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Abstract Graph matching is an essential problem in com-

puter vision that has been successfully applied to 2D and 3D

feature matching and object recognition. Despite its impor-

tance, little has been published on learning the parameters

that control graph matching, even though learning has been

shown to be vital for improving the matching rate. In this

paper we show how to perform parameter learning in an un-

supervised fashion, that is when no correct correspondences

between graphs are given during training. Our experiments

reveal that unsupervised learning compares favorably to the

supervised case, both in terms of efficiency and quality,

while avoiding the tedious manual labeling of ground truth

correspondences. We verify experimentally that our learning

method can improve the performance of several state-of-the

art graph matching algorithms. We also show that a similar

method can be successfully applied to parameter learning

for graphical models and demonstrate its effectiveness em-

pirically.
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1 Introduction

While there are many papers on solving the graph match-

ing problem efficiently (Berg et al. 2005; Leordeanu and

Hebert 2005; Leordeanu et al. 2009; Cour et al. 2006;

Gold and Rangarajan 1996; Schellewald and Schnorr 2005;

Carcassoni and Hancock 2002; Umeyama 1988; Zass and

Shashua 2008; Duchenne et al. 2009) very few propose

a solution for learning the optimal set of parameters for

graph matching in the context of computer vision appli-

cations (Caetano et al. 2007; Leordeanu and Hebert 2008;

Caetano et al. 2009). As shown in previous work, learning

the parameters is important for improving the matching per-

formance.

In this paper we show how to efficiently perform unsu-

pervised parameter learning for graph matching. A prelimi-

nary version of this work appears in Leordeanu and Hebert

(2009). Unsupervised learning for matching is important in

practice, since manual labeling of correspondences can be

quite time consuming. The same basic algorithm can be

used in the supervised or semi-supervised cases with min-

imal modification, if all or some of the ground truth matches

are available. We also show empirically that our learning al-

gorithm is robust to the presence of outliers. Our learning

algorithm is inspired from the properties of spectral match-

ing (Leordeanu and Hebert 2005), but it can be successfully

used for improving the performance of other state-of-the-art

matching algorithms (Sect. 5.3).

In earlier work (Leordeanu and Hebert 2005; Leordeanu

et al. 2009), we presented algorithms for finding correspon-

dences between two sets of features mainly based on the

second-order relationships between them. The reason why

spectral matching (Leordeanu and Hebert 2005) works effi-

mailto:marius.leordeanu@imar.ro
mailto:rahuls@cs.cmu.edu
mailto:hebert@ri.cmu.edu


Int J Comput Vis (2012) 96:28–45 29

ciently is because the pairwise geometric scores favor cor-

rect assignments much more than incorrect ones. Accidental

assignments are rare, so strong pairwise scores between in-

correct assignments are unlikely, while such strong scores

between most correct ones are very likely. Of course, this is

a qualitative, intuitive explanation based on the assumption

that the scores are well designed and meaningful. Therefore,

an important issue is how to learn the parameters that control

the pairwise scores, which will make the algorithm work at

its optimal level in the task of matching a specific object type

or shape. The key question is: how can we automatically find

the optimal parameters during training, particularly without

knowing any ground-truth correspondences in the training

set?

One would ideally like to keep the pairwise scores be-

tween correct assignments high while lowering as much as

possible the pairwise scores between incorrect ones. But

how can we quantify this goal, and more importantly, how

can we learn these scores automatically? This is the issue

that we discuss in this paper, showing that it is possible to

learn the pairwise scores in an unsupervised way, that is,

without knowing the correct assignments during training.

We demonstrate experimentally that we can learn meaning-

ful pairwise scores even in the presence of outliers or in

cases when the training set is corrupted with pairs of fea-

tures for which there is no such set of correct assignments

(for example, when trying to find correspondences between

a motorbike and a car).

In earlier work (Leordeanu and Hebert 2006), we pre-

sented an algorithm for MAP inference for Markov Random

Fields, inspired from spectral graph matching (Leordeanu

and Hebert 2005). Since graph matching and MAP infer-

ence can both be formulated as similar integer quadratic pro-

grams, it is not surprising that similar algorithms can address

both problems, as shown in (Leordeanu and Hebert 2005;

Leordeanu and Hebert 2006; Cour and Shi 2007; Leordeanu

et al. 2009). Here we further explore the connection between

graph matching and MAP inference by also introducing a

method for learning the parameters that optimize the MAP

inference problem, inspired from the learning method for

graph matching. In the case of graph matching, our learning

method is the first to learn the parameters of the higher-order

(pairwise) terms in both supervised and unsupervised fash-

ions. Here we present a method for learning the parameters

that is not probabilistic and whose only goal is to find the

parameters that optimize the performance of the inference

algorithm, which is related to Szummer et al. (2008) and

Max-Margin Markov Networks Taskar et al. (2004). More-

over, we show that for some problems, such as image de-

noising, we can learn these parameters in a completely un-

supervised manner, similar to our unsupervised learning ap-

proach to graph matching.

2 Problem Formulation

The graph matching problem consists of finding the indica-

tor vector x∗ that maximizes a quadratic score function:

x∗ = argmax(xT Mx) s.t. Ax = 1, x ∈ {0,1}n. (1)

Here x is an indicator vector such that xia = 1 if feature

i from one image/object (or graph) is matched to feature

a from the other image/object (or graph) and zero other-

wise. Usually, Ax = 1, x ∈ {0,1}n enforces one-to-one con-

straints on x such that one feature from one image can be

matched to at most one other feature from the other image.

In our work M is a matrix with positive elements contain-

ing the pairwise score functions, such that Mia;jb measures

how well the pair of features (i, j) from one image agrees

in terms of geometry and appearance (e.g., difference in lo-

cal appearance descriptors, pairwise distances, angles, etc.)

with a pair of candidate matches (a, b) from the other. The

local appearance terms of candidate correspondences can be

stored on the diagonal of M; in practice we noticed that in-

cluding them in the pairwise scores Mia;jb , and leaving ze-

ros on the diagonal gives better results; Mia;jb is basically

a function that is defined by a certain parameter vector w.

The type of pairwise scores Mia;jb that we use in our exper-

iments is:

Mia;jb = exp (−wT gia;jb), (2)

where w is a vector of weights/parameters (to be learned)

and gia;jb is a vector (usually containing non-negative er-

rors/deformations) describing the changes in geometry and

appearance when matching the pair of features (i, j) to the

pair of features (a, b).

The MAP inference problem can have a similar formula-

tion as an integer quadratic program (Leordeanu and Hebert

2006; Cour and Shi 2007; Ravikumar and Lafferty 2006).

In this case the matrix M contains the unary potentials (on

the diagonal) and the interaction potentials (on the off diag-

onal elements) that control the joint probabilities. For MAP

inference, the constraints Ax = 1, x ∈ {0,1}n on the solu-

tion are usually many-to-one: many nodes from the graph

can have the same label. We present the actual implemen-

tation of these potentials in the experiments (see Sect. 6.5).

For MAP inference each node i is matched to a possible

label/class a. The main difference between the two formu-

lations is that, while in the case of graph matching we usu-

ally enforce one-to-one constraints on the indicator solution

vector x, for MAP inference many-to-one constraints are im-

posed.

Parameter learning for both graph matching and MAP

inference consists of finding a w that maximizes the perfor-

mance (w.r.t. to the ground truth correspondences) of match-

ing, as defined by Eq. 1, over pairs of training images or of

classification/labeling in the case of Markov Random Fields.
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3 Graph Matching Algorithms

Graph matching (Problem 1) is NP-hard, so efficient al-

gorithms must look for approximate solutions. The prob-

lem has received more attention in computer vision after its

formulation as a quadratic integer programming problem.

Many efficient approximate methods have been proposed

recently (Berg et al. 2005; Leordeanu and Hebert 2005;

Cour et al. 2006; Gold and Rangarajan 1996; Schellewald

and Schnorr 2005; Zass and Shashua 2008; Duchenne et al.

2009; Leordeanu et al. 2009). Here, we briefly review two

of our recently published algorithms for graph matching:

spectral matching (Leordeanu and Hebert 2005) and integer-

projected fixed point (IPFP) (Leordeanu et al. 2009).

3.1 Spectral Matching

Since its publication, our approach to spectral graph match-

ing has been applied successfully in a wide range of

computer vision applications such as: discovering texture

regularity (Hays et al. 2006), object category recogni-

tion (Leordeanu et al. 2007), object discovery (Leordeanu et

al. 2005; Parikh and Chen 2007; Parikh and Chen 2007), un-

supervised modeling of object categories (Kim et al. 2008;

Kim et al. 2008), action recognition in video (Yan et al.

2008), recognizing actions from video (Liu et al. 2009),

matching 2D object aspects (Ren 2007), 3D scene ac-

quisition (Huhle et al. 2008), capturing 3D human per-

formance (de Aguiar et al. 2008), and symmetry analy-

sis (Chertok and Keller 2010), among others. Also, spec-

tral matching was the starting point for other matching al-

gorithms, such as spectral matching with affine constraints

(SMAC) (Cour et al. 2006), integer projected fixed point

(IPFP) (Leordeanu et al. 2009), tensor higher-order match-

ing (Duchenne et al. 2009), and algorithms for MAP infer-

ence based on spectral relaxations (Leordeanu and Hebert

2006; Cour and Shi 2007).

Spectral matching optimally solves the following relaxed

variant of Problem 1:

x∗ = argmax(xT Mx) s.t. xT x = 1. (3)

The solution to this problem is given by the first eigenvec-

tor of M. Since M has only positive elements, by the Perron-

Frobenius Theorem, the eigenvector elements are also pos-

itive, which makes the post-processing discretization of the

eigenvector easier. This eigenvector also has an intuitive in-

terpretation due to the statistical properties of M. We ob-

serve that M can be interpreted as the adjacency matrix of

a graph whose nodes represent candidate assignments and

edges Mia;jb represent agreements between these possible

assignments. This graph has a particular structure, which

helps us understand why using the first eigenvector to find

an approximate solution to Problem 1 is a good idea. It con-

tains:

1. A strongly connected cluster formed mainly by the cor-

rect assignments that tend to establish agreement links

(strong edges) among each other. These agreement links

are formed when pairs of assignments agree at the level

of pairwise relationships (e.g., geometry) between the

features they are putting in correspondence.

2. A lot of incorrect assignments, mostly outside of that

cluster or weakly connected to it (through weak edges),

which do not form strongly connected clusters due to

their small probability of establishing agreement links

and random, unstructured way in which they form these

links.

These statistical properties motivate the spectral ap-

proach to the problem. The eigenvector value correspond-

ing to a given assignment indicates the level of associa-

tion of that assignment with the main cluster. We can em-

ploy a variety of discretization procedures in order to find

an approximate solution. One idea is to apply the Hungar-

ian method, which efficiently finds the binary solution that

obeys the one-to-one mapping constraints and maximizes

the dot-product with the eigenvector of M. Another idea is

to use the greedy discretization algorithm that we originally

proposed in Leordeanu and Hebert (2005): we interpret each

element of the principal eigenvector v of M as the confi-

dence that the corresponding assignment is correct. We start

by choosing the element of maximum confidence as correct,

then we remove (zero out in v) all the assignments in conflict

(w.r.t. the one-to-one mapping constraints) with the assign-

ment chosen as correct, then we repeat this procedure until

all assignments are labeled as either correct or incorrect.

The eigenvector relaxation of the graph-matching problem,

combined with the greedy discretization procedure, makes

spectral matching one of the most efficient algorithms for

matching using pairwise constraints.

3.2 Integer-Projected Fixed Point Algorithm

In a more recent paper (Leordeanu et al. 2009) we presented

another efficient graph matching algorithm (IPFP) that out-

performs most state-of-the-art methods. Since its publica-

tion, modified versions of IPFP have been applied to seg-

mentation (Brendel and Todorovic 2010) and higher-order

MRFs (Semenovich 2010). An algorithm that shares many

of IPFP’s properties in a different formulation was recently

and independently developed by Zaslavskiy et al. (2009,

2010).

Even though our learning method was inspired by the

spectral matching algorithm (Leordeanu and Hebert 2005),

it can in fact be used in conjunction with other graph match-

ing algorithms, including IPFP.

IPFP can be used as a stand-alone algorithm, or as a dis-

cretization procedure for other graph matching algorithms,
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such as spectral matching. Moreover, IPFP can also be

used for MAP inference in MRF’s and CRF’s, formulated

as quadratic integer programming problems. It solves effi-

ciently (though not necessarily optimally) a tighter relax-

ation of Problem 1 that is also known to be NP-hard:

x∗ = argmax(xT Mx) s.t. Ax = 1, x ≥ 0. (4)

The only difference between Problem 1 and Problem 4,

is that in the latter the solution is allowed to take continuous

values. Integer Projected Fixed Point (IPFP) takes as input

any initial solution, continuous or discrete, and quickly finds

a solution obeying the initial discrete constraints of Prob-

lem 1 with a better score (most often significantly better)

than the initial one:

1. Initialize x∗ = x0, S∗ = xT
0 Mx0, k = 0, where xi ≥ 0

and x �= 0;

2. Let bk+1 = Pd(Mxk), C = xT
k M(bk+1 − xk), D =

(bk+1 − xk)
T M(bk+1 − xk);

3. If D ≥ 0, set xk+1 = bk+1. Else let r = min(−C/D,1)

and set xk+1 = xk + r(bk+1 − xk);

4. If bT
k+1Mbk+1 ≥ S∗ then set S∗ = bT

k+1Mbk+1 and

x∗ = bk+1;

5. If xk+1 = xk, stop and return the solution x∗;

6. Set k = k + 1 and return to step 2;

where the Pd(.) in step 2 denotes a projection on to the dis-

crete domain, discussed below.

This algorithm is loosely related to the power method

for eigenvectors, also used by spectral matching: at step 2

it replaces the fixed point iteration of the power method

vk+1 = P(Mvk), where P(.) denotes the projection on the

unit sphere, with the analogous update bk+1 = Pd(Mxk),

in which Pd(.) denotes projection on the one-to-one (for

graph matching) or many-to-one (for MAP inference) dis-

crete constraints. Since all possible discrete solutions have

the same norm, Pd(.) boils down to finding the discrete vec-

tor bk+1 = arg maxb(bT Mxk). For one-to-one constraints,

this can be efficiently accomplished using the Hungarian

method; for many-to-one constraints, the projection can eas-

ily be achieved in linear time.

The intuition behind this algorithm is the following: at

every iteration the quadratic score xT Mx can be approxi-

mated by the first-order Taylor expansion around the cur-

rent solution xk : xT Mx ≈ xT
k Mxk + 2xT

k M(x − xk). This

approximation is maximized within the discrete domain of

Problem 1, in step 2, where bk+1 is found. From (Leordeanu

et al. 2009), Proposition 1 we know that the same discrete

bk+1 also maximizes the linear approximation in the con-

tinuous domain of Problem 4. The role of bk+1 is to pro-

vide a direction of largest possible increase (or ascent) in

the first-order approximation, simultaneously within both

the continuous and discrete domains. Along this direction,

the original quadratic score can be further maximized in the

continuous domain of Problem 4 (as long as bk+1 �= xk).

At step 3 we find the optimal point along this direction,

also inside the continuous domain of Problem 4. The hope,

also confirmed in practice, is that the algorithm will tend

to converge towards discrete solutions that are, or are close

to, maxima of Problem 4. For MAP inference problems, as

shown in Leordeanu et al. (2009), IPFP always converges to

discrete solutions, while for graph matching we observe that

it typically converges to discrete solutions (but there is no

theoretical guarantee).

IPFP can also be seen as an extension to the popular It-

erated Conditional Modes (ICM) algorithm (Besag 1986),

having the advantage of updating the solution for all nodes

in parallel, while retaining the optimality and convergence

properties. It is also related to the Frank-Wolfe method

(FW) (Frank and Wolfe 1956), a classical optimization al-

gorithm from 1956 most often used in operations research.

The Frank-Wolfe method is applied to convex programming

problems with linear constraints. A well-known fact about

FW is that it has slow convergence rate around the opti-

mum, which is why in practice it is stopped earlier for ob-

taining an approximate solution. In contrast, in the case of

IPFP (applied to graph matching, which is in general not a

convex minimization problem) the local optimum is most

often discrete (for MAP it is always discrete). When the so-

lution is discrete the optimum is actually found during the

optimization of the linear approximation, when the discrete

point is found, so the convergence is immediate. This in-

sight is also demonstrated in our experiments, where IPFP

most often converges quickly. Therefore, unlike FW, IPFP

finds the solution in very few iterations, which is an impor-

tant advantage.

4 Theoretical Analysis

Our proposed learning algorithm is motivated by the statisti-

cal properties of the matrix M and of its principal eigenvec-

tor v, which is the continuous solution given by the spectral

graph matching algorithm (Leordeanu and Hebert 2005). In

order to analyze the properties of M theoretically, we need a

few assumptions and approximations. The assumptions we

make are intuitive and not necessarily rigorous, but they

are validated by our numerous experiments. Each instance

of the matching problem is unique so nothing can be said

with absolute certainty about M and its eigenvector v, nor

the quality of the solution returned. Therefore, we must be

concerned with the average (or expected) properties of M

rather than the infinitely many particular cases. We propose

a model for M (Fig. 1) that we validate through experiments.

For a given matching experiment with its corresponding

matrix M, let p1 > 0 be the average value of the second-

order scores between correct assignments E(Mia;jb) for
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Fig. 1 Pairwise scores (elements of the matching matrix M) between

correct assignments have a higher expected value p1 than elements

with at least one wrong assignment, with average value p0. This will

be reflected in the eigenvector v that will have higher average value v1

for correct assignments than v0 for wrong ones

any pair (ia, jb) of correct assignments. Similarly, let p0 =
E(Mia;jb) ≥ 0 if at least one of the assignments ia and jb

is wrong. p1 should be higher than p0, since the pairs of

correct assignments are expected to agree both in appear-

ance and geometry and have strong second-order scores,

while the wrong assignments have such high pairwise scores

only accidentally. Intuitively, we expect that the higher p1

and the lower p0, the higher the matching rate. We also ex-

pect that the performance depends on their ratio pr = p0/p1

rather than on their absolute values, since multiplying M by

a constant does not change the leading eigenvector. Simi-

larly, we define the average eigenvector value v1 = E(via)

over correct assignments ia, and v0 = E(vjb), over wrong

assignments jb. The spectral matching algorithm assumes

that correct assignments will correspond to large elements of

the eigenvector v and the wrong assignments to low values

in v, so the higher v1 and the lower v0 the better the match-

ing rate. As in the case of pr , if we could minimize dur-

ing learning the average ratio vr = v0/v1 (since the norm of

the eigenvector is irrelevant) over all image pairs in a train-

ing sequence then we would expect to optimize the overall

training matching rate. This model assumes fully-connected

graphs, but it can be verified that the results we obtain next

are also valid for weakly-connected graphs, as also shown

in our experiments.

It is useful to investigate the relationship between vr

and pr for a given image pair. We know that λvia =
∑

jb Mia;jbvjb . For clarity of presentation, we assume

that for each of the n features in the left image there

are k candidate correspondences in the right image. We

make the following approximation E(
∑

jb Mia;jbvjb) ≈
∑

jb E(Mia;jb)E(vjb), by considering that any vjb is al-

most independent of any particular Mia;jb , since M is large.

The approximation is actually a ‘≥’ inequality, since the

correlation is expected to be positive (but very small). For

our given matrix M, let us call its first eigenvalue λ. It fol-

lows that for a correct correspondence ia, λE(via) = λv1 ≈
np1v1 + n(k − 1)p0v0. Similarly, if ia is a wrong corre-

spondence then λE(via) = λv0 ≈ np0v1 + n(k − 1)p0v0.

Dividing both equations by p1v1 and taking the ratio of the

two we obtain:

vr ≈
pr + (k − 1)prvr

1 + (k − 1)prvr

. (5)

Solving this quadratic equation for vr we get:

vr ≈
(k − 1)pr − 1 +

√

(1 − (k − 1)pr )2 + 4(k − 1)p2
r

2(k − 1)pr

.

(6)

Using Eqs. 5 and 6, it can be verified that vr is a monoton-

ically increasing function of pr , for k > 1. This is in fact

not surprising since we expect that the smaller pr = p0/p1,

the smaller vr = v0/v1 and the more binary the eigenvec-

tor v would be (and closer to the binary ground truth t),

with the elements of the wrong assignments approaching 0.

This approximation turns out to be very accurate in practice,

as shown by our experiments in Figs. 3, 4 and 5. Also, the

smaller vr , the higher the expected matching rate, by which

we mean the number of correctly matched features divided

by the total number of features. For the sake of clarity, dur-

ing this analysis we assume an equal number of features in

both images. We also assume that for each feature in the left

image there is one correct match in the right image. How-

ever, as we show in the experimental section, our algorithm

is robust to the presence of outliers.

One way to minimize vr is to maximize the correlation

between v and the ground truth indicator vector t, while

making sure that one feature from the left images matches

one feature in the right image. However, in this paper we

want to minimize vr in an unsupervised fashion, that is with-

out knowing t during training. Our proposed solution is to

maximize instead the correlation between v and its binary

version (that is, the binary solution returned by the match-

ing algorithm). How do we know that this procedure will

ultimately give a binary version of v that is close to the real

ground truth? We will investigate this question next.

Let b(v) be the binary solution obtained from v, re-

specting the one-to-one mapping constraints, as returned by

spectral matching for a given pair of images. Let us as-

sume for now that we know how to maximize the corre-

lation vT b(v). We expect that this will lead to minimizing

the ratio v∗
r = E(via|bia(v) = 0)/E(via|bia(v) = 1). If we

let nm be the number of misclassified assignments, n the

number of true correct assignments (same as the number of

features, equal in both images) and k the number of candi-

date assignments for each feature, we can obtain the next

two equations: E(via|bia(v) = 0) = nmv1+(n(k−1)−nm)v0

n(k−1)
and

E(via|bia(v) = 1) = nmv0+(n−nm)v1

n
. Dividing both by v1

and taking the ratio of the two we finally obtain:

v∗
r =

m/(k − 1) + (1 − m/(k − 1))vr

1 − m + mvr

, (7)
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where m is the matching error rate m = nm/n. If we rea-

sonably assume that vr < 1 (eigenvector values higher on

average for correct assignments than for wrong ones) and

m < (k − 1)/k (error rate lower than random) this func-

tion of m and vr has both partial derivatives strictly posi-

tive. Since m also increases with vr , by maximizing vT b(v),

we minimize v∗
r , which minimizes both vr and the true error

rate m, so the unsupervised algorithm can be expected to do

the right thing. In all of our experiments we obtained values

for all pr , vr , v∗
r and m that were very close to zero, which

is sufficient in practice, even if our gradient-based method

(Sect. 5) might not necessarily have found the global mini-

mum.

The model for M and the equations we obtained in this

section are validated experimentally in Sect. 6. By maximiz-

ing the correlation between v and b(v) over the training se-

quence we do indeed lower the true misclassification rate m,

maximize vT t and also lower pr , vr and v∗
r .

5 Algorithms

In this section, we present supervised, semi-supervised and

unsupervised learning variants of our approach to graph

matching, and detail parameter learning for conditional ran-

dom fields.

5.1 Supervised Learning for Graph Matching

We want to find the geometric and appearance parameters w

that maximize (in the supervised case) the expected correla-

tion between the principal eigenvector of M and the ground

truth t, which is empirically proportional to the following

sum over all training image pairs:

J (w) =
N

∑

i=1

v(i)(w)T t(i), (8)

where t(i) is the ground truth indicator vector for the ith

training image pair. We maximize J (w) by coordinate gra-

dient ascent:

w
(k+1)
j = w

(k)
j + η

N
∑

i=1

tTi
∂v

(k)
i (w)

∂wj

. (9)

To simplify notations throughout the rest of this paper, we

use F′ to denote the vector or matrix of derivatives of any

vector or matrix F with respect to some element of w. One

possible way of taking partial derivatives of an eigenvec-

tor of a symmetric matrix (when λ has order 1) is given in

Sect. 8.8 of Magnus and Neudecker (1999) and also in Cour

et al. (2005) in the context of spectral clustering:

v′ = (λI − M)†(λ′I − M′)v, (10)

where A† denotes the pseudo-inverse of A and

λ′ =
vT M′v

vT v
. (11)

These equations are obtained by using the fact that M is

symmetric and the equalities vT v′ = 0 and Mv = λv. How-

ever, this method is general and therefore does not take full

advantage of the fact that in this case v is the principal eigen-

vector of a matrix with large eigengap. M − λI is large and

also rank deficient so computing its pseudo-inverse is not

efficient in practice. Instead, we use the power method to

compute the partial derivatives of the approximate principal

eigenvector: v = Mn1√
(Mn1)T (Mn1)

. This is related to Bach and

Jordan (2003), but in Bach and Jordan (2003) the method

is used for segmentation and as also pointed out by Cour et

al. (2005) it could be very unstable in that case, because in

segmentation and typical clustering problems the eigengap

between the first two eigenvalues is not large.

Here Mn1 is computed recursively by Mk+11 = M(Mk1).

Since the power method is the preferred choice for comput-

ing the leading eigenvector, it is justified to use the same

approximation for learning. Thus the estimated derivatives

are not an approximation, but actually the exact ones, given

that v is itself an approximation based on the power method.

Thus, the resulting partial derivatives of v are computed as

follows:

v′ =
‖Mn1‖2(Mn1)′ − ((Mn1)T (Mn1)′)(Mn1)

‖Mn1‖3
. (12)

In order to obtain the derivative of v, we first need to

compute the derivative of Mn1, which can be obtained re-

cursively:

(Mn1)′ = M′(Mn−11) + M(Mn−11)′. (13)

Since M has a large eigengap, as shown in Leordeanu and

Hebert (2005), this method is stable and efficient. Figure 2

demonstrates this point empirically. The method is linear in

the number of iterations n, but qualitatively insensitive to n,

as it works equally well with n as low as 5. These results are

averaged over 70 experiments (described later) on 900×900

matrices.

To get a better feeling of the efficiency of our method

as compared to Eq. 10, computing Eq. 10 takes 1500 times

longer in Matlab (using the function pinv) than our method

for n = 10 on the 900 × 900 matrices used in our experi-

ments on the House and Hotel datasets. In practice, we man-

ually selected the gradient step size once and used this value

in all our experiments.

5.2 Unsupervised and Semi-supervised Learning for Graph

Matching

The idea for unsupervised learning (introduced in Sect. 4),

is to maximize v∗
r instead of vr , which could be achieved
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Fig. 2 Experiments on the House sequence. The plots show the nor-

malized correlation between the eigenvector and the ground truth solu-

tion for different numbers of recursive iterations n used to compute the

approximative derivative of the eigenvector (averages over 70 experi-

ments). Even for n as small as 5 the learning method converges in the

same way, returning the same result

through the maximization of the dot-product between the

eigenvector and the binary solution obtained from the eigen-

vector. Thus, during unsupervised training, we maximize the

following function:

J (w) =
N

∑

i=1

v(i)(w)T b(v(i)(w)). (14)

The difficulty here is that b(v(i)(w)) is not a continuous

function and also it may be impossible to express in closed-

form, in terms of w, since b(v(i)(w)) is the result of an iter-

ative discretization procedure. However, it is important that

b(v(i)(w)) is piecewise constant and has zero derivatives ev-

erywhere except for a finite set of discontinuity points. We

can therefore expect that we will evaluate the gradient only

at points where b is constant, and has zero derivatives. Also,

at those points, the gradient steps will lower vr (Eq. 7) be-

cause changes in b (when the gradient updates pass through

discontinuity points in b), do not affect vr . Lowering vr will

increase vT t and also decrease m, so the desired goal will

be achieved without having to worry about the discontinuity

points of b. This has been verified every time in our experi-

ments. Then, the learning step function becomes:

w
(k+1)
j = w

(k)
j + η

N
∑

i=1

b(v
(k)
i (w))T

∂v
(k)
i (w)

∂wj

. (15)

In most practical applications, the user has knowledge of

some correct assignments, in which case a semi-supervised

approach becomes more appropriate. Our algorithm can eas-

ily accommodate such a semi-supervised scenario by natu-

rally combining the supervised and unsupervised learning

steps: the discrete solution b from each step has fixed val-

ues for assignments for which the ground-truth information

is available, while for the rest of unlabeled assignments we

use, as in the unsupervised case, the solution returned by the

graph matching algorithm. The ability of easily combining

the supervised case with the unsupervised one in a princi-

pled manner is another advantage of our proposed method.

5.3 Unsupervised Learning for Other Graph Matching

Algorithms

With minimal modification, the unsupervised learning

scheme that we proposed can be used for other state-of-the

art graph matching algorithms. In Sect. 6.2 we show exper-

imentally that the parameters learned for spectral matching

improved the performance of other algorithms. In this sec-

tion we show that instead of using the binary solutions b

returned by spectral matching during each learning step, we

can actually use the binary solutions given by the algorithm

for which we want to maximize the performance. This will

produce a more efficient learning stage, better suited for that

specific graph matching algorithm.

To simplify the notation, we use M instead of M(w),

which is the more precise notation since all the pairwise

scores in the matrix are functions of w. In the same way, let

b denote the binary solution given by some graph matching

algorithm, for a given w. For any vector b with n elements

and full rank matrix M of size n × n, we can write b as:

b = (bT v1)v1 + (bT v2)v2 + · · · + (bT vn)vn, (16)

where v1,v2, . . . ,vn are the eigenvectors of M ordered in

the decreasing order of the magnitudes of their correspond-

ing eigenvalues λ1, λ2, . . . , λn. Here we can consider each

such M to be full rank due to the presence of random noise

in the pairwise scores from that particular matching prob-

lem.

It follows that the quadratic score bT Mb can be written

as:

bT Mb = λ1(b
T v1)

2 + · · · + λn(b
T vn)

2. (17)

If we consider that b has unit norm and that λ1 is the eigen-

value with largest magnitude (also positive, since M is sym-

metric with non-negative elements), we immediately obtain

the following inequality:

bT Mb ≥ (2(bT v1)
2 − 1)λ1. (18)

This inequality is very loose in practice because λ1 is ex-

pected to be much larger than the rest of the eigenvalues.

Since λ1 = vT
1 Mv1, where v1 is the principal eigenvector,
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and vT
1 Mv1 is an upper bound to the optimal score xT

optMxopt

that obeys the mapping constraints, we obtain

bT M(w)b

xopt(w)T M(w)xopt(w)
≥ 2(bT v1(w))2 − 1, (19)

where xopt(w) is the optimal solution of Eq. 1 for a given w.

Therefore, by maximizing b(w)T v1(w), we maximize this

lower bound and expect b(w) to approach the optimal solu-

tion xopt(w). This is true for solutions b(w) returned by any

approximate graph matching algorithm. This gives an intu-

ition to why the same unsupervised learning scheme may be

applied to other algorithms as well: given a specific graph

matching algorithm, maximize the dot-product between its

binary solution b(w) and the principal eigenvector v1(w).

The learning step becomes:

w
(k+1)
j = w

(k)
j + η

N
∑

i=1

bi(w
(k))T

∂v
(k)
i (w)

∂wj

. (20)

5.4 Parameter Learning for Conditional Random Fields

The spectral inference method presented in Leordeanu and

Hebert (2006) is based on a fixed point iteration simi-

lar to the power method for eigenvectors, which maxi-

mizes the quadratic score under the L2 norm constraints
∑L

b=1 v∗
ib

2 = 1. These constraints require that the sub-

vectors corresponding to the candidate labels for each site

i have norm 1:

v∗
ia =

∑

jb Mia;jbv
∗
jb

√

∑L
b=1 v∗

ib
2

. (21)

This equation looks similar to the eigenvector equation

Mv = λv were it not for the site-wise normalization instead

of the global one which applies to eigenvectors. Starting

from a vector with positive elements, the fixed point v∗ of

the above equation has positive elements, is unique and it

is a global maximum of the quadratic score under the con-

straints
∑

a v2
ia = 1, due to the fact that M has non-negative

elements (Theorem 5 in Baratchart et al. 1998).

The learning method for the MAP problem, which we

propose here, is based on gradient ascent, similar to the one

for graph matching, and requires taking the derivatives of v

with respect to the parameters w.

Let Mi be the non-square submatrix of M of size

nLabels × nLabels ∗ nSites, corresponding to a particular

site i. Also let vi be the corresponding sub-vector of v,

which is computed by the following iterative procedure. Let

n be a particular iteration number:

v
(n+1)
i =

Miv
(n)
i

√

(Miv
(n)
i )T (Miv

(n)
i )

. (22)

Let hi be the corresponding sub-vector of an auxiliary

vector h defined at each iteration as follows:

hi =
M′

iv
(n)
i + M′

i(v
(n)
i )′

√

(Miv
(n)
i )T (Miv

(n)
i )

. (23)

Then the derivatives of v
(n+1)
i with respect to some ele-

ment of w, at step n + 1, can be obtained recursively as a

function of the derivatives of v
(n)
i at step n, by iterating the

following update rule:

(v(n+1))′ = h − (hT v(n+1))v(n+1). (24)

This update rule, which can be easily verified, is similar to

the one used for computing the derivatives of eigenvectors.

The partial derivatives of the individual elements of M

with respect to the individual elements of w are computed

from the equations that define these pairwise potentials,

given in Eq. 27. Of course, other differential functions can

also be used to define these potentials.

In both supervised and unsupervised cases, the learning

update step is similar to the one used for learning graph

matching. Here we present the supervised case. In the case

of MAP problems we have noticed that unsupervised learn-

ing can be successfully applied only to simpler problems, as

shown in the experiments Section 6.5. This is due to the fact

that in MAP problems it is easily possible to find parame-

ters that will strongly favor one label and make the solution

of the relaxed problem almost perfectly discrete. The super-

vised learning rule for MAP is

wk+1
j = wk

j + η

N
∑

i=1

tTi
∂v

(k)
i (w)

∂wj

, (25)

where ti is the ground truth labeling for the ith training im-

age.

6 Experimental Analysis

In the case of graph matching we focus on two objec-

tives. The first one is to validate the theoretical results from

Sect. 4, especially Eq. 6, which establishes a relationship be-

tween pr and vr , and Eq. 7, which connects v∗
r to vr and the

error rate m. Each pr is empirically estimated from each in-

dividual matrix M over the training sequence, and similarly

each v∗
r and vr from each individual eigenvector. Equation 6

is important because it shows that the more likely the pair-

wise agreements between correct assignments as compared

to pairwise agreements between incorrect ones (as reflected

by pr ), the closer the eigenvector v is to the binary ground

truth t (as reflected by vr ), and, as a direct consequence,
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Fig. 3 Unsupervised learning

stage. First row: matching rate

and correlation of eigenvector

with the ground truth during

training per gradient step. The

remaining plots show how the

left hand side of Eqs. 6 and 7,

that is vr and v∗
r , estimated

empirically from the

eigenvectors obtained for each

image pair, agree with their

predicted values (right hand

side of Eqs. 6 and 7). Results

are averages over 70 different

experiments

the better the matching performance. This equation also val-

idates our model for the matching matrix M, which is de-

fined by two average values, p0 and p1, respectively. Equa-

tion 7 is important because it explains why by maximizing

the correlation vT b(v) (and implicitly minimizing v∗
r ) we in

fact minimize vr and the matching error m. Equation 7 ba-

sically shows why the unsupervised algorithm will indeed

maximize the performance with respect to the ground truth.

We mention that by matching rate/performance we mean the

ratio of features that are correctly matched (out of the total

number of matched features), while the error rate is 1 minus

the matching rate.

The results that validate our theoretical claims are shown

in Figs. 3, 4, 5 and 6 on the House, Hotel, Faces, Cars and

Motorbikes experiments, respectively. The details of these

experiments are given below.

There are a few relevant results to consider. On all four

different experiments the correlation between v and the

ground truth t increases at every gradient step even though

the ground truth is unknown to the learning algorithm. The

matching rate improves at the same time and at a similar

rate with the correlation, showing that maximizing this cor-

relation also maximizes the final performance. In Fig. 4 we

display a representative example of the eigenvector for one

pair of faces, as it becomes more and more binary during

training. If after the first iteration the eigenvector is almost

flat, at the last iteration it is very close to the binary ground

truth, with all the correct assignments having larger confi-
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Fig. 4 Results on faces:

correlation between

eigenvectors and ground truth,

and matching rate during

training (top left), matching rate

at testing time, for different

outliers/inliers ratios at both

learning and test time

(top-right), verifying Eq. 6

(middle-left), example

eigenvector for different

learning steps. Results in the

first three plots are averages

over 30 different experiments

dences than any of the wrong ones. Also, on all individual

experiments both approximations from Eqs. 6 and 7 become

increasingly accurate with each gradient step, from less than

10% accuracy at the first iteration to less than 0.5% error at

the last. In all our learning experiments we started from a set

of parameters w that does not favor any assignment (w = 0,

which means that before the very first iteration all non-zeros

scores in M are equal to 1). These results motivate both the

model proposed for M (Eq. 6), but also the results (Eq. 7)

that support the unsupervised learning scheme.

The second objective of our experiments is to evaluate

the matching performance, before and after learning, on new

test image pairs. The goal is to show that, at testing time, the

matching performance after learning is significantly better

than if no learning was done.

6.1 Learning with Unlabeled Correspondences

Matching Rigid Objects under Perspective Transformations

We first perform experiments on two tasks that are the

same as those in Caetano et al. (2007) and our previous

work (Leordeanu and Hebert 2008). We use exactly the

same image sequences (House: 110 images and Hotel: 100

images) both for training and testing and the same features,

which were manually selected by Caetano et al. For test-

ing we use all the pairs between the remaining images.

The pairwise scores Mia;jb are the same as the ones that

we previously used in Leordeanu and Hebert (2008), us-

ing the Shape-Context descriptor (Belongie et al. 2002)

for local appearance, and pairwise distances and angles

for the second-order relationships. They measure how well

features (i, j) from one image agree in terms of geome-
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Fig. 5 Correlation and matching rate w.r.t. the ground truth during

unsupervised learning for Cars and Motorbikes from Pascal 2007 chal-

lenge. Real and predicted vr decrease as predicted by the model. Re-

sults are averaged over 30 different experiments

Fig. 6 During unsupervised learning, the normalized eigengap (eigen-

gap divided by the mean value in M) starts increasing after a few iter-

ations, indicating that the leading eigenvector becomes more and more

stable. Results are on the House and Hotel datasets averaged over 70

random experiments

try and appearance with their candidate correspondences

(a, b). More explicitly, the pairwise scores have the form

Mia;jb = exp(−wT gia;jb), where gia;jb = [|si − sa|, |sj −
sb|,

|dij −dab|
|dij +dab| , |αij − αab|]. Here, sa denotes the shape con-

text of features a; dij is the distance between features (i, j);

and αij is the angle between the horizontal axis and the vec-

tor
−→
ij . Learning consists of finding the vector of parameters

w that maximizes the matching performance on the training

sequence.

Table 1 Matching performance on the hotel and house datasets at test-

ing time. In our experiments we used only 5 training images from the

‘House’ sequence, while for Caetano et al. (2007), we report upper

bounds of their published results using both 5 and 106 training images.

Notation: ‘S’ and ‘U’ denote ‘supervised’ and ‘unsupervised’, respec-

tively

Dataset Ours: Ours: (Caetano et al. 2007): (Caetano et al. 2007):

S(5) U(5) S(5) S(106)

House 99.8% 99.8% < 84% < 96%

Hotel 94.8% 94.8% < 87% < 90%

As in both (Caetano et al. 2007) and (Leordeanu and

Hebert 2008), we first obtain a Delaunay triangulation and

allow non-zero pairwise scores Mia;jb if and only if both

(i, j) and (a, b) are connected in their corresponding tri-

angulation. Our previous method (Leordeanu and Hebert

2008) is supervised and based on a global optimization

scheme that is more likely to find the true global opti-

mum than the unsupervised gradient based method proposed

in this paper. Therefore, it is significant to note that the

proposed unsupervised learning method matches our previ-

ous results, while significantly outperforming Caetano et al.

(2007) (Table 1).

We point out that the main reason for the significant dif-

ference in performance between ours and Caetano et al.

(2007) has to do with the fact that (Caetano et al. 2007)

puts less emphasis on the second-order geometry in the pair-

wise scores Mia;jb , by using only information from the 0–1

Delaunay triangulation and no information about pairwise

distances and angles. On the contrary, we emphasize the im-

portance of second-order relationships, since in our experi-

ments, even when we leave out completely the shape-context

descriptors and use only the pairwise geometric information,

the performance of our method does not degrade. Of course,

it is also important to stress that, while the method by Cae-

tano et al. (2007) learns the parameters in a supervised way,

ours is the first to do so in an unsupervised fashion.

Next we investigate the performance at learning and test-

ing stages of the unsupervised learning method vs. its su-

pervised variant (when the ground truth assignments are

known). We perform 70 different experiments using both

datasets, by randomly choosing 10 training images (and us-

ing all image pairs from the training set) and leaving all pairs

of the rest of images for testing. As expected, we observe

that the unsupervised method learns somewhat slower on av-

erage than the supervised one, but the parameters they learn

are almost identical. In Fig. 7 we plot the average correlation

(between the eigenvectors and ground truth) and matching

rate at each gradient step for all training pairs and all exper-

iments vs. each gradient step, for both the supervised and

unsupervised cases. It is interesting that while the unsuper-

vised version tends to converge slower, after several itera-
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Fig. 7 Supervised vs.

unsupervised learning: Average

match rate and correlation

between the eigenvector and the

ground truth over all training

image pairs, over 70 different

experiments using 10

randomly-chosen training

images from the House and

Hotel sequences, respectively.

Notice how unsupervised

learning converges to the same

correlation and matching rate as

the supervised one

Table 2 Comparison of average matching performance at testing time

on the house and hotel datasets for 70 different experiments (10 train-

ing images, the rest used for testing). We compare the case of unsu-

pervised learning vs. no learning. First column: unsupervised learning;

Second: no learning, equal default weights w

Datasests Unsupervised learning No learning

House+Hotel 99.14% 93.24%

tions their performances (and also parameters) converge to

the same values. During testing the two methods performed

identically in terms of matching performance (average per-

centage of correctly matched features over all 70 experi-

ments). As compared to the same matching algorithm with-

out learned parameters the two algorithms performed clearly

better (Table 2). Without learning, the default parameters

(elements of w) were chosen to be all equal.

Matching Deformable 2D Shapes with Outliers The third

dataset used for evaluation consists of 30 random image

pairs selected from Caltech-4 Faces dataset. The experi-

ments on this dataset are different from the previous ones

for two reasons: the images contain not only faces but also

background clutter, and, the faces belong to different peo-

ple, both women and men, with different facial expressions,

so there are significant non-rigid deformations between the

faces that have to be matched. The features we used are ori-

ented points sampled along contours extracted in the image

in a similar fashion as in our previous work (Leordeanu et

al. 2007) (Fig. 8). The orientation of each point is the normal

vector at that point to the contour where the point was sam-

pled. The points on the faces that have to be matched (the

inliers) were selected manually, while the outliers (features

in the background) were selected randomly, while making

sure that each outlier is not too close (15 pixels) to any

other point. For each pair of faces we manually selected the

ground truth (the correct matches) for the inliers only. The

pairwise scores contain only geometric information about

Fig. 8 Top row: a pair of faces from Caltech-4 dataset used in our ex-

periments. Bottom row: the contours extracted and the points selected

as features

pairwise distances and angles:

Mia;jb = e−wT gia;jb , (26)

where w is a vector of 7 parameters (that have to be learned)

and gia;jb = [|dij − dab|/dij , |θi − θa|, |θj − θb|, |σij −
σab|, |σji − σba|, |αij − αab|, |βij − βab|]. Here dij is the

distance between the features (i, j), θi is the angle between

the normal of feature i and the horizontal axis, σij is the an-

gle between the normal at point i and the vector
−→
ij , αij is

the angle between
−→
ij and the horizontal axis and βij is the

angle between the normals of i and j .

We performed 30 random experiments by randomly pick-

ing 10 pairs for training and leaving the rest 20 for testing.

The results shown in Fig. 4 are averages over the 30 ex-

periments. The top-left plot shows how, as in the previous

experiments, both the correlation vT t and the matching per-

formance during training improves with every learning step.

During training and testing we used different percentages of

outliers to evaluate the robustness of the method (top-right
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Fig. 9 (Color online) Matching results on image pairs from Pascal 2007 challenge. Notice the significant differences in shape, view-point and

scale. Best viewed in color

plot). The learning method is robust to outliers, since the

matching performance during testing does not depend on the

percentage of outliers introduced during training (the per-

centage of outliers is always the same in the left and the right

images), but only on the percentage of outliers present at

testing time. Without learning (the dotted black plot), when

the default parameters chosen are all equal, the performance

is much worse and degrades faster as the percentage of out-

liers at testing time increases. This suggests that learning not

only increases the matching rate, but it also makes it more

robust to the presence of outliers.

6.2 Learning with Unlabeled Object Classes

and Correspondences

In our previous experiments every pair of training images

contained the same object/category, so a set of inliers exists

for each such pair. Next, we evaluated the algorithm on a

more difficult task: the training set is corrupted such that half

of the image pairs contain different object categories. In this

experiment we used cars and motorbikes from Pascal 2007,

a much more difficult dataset (see Fig. 9). For each class we

selected 30 pairs of images and for each pair between 30 to

60 ground truth correspondences. The features and the pair-

wise scores were of the same type as in the experiments on

faces: points and their normals selected from pieces of con-

tours. In Fig. 9 we show some representative results after

learning, with matching rates over 80%; contours are over-

laid in white. During each training experiment we randomly

picked 5 pairs containing cars, 5 containing motorbikes and

10 discordant pairs: one containing a car and the other one a

motorbike (a total of 20 pairs for each learning experiment).

For testing we used the remaining pairs of images, such that

each pair contains the same object class. The learning algo-

rithm had no knowledge of which pairs are discordant, what

classes they contain and which are the ground truth corre-

spondences. As can be seen in Fig. 5, at each gradient step

both the matching rate and the correlation of the eigenvec-

tor w.r.t. the ground truth increases (monitored only for pairs

containing the same category). The proposed model is again

verified as shown by the plots of the real and ideal vr that

are almost identical. Not only that the learning algorithm

was not significantly influenced by the presence of discor-

dant pairs but it was also able to find a single set of param-

eters that matched well both cars and motorbikes. Learning

and testing results are averaged over 30 experiments.

Using the testing image pairs of cars and motorbikes,

we used several graph matching algorithms (for a more ex-

tensive discussion and comparison see Sect. 6.4): spectral

matching (SM) using the row/column procedure from Zass

and Shashua (2008) during post-processing of the eigenvec-

tor, with probabilistic matching (PM) using pair-wise con-

straints from Zass and Shashua (2008), and the well-known

graduated assignment algorithm from Gold and Rangara-

jan (1996) (GA). The same parameters and pair-wise scores

were used by all algorithms, learned as described above.

When no outliers were allowed all algorithms had similar

matching rates (above 75%) with learning moderately im-
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Table 3 Comparison of matching rates for 3 graph matching algo-

rithms before and after unsupervised learning on Cars and Motorbikes

from Pascal07 database, with all outliers from the right image allowed

and no outliers in the left image. When no outliers were allowed all

algorithms had a matching rate of over 75%, with learning moderately

improving the performance

Dataset SM PM GA

Cars: no learning 26.3% 20.9% 31.9%

Cars: with learning 62.2% 34.2% 47.5%

Motorbikes: no learning 29.5% 26.1% 34.2%

Motorbikes: with learning 52.7% 41.3% 45.9%

proving the performance. When outliers were introduced

in the right image (in the same fashion as in the experi-

ments on Faces) the performance improvement after learn-

ing was much more significant for all algorithms, with spec-

tral matching benefiting the most (Table 3).

6.3 Learning in the Context of Recognition

Next we investigate how unsupervised learning for graph

matching can improve object recognition. Here we are not

interested in developing a recognition algorithm, but only on

demonstrating the improvement in recognition after learn-

ing for matching, while using a simple nearest neighbor ob-

ject classification algorithm. We believe that better match-

ing should better cluster together images showing objects

of the same class, while separating more images of objects

from different classes. The nearest-neighbor algorithm is

perfectly suited for evaluating this intuition. For this ex-

periment, we used the cropped training images (using the

bounding boxes provided) from the Pascal ’05 database (see

Fig. 10). We split the cropped images randomly in equal

training and testing sets. On the training set we learn the

matching parameters on pairs containing objects from the

same category. The features used and the pairwise scores

are the same as in the experiments on faces, except that this

time we used fully connected models (about 100–200 fea-

tures per image). At testing time, for each test image, we re-

turn the class of the training image that returned the highest

matching score xT Mx (Eq. 1). We perform this classifica-

tion task both with and without learning (with default equal

w weights). The results (Table 4) suggest that unsupervised

learning for graph matching can be used effectively in an

object recognition system. In Fig. 11 we see some results

during learning. In this case we monitor only the eigengap

and b(v)T v because we did not have the ground truth avail-

able.

6.4 Learning for Different Graph Matching Algorithms

We perform unsupervised learning for five state of the art

graph matching algorithms on the Cars and Motorbikes data

Fig. 10 Cropped images (using bounding boxes) from the Pascal ’05

training set, used in our classification experiments. The images in this

dataset, even though they are cropped using bounding boxes, are more

difficult than in the previous experiments, since the objects of the same

category have sometimes very different shapes, undergo significant

change in viewpoint, and contain background clutter

Table 4 Comparison of 4-class (bikes, cars, motorbikes and people)

classification performance at testing time on the task from Sect. 6.3.

Unsupervised learning for graph matching significantly reduces the

classification error rate by more than 2-fold

With learning No learning

80.8% 57.4%

from Pascal ’07 challenge, the same as that used in Sect. 6.2.

We use the same features (oriented points selected from

pieces of contours) as described in Sect. 6.2. The algo-

rithms are: spectral matching (Leordeanu and Hebert 2005)

(SM), spectral matching with affine constraints (Cour et

al. 2006) (SMAC), graduated assignment (Gold and Ran-

garajan 1996) (GA), probabilistic graph matching (Zass and

Shashua 2008) (PM) and our Integer Projected Fixed Point

Algorithm (Leordeanu et al. 2009) (IPFP).

For each algorithm, we perform 30 different learning and

testing experiments for each class and we average the re-

sults. For each experiment we randomly pick 10 pairs of

images for learning (with outliers) and leave the remain-

ing 20 for testing (with and without outliers). During train-

ing we add outliers to one image in every pair, such that

the ratio of outliers to inliers is 0.5. The other image from

the pair contains no outliers. We introduce this moderate

amount of outliers during training in order to test the ro-

bustness of the unsupervised learning method in real-world

experiments, where, especially in the unsupervised case, it

is time consuming to enforce an equal number of features

in both images in every pair. During testing we have two

cases: we had no outliers in both images in the first case,

and allowed all outliers possible in only one image in the

second case. The number of outliers introduced was signif-

icant, the ratio of outliers to inliers ranging from 1.4 to 8.2

for the Cars class (average of 3.7), and from 1.8 to 10.5 for
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Fig. 11 Pascal ’05, learning

stage: (left plot) the average

correlation (Eq. 14) increases

with each gradient step, which

validates the gradient update

rule; (right plot) the normalized

eigengap increases, indicating

that the eigenvector is more and

more stable and robust to noise

as it becomes more binary

Fig. 12 First row: the average

matching rate with respect to the

ground truth, during training for

each algorithm at each gradient

step. Second row: average

correlation between the

principal eigenvector and the

ground truth during learning for

each algorithm at each gradient

step. SMAC converges faster

then the other algorithms. The

final parameters learned by all

algorithms are similar

the Motorbikes class (average of 5.3). As in all our other

tests, by an inlier we mean a feature for which there ex-

ists a correspondence in the other image, according to the

ground truth, whereas an outlier has no such correct corre-

spondence. The inliers were manually picked, the same as

the ones used in Sect. 6.2, whereas the outliers were chosen

randomly on pieces of contours such that no outlier is closer

than 15 pixels to any other feature selected.

In Fig. 12, we display the behavior of each algorithm

during learning: average matching rate and average corre-

lation of the eigenvector with the ground truth at each learn-

ing step. There are several important aspects to notice: the

correlation between the eigenvector and the ground truth in-

creases with every gradient step for all algorithms, SMAC

converging much faster than the others. This is reflected

also in the matching rate, that increases much faster for

SMAC. All algorithms benefit from learning, as all match-

ing rates improve significantly after several iterations. The

vector of parameters w was initialized to zero and the final

w’s learned are similar for all the algorithms. GA and SMAC



Int J Comput Vis (2012) 96:28–45 43

Table 5 Comparison of matching rates at testing time for different

graph matching algorithms before (NL) and after (WL) unsupervised

learning on Cars and Motorbikes from Pascal ’07 database, with out-

liers: all outliers allowed in the right image, no outliers in the left im-

age. The algorithm used during testing was the same as the one used for

learning. Results are averages over 30 different experiments. The same

parameters were used by all algorithms for the case of no learning with

and without outliers: all elements of w being equal

Dataset IPFP SM SMAC GA PM

Cars (NL) 50.9% 26.3% 39.1% 31.9% 20.9%

Cars (WL) 73.1% 61.6% 64.8% 46.6% 33.6%

Motorbikes (NL) 32.9% 29.7% 39.2% 34.2% 26.1%

Motorbikes (WL) 55.7% 54.8% 52.4% 46.8% 42.2%

have a rapid improvement in the first 10 steps, followed by

a small decline and a plateau for the remaining iterations.

This might suggest that for GA and SMAC learning should

be performed only for a few iterations. For the other three

algorithms learning constantly improves the matching rate

during training.

In Table 5, we show the test results of all algorithms with

and without learning, for both datasets, when outliers are in-

troduced. Without learning all algorithms use a parameter

vector w = [0.2,0.2,0.2,0.2,0.2] on both datasets. In our

experiments, the more outliers we introduce during testing

the more beneficial learning becomes. This is also in agree-

ment with our experiments on faces (Fig. 4). Table 5 shows

the results with and without learning in the presence of a

significant number of outliers (no outliers in one image and

all possible outliers in the other image, as explained previ-

ously). It is evident that learning significantly improves the

performance of all algorithms. The results shown in this sec-

tion strongly suggest that our unsupervised learning scheme

can significantly improve the performance of other algo-

rithms on difficult data (such as the Cars and Motorbikes

from Pascal ’07) in the presence of a large number of out-

liers.

6.5 Parameter Learning for Conditional Random Fields

In order to compare our method to previous work on CRFs,

we have followed exactly the experiments of Kumar on im-

age denoising, following the implementation details and test

data provided in Kumar (2005). The task is to obtain de-

noised images from corrupted binary 64 × 64 images. We

used the same four images and the same noise models. For

the easier task the noise model is Gaussian with mean µ = 0

and standard deviation σ = 0.3 added to the 0–1 binary

images. For the more difficult task we used as in Kumar

(2005), for each class, a different mixture of two Gaus-

sians with equal mixing weights yielding a bimodal noise.

The model parameters (mean, std) for the two Gaussians

Fig. 13 First row: original binary images (left one used for training,

next three for testing). Second row: images corrupted with unimodal

noise. Third row: images corrupted with bimodal noise

Table 6 Comparisons with Kumar (2005) on the same experiments.

In Kumar (2005), 50 noisy versions of the first image are used for train-

ing. We used only 5 noisy versions of the first image are used for train-

ing. For testing both approaches use 50 noisy versions of the remaining

three images. Note that the unsupervised learning matches the perfor-

mance of the supervised one. The inference method used in Kumar

(2005) is graph cuts and the learning methods are maximum pseudo-

likelihood (PL) and maximum penalized pseudo-likelihood (PPL)

Algorithm L2QP IPFP (Kumar 2005): (Kumar 2005):

PPL PL

Unimodal (sup.) 0.75% 0.73% 2.3% 3.82%

Unimodal (unsup.) 0.85% 0.69% NA NA

Bimodal (sup.) 7.15% 15.94% 6.21% 17.69%

were [(0.08, 0.03), (0.46, 0.03)] for the foreground class and

[(0.55, 0.02), (0.42, 0.10)] for the background class. The

original images together with examples of their noisy ver-

sions are shown in Fig. 13.

Unlike Kumar (2005), which uses 50 randomly-generated

noisy versions of the first image for training, we used only 5

such images. For the simpler task we also performed com-

pletely unsupervised learning (Fig. 14) getting almost iden-

tical results (Table 6). Our results were significantly bet-

ter for the simpler noise model, while matching the results

from Kumar (2005) for the more difficult noise model. Also

note that our learning method is easier to implement and

improves the performance of IPFP, not just L2QP (our spec-

tral MAP inference algorithm from Leordeanu and Hebert

(2006) for which it was originally designed). The pairwise

potentials we used are:

Mia;jb = σ(wT [ta; taIi; tb; tbIj ; ta tb|Ii − Ij |]), (27)
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Fig. 14 Left plot: supervised

and unsupervised learning when

unimodal noise is used. Right

plot: supervised learning when

bimodal noise is used. Results

are averages over 5 training

images for each learning

gradient step

where Ii is the value of pixel i in the image and |Ii − Ij | is

the absolute difference in image pixel values between con-

nected sites i and j . Following (Kumar 2005), we used 4-

connected lattices. We also experimented with 8-connected

neighborhoods with no significant difference in perfor-

mance.

The parameter values for all of our learning experiments

were:

• Initial,

w = [0.5; −1; 0.5; −1; −0.5; 1];
• Unsupervised, unimodal noise,

w = [1.27; −2.55; 1.27; −2.55; −2.50; 0.47];
• Supervised, unimodal noise,

w = [1.27; −2.55; 1.26; −2.55; −2.63; 0.26];
• Supervised, bimodal noise,

w = [1.98; −5.24; 1.98; −5.24; −2.99; 0.22].

Our learning method avoids the computational bottle-

necks of most probabilistic approaches such as maximum

likelihood and pseudo-likelihood, which need the estima-

tion of the normalization function Z. The main reason for

unsupervised learning to not do as well for MAP problems

as for graph matching is the different structure of the matrix

M. In the case of graph matching this matrix contains a sin-

gle strong cluster formed mainly by the correct assignments,

while in the case of MAP problems, the matrix could contain

several such clusters corresponding to completely different

labelings. The idea of accidental alignment is not applicable

to most MAP problems, thus the learning algorithm could

converge to several parameter vectors that would binarize

the continuous solution, in which case supervised learning

is required. Moreover, even in the case of supervised learn-

ing, training is sensitive to initialization in the case of MAP

problems, a fact also observed by other researchers.

7 Conclusions

We present an efficient way of performing both supervised

and unsupervised learning for graph matching in the context

of computer vision applications. We show that the perfor-

mance of our unsupervised learning algorithm is compara-

ble with that of the supervised case. The proposed algorithm

significantly improves the performance of several state-of-

the-art graph matching algorithms, which makes it widely

applicable. We also present a new approach to learning for

MAP problems and demonstrate that for some problems,

such as image denoising, it is possible to perform success-

ful learning in a completely unsupervised manner. As future

work we plan to extend the learning algorithms presented

here to the case of matching and MAP inference beyond

pairwise to higher-order constraints.
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