

Table 6 shows the results of the proposed approaches M-

DYR-H and MD-DYR-SH compared to mixup (Zhang et al.,

2018) on TinyImageNet to demonstrate that our approach is

useful far from CIFAR data. The proposed approach clearly

outperforms (Zhang et al., 2018) for different levels of label

noise, obtaining consistent results with the CIFAR experi-

ments. Note that we use the same network, hyperparameters,

and learning rate policy as with CIFAR. Furthermore, we

tested our approach in real-world label noise by evaluat-

ing our method on Clothing1M (Xiao et al., 2015), which

contains non-uniform label noise with label flips concen-

trated in classes sharing similar visual patterns with the

true class. We followed a similar network and procedure

as (Tanaka et al., 2018) with ImageNet pre-trained weights

and ResNet-50, obtaining over 71% test accuracy, which

falls short of the state-of-the-art (72.23% (Tanaka et al.,

2018)). We found that finetuning a pre-trained network for

one epoch, as done in (Tanaka et al., 2018), easily fits label

noise limiting our unsupervised label noise model. We be-

lieve this occurs due to the structured noise and the small

learning rate. Training with cross-entropy alone gives test

accuracy over 69%, suggesting that the configurations used

might be suboptimal.

5. Conclusions

This paper presented a novel approach on training under

label noise with CNNs that does not require any set of clean

data. We proposed to fit a beta mixture model to the cross-

entropy loss of each sample and model label noise in an

unsupervised way. This model is used to implement a dy-

namic bootstrapping loss that relies either on the network

prediction or the ground-truth (and potentially noisy) la-

bels depending on the mixture model. We combined this

dynamic bootstrapping with mixup data augmentation to im-

plement an incredibly robust loss correction approach. We

conducted extensive experiments on CIFAR-10 and CIFAR-

100 to show the strengths and weaknesses of our approach

demonstrating outstanding performance. We further pro-

posed to use our beta mixture model to guide the combina-

tion of mixup data augmentation to assure reliable conver-

gence under extreme noise levels. The approach generalizes

well to TinyImageNet but shows some limitations under

non-uniform noise in Clothing1M that we will explore in

future research.
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