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Abstract

Convolutional neural networks provide visual

features that perform well in many computer vi-

sion applications. However, training these net-

works requires large amounts of supervision; this

paper introduces a generic framework to train

such networks, end-to-end, with no supervision.

We propose to fix a set of target representations,

called Noise As Targets (NAT), and to constrain

the deep features to align to them. This domain

agnostic approach avoids the standard unsuper-

vised learning issues of trivial solutions and col-

lapsing of features. Thanks to a stochastic batch

reassignment strategy and a separable square loss

function, it scales to millions of images. The

proposed approach produces representations that

perform on par with state-of-the-art unsupervised

methods on ImageNet and PASCAL VOC.

1. Introduction

In recent years, convolutional neural networks, or con-

vnets (Fukushima, 1980; LeCun et al., 1989) have pushed

the limits of computer vision (Krizhevsky et al., 2012; He

et al., 2016), leading to important progress in a variety of

tasks, like object detection (Girshick, 2015) or image seg-

mentation (Pinheiro et al., 2015). Key to this success is

their ability to produce features that easily transfer to new

domains when trained on massive databases of labeled im-

ages (Razavian et al., 2014; Oquab et al., 2014) or weakly-

supervised data (Joulin et al., 2016). However, human an-

notations may introduce unforeseen bias that could limit

the potential of learned features to capture subtle informa-

tion hidden in a vast collection of images.

Several strategies exist to learn deep convolutional features

with no annotation (Donahue et al., 2016). They either

try to capture a signal from the source as a form of self-

supervision (Doersch et al., 2015; Wang & Gupta, 2015) or
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learn the underlying distribution of images (Vincent et al.,

2010; Goodfellow et al., 2014). While some of these ap-

proaches obtain promising performance in transfer learn-

ing (Donahue et al., 2016; Wang & Gupta, 2015), they do

not explicitly aim to learn discriminative features. Some at-

tempts were made with retrieval based approaches (Doso-

vitskiy et al., 2014) and clustering (Yang et al., 2016; Liao

et al., 2016), but they are hard to scale and have only been

tested on small datasets. Unfortunately, as in the supervised

case, a lot of data is required to learn good representations.

In this work, we propose a discriminative framework de-

signed to learn deep architectures on large datasets. Our

approach is general, but we focus on convnets since they

require millions of images to produce good features. Sim-

ilar to self-organizing maps (Kohonen, 1982; Martinetz &

Schulten, 1991), we map deep features to a set of prede-

fined representations in a low dimensional space. As op-

posed to these approaches, we aim to learn the features in a

end-to-end fashion, which traditionally suffers from a fea-

ture collapsing problem. Our approach deals with this is-

sue by fixing the target representations and aligning them to

our features. These representations are sampled from a un-

informative distribution and we use this Noise As Targets

(NAT). Our approach also shares some similarities with

standard clustering approches like k-means (Lloyd, 1982)

or discriminative clustering (Bach & Harchaoui, 2007).

In addition, we propose an online algorithm able to scale

to massive image databases like ImageNet (Deng et al.,

2009). Importantly, our approach is barely less efficient

to train than standard supervised approaches and can re-

use any optimization procedure designed for them. This

is achieved by using a quadratic loss as in (Tygert et al.,

2017) and a fast approximation of the Hungarian algo-

rithm. We show the potential of our approach by training

end-to-end on ImageNet a standard architecture, namely

AlexNet (Krizhevsky et al., 2012) with no supervision.

We test the quality of our features on several image classi-

fication problems, following the setting of Donahue et al.

(2016). We are on par with state-of-the-art unsupervised

and self-supervised learning approaches while being much

simpler to train and to scale.

The paper is organized as follows: after a brief review of

the related work in Section 2, we present our approach in
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Section 3. We then validate our solution with several ex-

periments and comparisons with standard unsupervised and

self-supervised approaches in Section 4.

2. Related work

Several approaches have been recently proposed to tackle

the problem of deep unsupervised learning (Coates & Ng,

2012; Mairal et al., 2014; Dosovitskiy et al., 2014). Some

of them are based on a clustering loss (Xie et al., 2016;

Yang et al., 2016; Liao et al., 2016), but they are not tested

at a scale comparable to that of supervised convnet train-

ing. Coates & Ng (2012) uses k-means to pre-train con-

vnets, by learning each layer sequentially in a bottom-up

fashion. In our work, we train the convnet end-to-end with

a loss that shares similarities with k-means. Closer to our

work, Dosovitskiy et al. (2014) proposes to train convnets

by solving a retrieval problem. They assign a class per im-

age and its transformation. In contrast to our work, this

approach can hardly scale to more than a few hundred of

thousands of images, and requires a custom-tailored archi-

tecture while we use a standard AlexNet.

Another traditional approach for learning visual representa-

tions in an unsupervised manner is to define a parametrized

mapping between a predefined random variable and a set

of images. Traditional examples of this approach are varia-

tional autoencoders (Kingma & Welling, 2013), generative

adversarial networks (Goodfellow et al., 2014), and to a

lesser extent, noisy autoencoders (Vincent et al., 2010). In

our work, we are doing the opposite; that is, we map images

to a predefined random variable. This allows us to re-use

standard convolutional networks and greatly simplifies the

training.

Generative adversarial networks. Among those ap-

proaches, generative adversarial networks (GANs) (Good-

fellow et al., 2014; Denton et al., 2015; Donahue et al.,

2016) share another similarity with our approach, namely

they are explicitly minimizing a discriminative loss to learn

their features. While these models cannot learn an inverse

mapping, Donahue et al. (2016) recently proposed to add

an encoder to extract visual features from GANs. Like

ours, their encoder can be any standard convolutional net-

work. However, their loss aims at differentiating real and

generated images, while we are aiming directly at differ-

entiating between images. This makes our approach much

simpler and faster to train, since we do not need to learn the

generator nor the discriminator.

Self-supervision. Recently, a lot of work has explored

self-supervison: leveraging supervision contained in the

input signal (Doersch et al., 2015; Noroozi & Favaro,

2016; Pathak et al., 2016). In the same vein as

word2vec (Mikolov et al., 2013), Doersch et al. (2015)

show that spatial context is a strong signal to learn visual

features. Noroozi & Favaro (2016) have further extended

this work. Others have shown that temporal coherence in

videos also provides a signal that can be used to learn pow-

erful visual features (Agrawal et al., 2015; Jayaraman &

Grauman, 2015; Wang & Gupta, 2015). In particular, Wang

& Gupta (2015) show that such features provide promis-

ing performance on ImageNet. In contrast to our work,

these approaches are domain dependent since they require

explicit derivation of weak supervision directly from the

input.

Autoencoders. Many have also used autoencoders with

a reconstruction loss (Bengio et al., 2007; Ranzato et al.,

2007; Masci et al., 2011). The idea is to encode and de-

code an image, while minimizing the loss between the de-

coded and original images. Once trained, the encoder pro-

duces image features and the decoder can be used to gen-

erate images from codes. The decoder is often a fully con-

nected network (Ranzato et al., 2007) or a deconvolutional

network (Masci et al., 2011; Zhao et al., 2016) but can

be more sophisticated, like a PixelCNN network (van den

Oord et al., 2016).

Self-organizing map. This family of unsupervised meth-

ods aims at learning a low dimensional representation of

the data that preserves certain topological properties (Ko-

honen, 1982; Vesanto & Alhoniemi, 2000). In particular,

Neural Gas (Martinetz & Schulten, 1991) aligns feature

vectors to the input data. Each input datum is then assigned

to one of these vectors in a winner-takes-all manner. These

feature vectors are in spirit similar to our target representa-

tions and we use a similar assignment strategy. In contrast

to our work, the target vectors are not fixed and aligned to

the input vectors. Since we primarly aim at learning the

input features, we do the opposite.

Discriminative clustering. Many methods have been

proposed to use discriminative losses for clustering (Xu

et al., 2004; Bach & Harchaoui, 2007; Krause et al., 2010;

Joulin & Bach, 2012). In particular, Bach & Harchaoui

(2007) shows that the ridge regression loss could be use

to learn discriminative clusters. It has been successfully

applied to several computer vision applications, like ob-

ject discovery (Joulin et al., 2010; Tang et al., 2014) or

video/text alignment (Bojanowski et al., 2013; 2014; Ra-

manathan et al., 2014). In this work, we show that a similar

framework can be designed for neural networks. As op-

posed to Xu et al. (2004), we address the empty assignment

problems by restricting the set of possible reassignments to

permutations rather than using global linear constrains the

assignments. Our assignments can be updated online, al-

lowing our approach to scale to very large datasets.
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Figure 1. Our approach takes a set of images, computes their deep

features with a convolutional network and matches them to a set of

predefined targets from a low dimensional space. The parameters

of the network are learned by aligning the features to the targets.

3. Method

In this section, we present our model and discuss its re-

lations with several clustering approaches including k-

means. Figure 1 shows an overview of our approach. We

also show that it can be trained on massive datasets using

an online procedure. Finally, we provide all the implemen-

tation details.

3.1. Unsupervised learning

We are interested in learning visual features with no su-

pervision. These features are produced by applying a

parametrized mapping fθ to the images. In the presence

of supervision, the parameters θ are learned by minimiz-

ing a loss function between the features produced by this

mapping and some given targets, e.g., labels. In absence of

supervision, there is no clear target representations and we

thus need to learn them as well. More precisely, given a

set of n images xi, we jointly learn the parameters θ of the

mapping fθ, and some target vectors yi:

min
θ

1

n

n
∑

i=1

min
yi∈Rd

ℓ(fθ(xi), yi), (1)

where d is the dimension of target vectors. In the rest of

the paper, we use matrix notations, i.e., we denote by Y the

matrix whose rows are the target representations yi, and by

X the matrix whose rows are the images xi. With a slight

abuse of notation, we denote by fθ(X) the n× d matrix of

features whose rows are obtained by applying the function

fθ to each image independently.

Choosing the loss function. In the supervised setting, a

popular choice for the loss ℓ is the softmax function. How-

ever, computing this loss is linear in the number of targets,

making it impractical for large output spaces (Goodman,

2001). While there are workarounds to scale these losses to

large output spaces, Tygert et al. (2017) has recently shown

that using a squared ℓ2 distance works well in many su-

pervised settings, as long as the final activations are unit

normalized. This loss only requires access to a single tar-

get per sample, making its computation independent of the

number of targets. This leads to the following problem:

min
θ

min
Y ∈Rn×d

1

2n
‖fθ(X)− Y ‖2F , (2)

where we still denote by fθ(X) the unit normalized fea-

tures.

Using fixed target representations. Directly solving the

problem defined in Eq. (2) would lead to a representation

collapsing problem: all the images would be assigned to

the same representation (Xu et al., 2004). We avoid this

issue by fixing a set of k predefined target representations

and matching them to the visual features. More precisely,

the matrix Y is defined as the product of a matrix C con-

taining these k representations and an assignment matrix P
in {0, 1}n×k, i.e.,

Y = PC. (3)

Note that we can assume that k is greater than n with

no loss of generality (by duplicating representations oth-

erwise). Each image is assigned to a different target and

each target can only be assigned once. This leads to a set

P of constraints for the assignment matrices:

P = {P ∈ {0, 1}n×k | P1k ≤ 1n, P
⊤1n = 1k}. (4)

This formulation forces the visual features to be diversified,

avoiding the collapsing issue at the cost of fixing the target

representations. Predefining these targets is an issue if their

number k is small, which is why we are interested in the

case where k is at least as large as the number n of images.

Choosing the target representations. Until now, we

have not discussed the set of target representations stored

in C. A simple choice for the targets would be to take

k elements of the canonical basis of R
d. If d is larger

than n, this formulation would be similar to the framework

of Dosovitskiy et al. (2014), and is impractical for large

n. On the other hand, if d is smaller than n, this formula-

tion is equivalent to the discriminative clustering approach

of Bach & Harchaoui (2007). Choosing such targets makes

very strong assumptions on the nature of the underlying

problem. Indeed, it assumes that each image belongs to a

unique class and that all classes are orthogonal. While this

assumption might be true for some classification datasets, it
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does not generalize to large image collections nor capture

subtle similarities between images belonging to different

classes.

Since our features are unit normalized, another natural

choice is to uniformly sample target vectors on the ℓ2 unit

sphere. Note that the dimension d will then directly influ-

ence the level of correlation between representations, i.e.,

the correlation is inversely proportional to the square root

of d. Using this Noise As Targets (NAT), Eq. (2) is now

equivalent to:

max
θ

max
P∈P

Tr
(

PCfθ(X)⊤
)

. (5)

This problem can be interpreted as mapping deep features

to a uniform distribution over a manifold, namely the d-

dimension ℓ2 sphere. Using k predefined representations is

a discrete approximation of this manifold that justifies the

restriction of the mapping matrices to the set P of 1-to-1
assignment matrices. In some sense, we are optimizing a

crude approximation of the earth mover’s distance between

the distribution of deep features and a given target distribu-

tion (Rubner et al., 1998).

Relation to clustering approaches. Using the same no-

tations as in Eq. (5), several clustering approaches share

similarities with our method. In the linear case, spherical

k-means minimizes the same loss function w.r.t. P and C,

i.e.,

max
C

max
P∈Q

tr
(

PCXT
)

.

The main difference is the set Q of assignment matrices:

Q = {P ∈ {0, 1}n×k | P1k = 1n}.

This set only guarantees that each data point is assigned

to a single target representation. Once we jointly learn the

features and the assignment, this set does not prevent the

collapsing of the data points to a single target representa-

tion.

Another similar clustering approach is Diffrac (Bach &

Harchaoui, 2007). Their loss is equivalent to ours in the

case of unit normalized features. Their setR of assignment

matrices, however, is different:

R = {P ∈ {0, 1}n×k | P⊤1n ≥ c1k},

where c > 0 is some fixed parameter. While restricting

the assignment matrices to this set prevents the collapsing

issue, it introduces global constraints that are not suited

for online optimization. This makes their approach hard

to scale to large datasets.

3.2. Optimization

In this section, we describe how to efficiently optimize the

cost function described in Eq. (5). In particular, we explore

Algorithm 1 Stochastic optimization of Eq. (5).

Require: T batches of images, λ0 > 0
for t = {1, . . . , T} do

Obtain batch b and representations r
Compute fθ(Xb)
Compute P ∗ by minimizing Eq. (2) w.r.t. P
Compute ∇θL(θ) from Eq. (2) with P ∗

Update θ ← θ − λt∇θL(θ)
end for

approximated updates of the assignment matrix that are

compatible with online optimization schemes, like stochas-

tic gradient descent (SGD).

Updating the assignment matrix P . Directly solving

for the optimal assignment requires to evaluate the dis-

tances between all the n features and the k representations.

In order to efficiently solve this problem, we first reduce

the number k of representations to n. This limits the set P
to the set of permutation matrices, i.e.,

P = {P ∈ {0, 1}n×n | P1n = 1n, P
⊤1n = 1n}. (6)

Restricting the problem defined in Eq. (5) to this set, the

linear assignment problem in P can be solved exactly with

the Hungarian algorithm (Kuhn, 1955), but at the pro-

hibitive cost of O(n3).

Instead, we perform stochastic updates of the matrix. Given

a batch of samples, we optimize the assignment matrix P
on its restriction to this batch. Given a subset B of b dis-

tinct images, we only update the b × b square sub matrix

PB obtained by restricting P to these b images and their

corresponding targets. In other words, each image can only

be re-assigned to a target that was previously assigned to

another image in the batch. This procedure has a complex-

ity of O(b3) per batch, leading to an overall complexity of

O(nb2), which is linear in the number of data points. We

perform this update before updating the parameters θ of our

features, in an on-line manner. Note that this simple proce-

dure would not have been possible if k > n; we would have

had to also consider the k − n unassigned representations.

Stochastic gradient descent. Apart from the update of

the assignment matrix P , we use the same optimization

scheme as standard supervised approaches, i.e., SGD with

batch normalization (Ioffe & Szegedy, 2015). As noted

by Tygert et al. (2017), batch normalization plays a cru-

cial role when optimizing the l2 loss, as it avoids exploding

gradients. For each batch b of images, we first perform a

forward pass to compute the distance between the images

and the corresponding subset of target representations r.

The Hungarian algorithm is then used on these distances to

obtain the optimal reassignments within the batch. Once
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Softmax Square loss

ImageNet 59.2 58.4

Table 1. Comparison between the softmax and the square loss for

supervised object classification on ImageNet. The architecture

is an AlexNet. The features are unit normalized for the square

loss (Tygert et al., 2017). We report the accuracy on the validation

set.

the assignments are updated, we use the chain rule in order

to compute the gradients of all our parameters. Our opti-

mization algorithm is summarized in Algorithm 1.

3.3. Implementation details

Our experiments solely focus on learning visual features

with convnets. All details required to train these architec-

tures with our approach are described below. Most of them

are standard tricks used in the supervised setting.

Deep features. To ensure a fair empirical comparison

with previous work, we follow Wang & Gupta (2015) and

use an AlexNet architecture. We train it end to end using

our unsupervised loss function. We subsequently test the

quality of the learned visual feature by re-training a classi-

fier on top. During transfer learning, we consider the output

of the last convolutional layer as our features as in Raza-

vian et al. (2014). We use the same multi-layer perceptron

(MLP) as in Krizhevsky et al. (2012) for the classifier.

Pre-processing. We observe in practice that pre-

processing the images greatly helps the quality of our

learned features. As in Ranzato et al. (2007), we use im-

age gradients instead of the images to avoid trivial solu-

tions like clustering according to colors. Using this pre-

processing is not surprising since most hand-made features

like SIFT or HoG are based on image gradients (Lowe,

1999; Dalal & Triggs, 2005). In addition to this pre-

processing, we also perform all the standard image trans-

formations that are commonly applied in the supervised

setting (Krizhevsky et al., 2012), such as random cropping

and flipping of images.

Optimization details. We project the output of the net-

work on the ℓ2 sphere as in Tygert et al. (2017). The net-

work is trained with SGD with a batch size of 256. Dur-

ing the first t0 batches, we use a constant step size. Af-

ter t0 batches, we use a linear decay of the step size, i.e.,

lt =
l0

1+γ[t−t0]+
. Unless mentioned otherwise, we permute

the assignments within batches every 3 epochs. For the

transfer learning experiments, we follow the guideline de-

scribed in Donahue et al. (2016).

4. Experiments

We perform several experiments to validate different design

choices in NAT. We then evaluate the quality of our fea-

tures by comparing them to state-of-the-art unsupervised

approaches on several auxiliary supervised tasks, namely

object classification on ImageNet and object classification

and detection of PASCAL VOC 2007 (Everingham et al.,

2010).

Transfering the features. In order to measure the quality

of our features, we measure their performance on transfer

learning. We freeze the parameters of all the convolutional

layers and overwrite the parameters of the MLP classifier

with random Gaussian weights. We precisely follow the

training and testing procedure that is specific to each of the

datasets following Donahue et al. (2016).

Datasets and baselines. We use the training set of Im-

ageNet to learn our convolutional network (Deng et al.,

2009). This dataset is composed of 1, 281, 167 images that

belong to 1, 000 object categories. For the transfer learn-

ing experiments, we also consider PASCAL VOC 2007. In

addition to fully supervised approaches (Krizhevsky et al.,

2012), we compare our method to several unsupervised

approaches, i.e., autoencoder, GAN and BiGAN as re-

ported in Donahue et al. (2016). We also compare to self-

supervised approaches, i.e., Agrawal et al. (2015); Doersch

et al. (2015); Pathak et al. (2016); Wang & Gupta (2015)

and Zhang et al. (2016). Finally we compare to state-of-

the-art hand-made features, i.e., SIFT with Fisher Vectors

(SIFT+FV) (Sánchez et al., 2013). They reduce the Fisher

Vectors to a 4, 096 dimensional vector with PCA, and apply

an 8, 192 unit 3-layer MLP on top.

4.1. Detailed analysis

In this section, we validate some of our design choices,

like the loss function, representations and the influences of

some parameters on the quality of our features. All the ex-

periments are run on ImageNet.

Softmax versus square loss. Table 1 compares the per-

formance of an AlexNet trained with a softmax and a

square loss. We report the accuracy on the validation set.

The square loss requires the features to be unit normal-

ized to avoid exploding gradients. As previously observed

by Tygert et al. (2017), the performances are similar, hence

validating our choice of loss function.

Effect of image preprocessing. In supervised classi-

fication, image pre-processing is not frequently used,

and transformations that remove information are usually

avoided. In the unsupervised case, however, we observe

that is it is preferable to work with simpler inputs as
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clean high-pass sobel

acc@1 59.7 58.5 57.4

Table 2. Performance of supervised models with various image

pre-processings applied. We train an AlexNet on ImageNet, and

report classification accuracy.

it avoids learning trivial features. In particular, we ob-

serve that using grayscale image gradients greatly helps our

method, as mentioned in Sec. 3. In order to verify that

this preprocessing does not destroy crucial information, we

propose to evaluate its effect on supervised classification.

We also compare with high-pass filtering. Table 2 shows

the impact of this preprocessing methods on the accuracy

of an AlexNet on the validation set of ImageNet. None

of these pre-processings degrade the perform significantly,

meaning that the information related to gradients are suf-

ficient for object classification. This experiment confirms

that such pre-processing does not lead to a significant drop

in the upper bound performance for our model.

Continuous versus discrete representations. We com-

pare our choice for target vectors to those commonly used

for clustering, i.e., elements of the canonical basis of a k
dimensional space. Such a representation makes a strong

assumption on the structure of the problem, that it can be

linearly separated in k different classes. This holds for Im-

ageNet, giving a fair advantage to this discrete representa-

tion. We test this representation with k in {103, 104, 105},
which is a range well-suited for the 1, 000 classes of Im-

ageNet. The matrix C contains n/k replications of k ele-

ments of the canonical basis. This assumes that the clusters

are balanced, which is verified on ImageNet.

We compare these cluster-like representations to our con-

tinuous target vectors on the transfer task on ImageNet. Us-

ing discrete targets achieves an accuracy of 22%, which is

significantly worse that our best performance, i.e., 36.0%.

A possible explanation is that binary vectors induce sharp

discontinuous distances between representations. Such dis-

tances are hard to optimize over and may result in early

convergence to poorer local minima.

Evolution of the features. In this experiment, we are in-

terested in understanding how the quality of our features

evolves with the optimization of our cost function. Dur-

ing the unsupervised training, we freeze the network every

20 epochs and learn a MLP classifier on top. We report

the accuracy on the validation set of ImageNet. Figure 2

shows the evolution of the performance on this transfer task

as we optimize for our unsupervised approach. The train-

ing performance improves monotonically with the epochs

of the unsupervised training. This suggests that optimizing
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Figure 2. On the left, we measure the accuracy on ImageNet after

training the features with our unsupervised approach as a function

of the number of epochs. The performance improves with longer

unsupervised training. On the right, we measure the accuracy on

ImageNet after training the features with different permutation

rates There is a clear trade-off with an optimum at permutations

performed every 3 epochs.

our objective function correlates with learning transferable

features, i.e., our features do not destroy useful class-level

information. On the other hand, the test accuracy seems

to saturate after a hundred epochs. This suggests that the

MLP is overfitting rapidly on pre-trained features.

Effect of permutations. Assigning images to their target

representations is a the main feature of our approach. In

this experiment, we want to understand how frequently we

should update this assignment. Updating the assignment,

even partially, is costly and may not be required to achieve

good performance. Figure 2 shows the transfer accuracies

on ImageNet as a function of the frequency of these up-

dates. The model is quite robust to choice of frequency,

with a test accuracy always above 30%. Interestingly, the

accuracy actually degrades slightly with high frequency. A

possible explanation is that the network overfits rapidly to

its own output, leading to relatively worse features. In prac-

tice, we observe that updating the assignment matrix every

3 epochs offers a good trade-off between performance and

accuracy. When training the network and keeping P fixed,

we obtain a baseline test accuracy of 26.4%.

Visualizing the filters. Figure 4 shows a comparison be-

tween the first convolutional layer of an AlexNet trained

with and without supervision. Both take grayscale gradient

images as input. The visualization are obtained by com-

posing the Sobel filtering with the filters of the first layer

of the AlexNet. Unsupervised filters are slightly less sharp

than their supervised counterpart, but still maintain edge

and orientation information.

Nearest neighbor queries. Our loss optimizes a distance

between features and fixed vectors. This means that look-

ing at the distance between features should provide some

information about the type of structure that our model cap-
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Figure 3. Images and their 3 nearest neighbors in ImageNet according to our model using an ℓ2 distance. The query images are shown on

the top row, and the nearest neighbors are sorted from the closer to the further. Our features seem to capture global distinctive structures.

Figure 4. Filters form the first layer of an AlexNet trained on Im-

ageNet with supervision (left) or with NAT (right). The filters

are in grayscale, since we use grayscale gradient images as input.

This visualization shows the composition of the gradients with the

first layer.

tures. Given a query image x, we compute its feature fθ(x)
and search for its nearest neighbors according to the ℓ2 dis-

tance. Figure 3 shows images and their nearest neighbors.

The features capture relatively complex structures in im-

ages. Objects with distinctive structures, like trunks or

fruits, are well captured by our approach. However, this

information is not always related to image labels. For ex-

ample, the image of bird on the sea is matched to images

more related to the sea or the sky rather than the bird.

4.2. Comparison with the state of the art

We report results on the transfer task both on ImageNet and

PASCAL VOC 2007. The model is trained on ImageNet.

ImageNet classification. In this experiment, we evaluate

the quality of our features for the object classification task

of ImageNet. In this setup, we build the unsupervised fea-

tures on images that correspond to predefined image cate-

gories. Even though we do not have access to labels, the

data itself is biased towards these classes. In order to eval-

uate the features, we freeze the layers up to the last convo-

lutional layer and train the classifier with supervision. This

experimental setting follows Noroozi & Favaro (2016).

We compare our model with several self-supervised (Wang

& Gupta, 2015; Doersch et al., 2015; Zhang et al., 2016)

and one unsupervised approach, i.e., Donahue et al. (2016).

Note that self-supervised approaches use losses specifically

designed for visual features. Like BiGANs (Donahue et al.,

2016), NAT does not make any assumption about the do-

main but of the structure of its features. Table 3 compares

NAT with these approaches.

Among unsupervised approaches, NAT compares favor-

ably to BiGAN (Donahue et al., 2016). Interestingly, the

performance of NAT are slightly better than self-supervised

methods, even though we do not explicitly use domain-

specific clues in images or videos to guide the learning.

While all the models provide performance in the 30− 36%
range, it is not clear if they all learn the same features. Fi-

nally, all the unsupervised deep features are outperformed
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Method Acc@1

Random (Noroozi & Favaro, 2016) 12.0

SIFT+FV (Sánchez et al., 2013) 55.6

Wang & Gupta (2015) 29.8

Doersch et al. (2015) 30.4

Zhang et al. (2016) 35.2
1Noroozi & Favaro (2016) 38.1

BiGAN (Donahue et al., 2016) 32.2

NAT 36.0

Table 3. Comparison of the proposed approach to state-of-the-art

unsupervised feature learning on ImageNet. A full multi-layer

perceptron is retrained on top of the features. We compare to sev-

eral self-supervised approaches and an unsupervised approach,

i.e., BiGAN (Donahue et al., 2016). 1Noroozi & Favaro (2016)

uses a significantly larger amount of features than the original

AlexNet. We report classification accuracy.

by hand-made features, in particular Fisher Vectors with

SIFT descriptors. This baseline uses a slightly bigger MLP

for the classifier and its performance can be improved by

2.2% by bagging 8 such models. This difference of 20%
in accuracy shows that unsupervised deep features are still

quite far from the state-of-the-arts among all unsupervised

features.

Transferring to PASCAL VOC 2007. We carry out a

second transfer experiment on the PASCAL VOC dataset,

on the classification and detection tasks. The model is

trained on ImageNet. Depending on the task, we finetune

all layers in the network, or solely the classifier, follow-

ing Donahue et al. (2016). In all experiments, the parame-

ters of the convolutional layers are initialized with the ones

obtained with our unsupervised approach. The parame-

ters of the classification layers are initialized with gaussian

weights. We get rid of batch normalization layers and use

a data-dependent rescaling of the parameters (Krähenbühl

et al., 2015). Table 4 shows the comparison between our

model and other unsupervised approaches. The results for

other methods are taken from Donahue et al. (2016) except

for Zhang et al. (2016).

As with the ImageNet classification task, our performance

is on par with self-supervised approaches, for both de-

tection and classification. Among purely unsupervised

approaches, we outperform standard approaches like au-

toencoders or GANs by a large margin. Our model also

performs slightly better than the best performing BiGAN

model (Donahue et al., 2016). These experiments confirm

our findings from the ImageNet experiments. Despite its

simplicity, NAT learns feature that are as good as those ob-

tained with more sophisticated and data-specific models.

Classification Detection

Trained layers fc6-8 all all

ImageNet labels 78.9 79.9 56.8

Agrawal et al. (2015) 31.0 54.2 43.9

Pathak et al. (2016) 34.6 56.5 44.5

Wang & Gupta (2015) 55.6 63.1 47.4

Doersch et al. (2015) 55.1 65.3 51.1

Zhang et al. (2016) 61.5 65.6 46.9

Autoencoder 16.0 53.8 41.9

GAN 40.5 56.4 -

BiGAN (Donahue et al., 2016) 52.3 60.1 46.9

NAT 56.7 65.3 49.4

Table 4. Comparison of the proposed approach to state-of-the-art

unsupervised feature learning on VOC 2007 Classification and de-

tection. We either fix the features after conv5 or we fine-tune the

whole model. We compare to several self-supervised and an un-

supervised approaches. The GAN and autoencoder baselines are

from Donahue et al. (2016). We report mean average prevision as

customary on PASCAL VOC.

5. Conclusion

This paper presents a simple unsupervised framework to

learn discriminative features. By aligning the output of a

neural network to low-dimensional noise, we obtain fea-

tures on par with state-of-the-art unsupervised learning ap-

proaches. Our approach explicitly aims at learning discrim-

inative features, while most unsupervised approaches target

surrogate problems, like image denoising or image genera-

tion. As opposed to self-supervised approaches, we make

very few assumptions about the input space. This makes

our appproach very simple and fast to train. Interestingly, it

also shares some similarities with traditional clustering ap-

proaches as well as retrieval methods. While we show the

potential of our approach on visual data, it will be interest-

ing to try other domains. Finally, this work only considers

simple noise distributions and alignment methods. A pos-

sible direction of research is to explore target distributions

and alignments that are more informative. This also would

strengthen the relation between NAT and methods based on

distribution matching like the earth mover distance.
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