
Unsupervised Learning from Users’ Error Correction in
Speech Dictation

Dong Yu, Mei-Yuh Hwang1, Peter Mau, Alex Acero, Li Deng

Speech Technology Group
Microsoft Research / Redmond, USA

{dongyu,petermau,alexac,deng}@microsoft.com

1 Mei-Yuh Hwang (mhwang@ee.washington.edu) is currently with Department of Electrical Engineering, University of
Washington, Seattle, USA.

Abstract

We propose an approach to adapting automatic speech
recognition systems used in dictation systems through
unsupervised learning from users’ error correction. Three
steps are involved in the adaptation: 1) infer whether the user
is correcting a speech recognition error or simply editing the
text, 2) infer what the most possible cause of the error is, and
3) adapt the system accordingly. To adapt the system
effectively, we introduce an enhanced two-pass pronunciation
learning algorithm that utilizes the output from both an n-
gram phoneme recognizer and a Letter-to-Sound component.
Our experiments show that we can obtain greater than 10%
relative word error rate reduction using the approaches we
proposed. Learning new words gives the largest performance
gain while adapting pronunciations and using a cache
language model also produce a small gain.

1. Introduction

We have seen significant progress in advancing
Automatic Speech Recognition (ASR) technologies in the
past several decades. However, ASR systems are not widely
adopted today. Among all the issues that prevent users from
using ASR systems, recognition accuracy is still the most
important factor [1].

It is well known that an ASR system adapted to a specific
user performs better than an out-of-box system which comes
with a speaker independent Acoustic Model (AM), Language
Model (LM), and dictionary. For this reason, it is
recommended for users to go through several AM adaptation
sessions before using dictation system. While this pre-usage
supervised adaptation approach helps to improve the overall
performance, it’s not sufficient by its own due to the fact that
there are more elements to be adapted than the AM alone. For
example, the default dictionary does not include some of the
words frequently used by a specific user. Examples of these
Out Of Vocabulary (OOV) words are project names,
acronyms, and foreign names. Adapting the lexicon would
recover on average 1.2 times as many errors as OOV words
removed [2]. Another element that requires adaptation is
word pronunciations. This is especially true when a word is a
foreign name or the user is not a native speaker [3, 4].
Furthermore, different users may pronounce some of the
words differently.

To further improve the recognition accuracy, we explore
additional ways to adapt the ASR system. Specifically, we
propose an approach to adapting the ASR system through

unsupervised learning from users’ error corrections.
It is easy to see that users’ corrections contain useful

information to adapt the ASR system. However, using such
information without supervised information is not easy. We
pursue the unsupervised adaptation approach because most
dictation users are not ASR savvy and don’t know how to
“teach” the ASR system to perform better. For example, they
usually don’t know whether they should add a new word to
the lexicon, or provide a pronunciation even after a
suggestion is made to them. Another reason is that having the
system request specific information from users would slow
them down and probably annoy them.

In this paper, we introduce our new approach to tackling
the difficulties encountered when adapting the ASR system
with users’ corrections. We propose an architecture that
would infer the likelihood that the user is making a correction
instead of changing his/her mind, automatically identify the
most possible cause (e.g. OOV, pronunciation, LM) of the
ASR error, and adjust the ASR system accordingly. To
correctly learn the pronunciation, we propose a pronunciation
recognizer that picks the best phoneme sequence based on the
result of a standard n-gram phoneme recognizer and the
pronunciations generated by the Letter-to-Sound (LTS)
component.

The rest of the paper is organized as follows. In section 2,
we introduce the strategy used by our learning from
correction (LFC) system, including the algorithm used to infer
whether the user is making a correction or changing his/her
mind. In section 3, we describe how pronunciations can be
reliably learned from the corrections. We present
experimental result in section 4, and conclusions in section 5.

2. Learning from Corrections: Strategy

The strategy of our LFC approach is summarized as the
flow chart depicted in Fig. 1. The system first detects whether
the user has changed the dictated text. If yes, the system will
then infer whether the user is correcting a speech recognition
error or simply editing correctly recognized text. If it’s not
likely to be an ASR correction, nothing will be learned.
Otherwise, the system will check whether the error is likely
caused by OOV words. If yes, the new words are added into
the lexicon. Otherwise, the system continues to see whether
the error is likely caused by an incorrect pronunciation. If yes,
it will learn the pronunciation and determine whether that
pronunciation should be added into the lexicon. This process
goes on until we don’t have anything to learn. To prevent
over learning, we only adjust the most important factor for
each correction.

2.1. Infer User’s Intention

When a user edits the dictated text, the user may in fact
not make an ASR correction. If the LFC module blindly
learns from all the edits the user has made, it will gradually
corrupt the ASR system. For this reason, the first task of our
LFC module is to infer how likely a specific editing is really
an error correction.

Users make corrections in different ways: selecting from
an alternate list, re-dictating, or editing with the keyboard.
The difficulty comes from the fact that users may use these
same ways when they are not making a correction, e.g.,
polishing the documents, or changing his/her mind during
dictation. The LFC module infers whether the user is making
an error correction based on the text changed From (F), the
text changed To (T), the acoustic Audio (A), and the Editing
approach (E).

Fig. 1: Flow chart of the LFC approach

The decision is made based on the likelihood ratio
r(F,T,A) defined in Eq. 1.

r(F,T,A) = P(T|A)/P(F|A)

= P(A|T)P(T)/(P(A|F)P(F)) (1)

P(T) and P(F) can be directly calculated through language
model. The AM score of the original text P(A|F) can be
directly retrieved from the original recognition result. To
calculate the AM score of the updated text against the original
audio (P(A|T)), we do a forced alignment against the original
audio using the updated text and the context words: the
previous one word and the following one word, if available.
For example, if the original recognition result is: “This is a
text .\period” and the user corrected “text” to be “test”, the
phrase “a test .\period” is then used as the reference
transcription to align the original audio and label the most
possible boundaries of the corrected words.

The LFC component decides that the editing is a
correction if

r(F,T,A)>
�
E (2)

where
�
E has different values for different editing approaches

and can be estimated using training data. Adjusting the
thresholds

�
E would control how aggressive the LFC module

adapts the ASR system. It’s impossible to eliminate all
instances that the user is not making a correction with this
intention inference stage, so some additional safeguards are
needed in the later stages to prevent incorrect adaptation.

2.2. Adding New Words

Checking whether the error is caused by OOV words is
easy and reliable. We first convert the corrected phrase into a
normalized form. We then examine each word in the
normalized text to see whether it exists in the lexicon with a
table lookup. A word is an OOV word if it’s not in the
lexicon. To adapt the system, we add that word into the
lexicon and boost its LM unigram score based on the
following formula:

P(w)=� tP0+(1-� t)Pw (3)

where � t is a interpolation weight that equals 1 initially and
exponentially decays to 0 over time. Pw is the estimated
unigram score based on the counts. P0 is a fixed value so that
the score is high enough (but not too high) originally that this
word may survive in the pruning process. We do this since the
occurrence of histories has the property of locality [5, 6].

2.3. Adjusting LM

If it’s identified that the cause of the error is likely to be
the LM, we consider adjusting it. LM is usually trained with
millions of words. Adjusting it based on a few occurrences is
not desirable. For this reason, we only boost the LM score in
the duration of a session following the work of [6].

For example, if “wave two” is misrecognized as “wave
too” and gets corrected by the user, the system automatically
boosts the bi-gram P(two|wave) so that the combined AM and
LM score of “wave two” is larger than that of “wave too” with
a marginal value for that speech fragment during this session.

2.4. Learn Pronunciations

Learning pronunciations automatically from users’
corrections is the most difficult part due to three reasons:
• We need to find a way to correctly align the audio based
on the corrected phrase so that the correct pronunciation
can be learned.

• We need to have a good pronunciation recognizer to
learn the correct pronunciations from the audio and the
associated text.

• We need to devise a way to determine whether the
pronunciation learned for a word is reliable and whether
it should be added into the lexicon.

Because pronunciation learning involves higher
complexity than other adaptation components in this work, we
devote section 3 to resolving the above issues.

3. Pronunciation Learning

Learning pronunciation is very important for words such
as acronyms and foreign names. Usually, pronunciations for
these words are either provided by LTS or learned through an
n-gram phoneme recognizer.

LTS rules tend to do a good job on regular words, i.e., the
words that are more predictable in a particular language. If a
word’s pronunciation is hardly related to how it is spelled
(such as a foreign name) or if the user has a strong accent
(e.g., a Japanese user typically pronounces the word “mail” as
“m ey l uw”), LTS would fail to provide a good
pronunciation. The n-gram phoneme recognizer, on the other
hand, tries to capture any sequence of phonemes but the
pronunciation learned might be biased by the n-gram trained
from the known words.

The problem is particularly severe for those words that are
mixed with regular words and foreign words or acronyms. For
example, an LTS system is likely to produce the following
pronunciation for the word “voicexml”:

v oy s eh k s m ax l
A recognizer using the all-phone network, however, is

likely to do a worse job at the beginning but much better job
at the end:

ow s eh k s eh m eh l
Choosing either pronunciation would be so wrong that the

word “voicexml” can’t be recognized even after it’s added
into the lexicon.

Figure 2: Phoneme graph for the word “voicexml”: This
graph is constructed from the phoneme sequences generated
from both LTS and the n-gram phoneme recognizer

The optimal pronunciation � given acoustics A and
transcription T is expressed by

)|()|(maxarg),|(maxarg TpApTAp θθθθ
θθ

== (4)

Initially)|(Tp θ is given by LTS, which often generates
several pronunciations. Since LTS may not generate the
correct pronunciation for words such as acronyms and foreign
names, we want to relax such component. One possibility is
smoothing the LTS contribution with an all-phone network
which leads to a less optimal solution.

Our solution is to construct a phonetic graph from all the
sources (including LTS generated pronunciations and
phonemes recognized by the n-gram phoneme recognizer) and
then to rescore and pick the best path based on the acoustic
sample. In other words,

�
�
�

=
othwewise,0

graphin thepathais
�

,/1
)|(

N
Tp θ (5)

where N is the total number of paths in the graph. The
solution is summarized as:

1. Use the n-gram phoneme recognizer to search for the
best phoneme sequence from the acoustic sample.

2. Use all lexicons available and the LTS to provide a
list of possible pronunciations with the given
spelling.

3. Construct a phoneme graph based on the
pronunciations collected from steps 1 and 2.

4. Rescore the phoneme graph with the acoustic sample
and output the best phonetic pronunciation.

For example, “voicexml” has the phoneme graph shown
in Figure 2. The correct pronunciation is a mixture of
phonemes from all sources constrained by the graph.

Having a good pronunciation recognizer is not the end of
the story. Two other factors may affect the result of the
pronunciations recognized. The first factor is that the user’s
editing is not really a correction but the LFC component
believes it is. When this condition occurs, the pronunciations
recognized might be completely wrong. The second factor is
the possible wrong alignment due to the incorrect original
pronunciations. When this situation occurs, the result from
the pronunciation recognizer usually has incorrect first and/or
last phoneme. We partially fix incorrect pronunciations
generated due to this factor by comparing the first phoneme in
the result with the last phoneme in the previous word’s
pronunciations, and the last phoneme in the result with the
first phoneme in the posterior word’s pronunciations.

To prevent those incorrect pronunciations from being
added into the lexicon, we determine whether the new
pronunciation should be added into the lexicon based on a
confidence score generated from the distance between the
new pronunciation and existing pronunciations and the
frequency of the new pronunciation. The new pronunciation
is added if the confidence is larger than a threshold, the AM
score change with the new pronunciation is larger than a
threshold, and the new pronunciation happens at least twice.

4. Evaluation

To evaluate our LFC approach, we conducted two
experiments: an offline experiment and an online experiment.

In the offline experiment, we collected emails sent by 4
users and asked them to read them in the order they were
composed and we recorded the audio. Each user spoke 2000-
4000 words. We then used an offline testing tool to simulate
the correction process. When a recognition error occurred, we
recorded that as an error. At the same time, the tool provided
the corrected text and our system learned from the correction.
This process continues until all audio files are processed from
each user.

Table 1: Offline experiment result on WER (%)

WER (%) User1User2User3User4Average
Baseline 16.7 18.1 21.3 17.3 18.4

NewWord (NW)-Inc 14.8 17.5 20.6 13.3 16.6
NW-Aft 12.2 15.7 18.6 10.6 14.3

NW+Pron-Inc 14.7 17.4 20.6 12.7 16.4
NW+Pron-Aft 11.2 15.5 18.6 9.8 13.8

NW+Pron+LM-Inc 14.7 17.1 20.6 12.8 16.3
NW+Pron+LM-Aft 9.8 12.8 16.7 8.6 12.0

Table 1 summarizes the result of the offline experiment.
Some of the pronunciations learned are listed in Table 2. Base
line stands for the ASR system without LFC. NW means
adding New Words, Pron means adapting new
pronunciations, and LM means using the cache LM described
in Section 2.3. The suffix Inc denotes incremental testing that
each error is counted and the correction information is used to
adapt the system for future audio segments. The suffix Aft

v oy s eh k s

eh

m ax l

ow eh

means testing without learning after the same test set has been
used for an incremental testing (the ASR is already updated).
The actual error rate should be the Inc value if the test set size
was large. Given that our test size is small, we hypothesize the
actual error rate is in between the Inc and the Aft values and is
closer to the Aft values, since the most of what the system will
learn are user specific and can be captured after some finite
period (except the LM cache). This is especially true for
pronunciations since we add a pronunciation into the lexicon
after at least seeing it for three times and so the pronunciation
learning would only take effect when the same pronunciation
is shown the fourth or more times.

From Table 1, we can see that we get at least 11% relative
WER reduction by introducing the LFC. Adding OOV words
gives us the largest gain. Adapting pronunciations helps a
little and using cache LM gives us an insignificant gain. Also
note that LFC works better for some users (user1 and user4)
but is not very effective for some other users (user2 and
user3).

Table 2: Examples of the pronunciations learned

Spelling Lexicon or LTS
Pronunciation

Learned Pronunciation

sgstudio z g s t uw d iy ow eh s jh iy s t uw d iy ow
mste m s t ax m eh s t iy iy
z z iy s eh d
ASI ey z iy eh s ay
smex s m eh k s eh s eh m iy eh k s
HMIHY hh m iy hh iy hh aw m ey ay hh eh l p y uw

For the online experiment, we asked users to install our
experimental system and use it normally. The experimental
system automatically detects whether the user is making
correction, learns from corrections, and reports back the
dictated text and audio. Fig. 3 shows the recognition accuracy
over time for seven users that used the system long enough.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 101 201 301 401 501 601 701 801

Number of Utterances

W
or
d
A
cc
ur
ac
y

Series1
Series2
Series3
Series4
Series5
Series6
Series7

1

Fig. 3. Online experiments: vertical lines indicate the
clearance of the LM cache

The X-axis in Figure 3 indicates the number of utterances
(five words per utterance on average) recognized by the ASR
system. The Y-axis is the 1000 words moving average word
accuracy. The vertical lines in the figure indicate the end of an
old session and start of a new session at which time the
cached new word unigram and cached LM are cleared. From

the figure, we can see that the recognition accuracy increases
over time within each session and LFC does provide some
benefits. We also observe that the cached word unigram is
important to improving the ASR performance.

5. Conclusions and Future Work

We introduced our recent work in unsupervised learning
from users’ error correction. We described the learning
strategy, users’ intention inference algorithm, and the
improved pronunciation recognizer. We showed that with
LFC, we can reduce the WER incrementally by more than
10% without intervention from users. With all the elements
adapted, adding new words is very reliable and gives us the
best gain. It appears that giving the new words a boosted
unigram is very important to get the gain we expect.

Our LFC system can be further improved in the following
two areas.

First, in the current system, we only adapt the vocabulary,
pronunciations, and the LM. We perceive that users’
correction information can also be used to adapt the AM.
Today’s unsupervised AM adaptation occasionally decreases
the accuracy as time progresses. With users’ correction
information, we can improve unsupervised AM adaptation by
using only those uncorrected sentences and/or edited phrases
that are highly likely corrections.

Second, in the current system, we did not use the system’s
overall recognition accuracy as a guide when determining
whether we want to learn a new pronunciation or adjust the
LM. For example, if the system’s average WER is 10% and a
word’s average WER is 9%, it might not be desirable to adapt
the AM or LM for this word. However, if a word’s average
WER is 90%, it’s a good indication that we should learn
something to improve the accuracy for this word.

6. Acknowledgements

We wish to thank the members of the speech group at
Microsoft Research in Redmond for valuable discussions, and
anonymous reviewers for great comments and suggestions.

7. References

[1] L. Deng, and X. Huang, “Challenges in Adopting Speech
Recognition”, Communications of ACM, vol. 47, No. 1,
pp69-75, Jan 2004.

[2] L. Lamel and G. Adda, "On Designing Pronunciation
Lexicons for Large Vocabulary,Continuous Speech
Recognition", Proc. International Conference on Spoken
Language Processing (ICSLP'96), pp6-9, 1996.

[3] Dong Yu, Kuansan Wang, Milind Mahajan, Peter Mau,
and Alex Acero, “Improved Name Recognition With User
Modeling”, Proc. Eurospeech’03, pp1229-1232, 2003.

[4] F. Beaufays, A. Sankar, S. Williams, and M. Weintraub,
“Learning Linguistically Valid Pronunciations from
Acoustic Data”, Proc. Eurospeech’03, pp2593-2596,
2003.

[5] J. Wu, “Maximum Entropy Language Modeling with
Non-Local Dependencies”, Ph.D. dissertation, Johns
Hopkins University, 2002.

[6] R. Kuhn and R. De Mori, “A cache-based natural
language model for speech recognition”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 12(3), pp.
570-583, 1990.

