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Unsupervised Learning in Noise

BART KOSKO, MEMBER, IEEE

Abstract—The structural stability of real-time unsupervised learn-
ing in feedback dynamical systems is demonstrated with the stochastic
calculus. Structural stability allows globally stable feedback systems to
be perturbed without changing their qualitative equilibrium behavior.
These stochastic dynamical systems are called random adaptive bidirec-
tional associative memory (RABAM) models, which include several pop-
ular nonadaptive and adaptive feedback models, such as the Hopfield
circuit and the ART-2 model. RABAM networks can adapt with
different stable unsupervised learning laws. These include the signal
Hebb, competitive, and differential Hebb laws. A new hybrid learning
law, the differential competitive law, which uses the neuronal signal ve-
locity as a local unsupervised reinforcement mechanism, is introduced
and its coding and stability behavior in feedforward and feedback net-
works is examined. This analysis is facilitated by the recent Gluck-
Parker pulse-coding interpretation of signal functions in differential
Hebbian learning systems. The second-order behavior of RABAM
Brownian-diffusion systems is summarized by the RABAM noise
suppression theorem: The mean-squared activation and synaptic ve-
locities decrease exponentially quickly to their lower bounds, the in-
stantaneous noise variances driving the system. This result is extended
to the RABAM annealing model, which provides a unified framework
from which to analyze Geman-Hwang combinatorial optimization dy-
namical systems and continuous Boltzmann machine learning.

I. STRUCTURAL STABILITY IN HARDWARE, BIoLOGY,
AND MANIFOLDS

OW robust are unsupervised learning systems? What

happens if real-time synaptic mechanisms are per-
turbed in real time? Will shaking disturb or prevent equi-
libria? What effect will thermal noise processes, electro-
magnetic interactions, and component malfunctions have
on large-scale implementations of unsupervised neural
networks? How biologically accurate are unsupervised
neural models that do not model the myriad electrochem-
ical, molecular, and other processes found at synaptic
junctions and membrane potential sites?

These questions are different ways of asking a more
general question: is unsupervised learning structurally
stable? Structural stability [9], [42] allows globally stable
feedback systems to be perturbed without changing their
qualitative equilibrium behavior. This increases the reli-
ability of large-scale hardware implementations of such
networks. It also increases their biological plausibility,
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since the myriad synaptic and neuronal processes missing
from neural network models now are modeled, but as net
random unmodeled effects that do not affect the structure
of the global network computations.

Structural stability differs from the global stability, or
convergence to fixed points, that endows some feedback
networks with content addressable memory, and other,
computational properties. Globally stable systems can be
sensitive to initial conditions. Different inputs states can
converge to different limit states; else memory capacity is
trivial. Structural stability is insensitivity to small pertur-
bations. Such perturbation preserves qualitative proper-
ties. In particular, basins of attractions maintain their basic
shape. In some intuitive sense, chaos [36] is the antithesis
of structural stability, or, more accurately, structurally
stable fixed-point attractors (since chaotic attractors can
be structurally stable).

The formal approach to structural stability uses the
transversality techniques of differential topology [17], the
study of global properties of differentiable manifolds.
Manifolds A and B have nonempty transversal intersec-
tion in R” if the tangent spaces of 4 and B span R" at every
point of intersection, if locally the intersection looks like
R". Two lines intersect transversely in the plane but not
in 3-space, 4-space, or higher n-space. If the lines are
shaken in 2-space, they still intersect. If shaken in 3-
space, the lines may no longer intersect. In Fig. 1, man-
ifolds A and B intersect transversely in the plane at points
a and b. Manifolds B and C do not intersect transversely
at c.

An indirect approach to structural stability uses the cal-
culus of stochastic differential and integral equations [35],
[41]. This is the approach used in this paper. The sto-
chastic-calculus approach abstracts statistically relevant
behavior from large sets of functions. The differential-to-
pological approach, in contrast, is concerned with all pos-
sible behavior of all functions (open dense sets of func-
tions). This makes the analysis extremely abstract and
calculations cumbersome and often impractical.

The stochastic calculus is difficult to work with as well,
but usually less difficult than transversality techniques.
The new complexity that arises in passing from systems
of differential equations to systems of stochastic differ-
ential equations is due to the nature of solution points. In
algebraic equations, such as 2x + 3 = 4x, points in the
solution space are numbers. Solutions to differential equa-
tions are functions. Solutions to stochastic differential
equations are random processes [41].
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Fig. 1. Manifold intersection in the plane (manifold R?). Intersection
points @ and b are transversal. Point ¢ is not: manifolds B and C need
not intersect if even slightly perturbed. No points are transversal in
3-space unless B is a sphere.

Below we demonstrate the structural stability of many
types of unsupervised learning in the stochastic sense. The
key idea is to use the scalar-valued Lyapunov function of
globally stable feedback networks but in a random frame-
work. Then the old Lyapunov function is a random vari-
able at each moment of time ¢, so it cannot be minimized
as when it was a scalar at each ¢. The trick is to minimize
its expectation, its average value, which is a scalar at .

II. Four UNSUPERVISED ASSOCIATIVE LEARNING Laws

The distinction between supervised and unsupervised
learning depends on information. In pattern-recognition
theory, for instance, the distinction is in terms of knowl-
edge of class boundaries. Pattern recognition is super-
vised if the training algorithm requires knowing the class
membership of the training samples, unsupervised if it
does not require it.

A similar distinction holds in neural networks. Super-
vised learning invariably refers to deliberate gradient de-
scent in the space of all possible synaptic values. Class
membership information is needed to compute the nu-
merical error vector or error signal that guides the gra-
dient descent.

Unsupervised learning usually refers to the modifica-
tion of biological synapses with physically local signal
information. Class membership information of training
samples is not needed. These systems adaptively cluster
patterns into classes by, for example, evolving ‘‘win-
ning’’ neurons in a competition for activation, or by
evolving different basins of attraction in the state space.
We shall restrict our attention to such biologically moti-
vated learning methods, knowing that other types of un-
supervised learning are possible and may be of practical
engineering value.

Unsupervised learning laws are first-order differential
equations that describe how synapses evolve in time with
locally available information. This information usually
involves synaptic properties or neuronal signal properties.
In principle, and in mammalian brains or optoelectronic
integrated circuits, other types of information may be lo-
cally available for computation, glial cells, specific and
nonspecific hormones, background electromagnetic ef-
fects, or light pulses. These phenomena are modeled be-
low as net random parameters. For the moment they will
be ignored. Locality allows asynchronous synapses to op-
erate in real time. Mathematically, it also greatly shrinks
the function space of possible unsupervised learning laws.
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Associativity further shrinks the function space. Glob-
ally, neural networks associate patterns with patterns.
They estimate continuous functions. Locally, synapses are
required to associate signals with signals. This leads to
conjunctive, or multiplicative, learning laws constrained
by locality. This in turn leads to at least three types of
learning laws and a new hybrid law.

The four unsupervised associative learning laws dis-
cussed in this section are 1) the signal Hebb learning law,
2) the competitive learning law, 3) the differential Hebb
learning law, and 4) the new hybrid law, the differential
competitive learning law.

A. Signal Hebbian Learning

The signal Hebb learning law correlates neuronal sig-
nals, not activations:

my = —my; + S¥(x;) s}/()’j)

(1)
where the overdot indicates time differentiation, m; is the
synaptic efficacy of the directed axonal edge from the ith
neuron in field Fy to the jth neuron in field Fy, x; and Y
are the respective real-valued activations or membrane
potentials of the connected neurons, and S} and S7, here-
after abbreviated to S; and §;, are the bounded monotone-
nondecreasing signal functions of the connected neurons
that transduce their time-averaged potential differences
into time-averaged frequencies of pulse trains, and where,
as in all equations in this paper, scaling constants can be
multiplied or added where desired. The logistic signal
function S(x) = (1 + ¢™*)~!, with ¢ > 0, remains the
most popular signal function for simulations and appli-
cations. The logistic signal function is also strictly mono-
tone increasing, since §' = dS(x)/dx = ¢S(1 — §) >
0. Strict monotonicity strengthens stability results.

The solution to (1) is an integral equation since in gen-
eral x; and y; depend on m;. The key component of this
integral equation is an exponentially weighted average of
sampled patterns:

1

my(t) = m;(0)e™" + So Si(s) Si(s)e~'ds.  (2)

The exponential weight is inherent in the first-order struc-
ture of (1). It produces a recency effect on memory, as in
our everyday exponential decrease in retained informa-
tion. This well-known recency effect is the thrust of phi-
losopher David Hume’s quote: ‘“The liveliest thought still
is inferior to the dullest sensation.”’ Nothing is more vivid
than now.

B. Competitive Learning
The competitive learning law is obtained from (1) if the
passive decay term —my;; is modulated by the appropriate

local signal:
iy = S[S; — (3)

The *‘competitiveness’” in (3) is indirect. The assump-
tion is that neurons compete for activation in the field Fy

m,,].
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in the sense that the symmetric (distance-dependent) in-
trafield connections of Fy are laterally inhibitive: the
square symmetric matrix Q of intrafield connections is
positive main-diagonal and nonpositive off-diagonal, or,
more generally, Q has nonnegative blocks on its main di-
agonal and nonpositive blocks elsewhere. Then S; is a win-
loss index of the jth Fy neuron’s performance. In practice
[39] §; is invariably a 0-1 threshold function or steep lo-
gistic function, which behaves as a threshold function.
Then (3) says learn only if win. If the jth unit wins, the
signal pattern S(X) = (S§;(x), . .., S,(x,)) generated
at Fx is encoded as the jth column of the n-by-p connec-
tion matrix exponentially quickly. This ‘‘grandmother
synapse’’ effect differs from Hebbian learning, where pat-
tern information is superimposed on all of M. Then every
synapse participates in learning new patterns while, un-
fortunately, forgetting learned patterns.

Both (1) and (2) were studied as early as the 1960’s by
Grossberg [12]. Kohonen [24] and Hecht-Nielsen [15] use
the competitive law (3) statistically for unsupervised clus-
tering in their respective self-organizing map and coun-
terpropagation networks. The p columns of M then tend
toward the centroids of the sampled p decision classes,
even though the underlying probability density functions
are unknown.

C. Differential Hebbian Learning

The differential Hebb law [25]-[27], [32], [33], and its
variants, correlates signal velocities as well as signals:

my = —m; + 58, + 8,5 (4)
where, by the chain rule
dsix) _ dsdy _ o,
dt  dxdr U

If signals are locally available to synapses, so are signal
velocities, at least implicitly. Since the signal function S;
is an abstraction of time-averaged spiking frequencies, S;
is often assumed nonegative. Then Hebbian synapses (1)
can only grow in time. Signal velocities, of course, can
be both positive and negative. Correlated (lagged) signals
provide a local “‘arrow of time’” that synapses can exploit
[33] to encode time-varying patterns as limit cycles. Klopf
[21]-[23] independently arived at a similar discrete (dif-
ference) version of (4) in his drive-reinforcement theory
of animal learning.

Recently Gluck and Parker [10], [11] showed that dif-
ferential Hebbian learning becomes significantly more
plausible in nervous systems if we recall that real neurons
transmit discrete pulse-coded information and we struc-
ture the signal functions §; and S; accordingly. Suppose x;
and y; are pulse functions: x;(¢) = 1 if a pulse occurs at
time ¢, 0 if not, and similarly for ¥;(t). Then the signal
frequencies S; and S; can be estimated as exponentially
weighted time averages:

50 = | wteas (5)

50 =| yweas (6)

By recalling the form of the solution to a linear inhomo-
geneous, first-order differential question, the signal ve-
locities are seen to be simple, locally available, differ-
ences:

Si(1) = x;(1) — Si(2) (7)

5;(2) = y,(1) = §;(e). (8)

Thus a signal velocity has the form of a reinforcement

signal: a pulse less the current expected frequency of

pulses. As Gluck and Parker observe, not only are these

differences locally available, they can be computed in real
time without unstable differencing techniques.

For stability purposes, we note another consequence of

pulse-coded signal functions. They show how Hebbian

learning can be a special case of differential Hebbian

learning. Suppose the Hebb product $;S; in (4) is scaled
down to zero:

(9)

This is the ‘“classical’’ differential Hebb law [25]-[27].
Then substituting (7) and (8) into (9) gives

m,j = ~m,-j + S,S]

m; = —my; + 88 + [xy - x5 - y85]  (10)

which is equivalent to the signal Hebb law (1) if and only
if the term in braces is zero. Thus the simple differential
Hebb law (9), and of course (4) suitably scaled, reduces
to the signal Hebb law when no pulses occur, when x;(7)
= y;(#) = 0. This happens frequently. For, in any con-
nected time interval, the set v of times where pulses oc-
cur, {7': x;(¢+') = 1}, has Lebesgue measure zero. (Con-
sider pulses at rational time points or at Cantor set points.)
This interpretation, though, would imply [38] by (5) and
(6) that S; = §; = 0 almost everywhere, so the integrals
in (5) and (6) would have to be replaced with discrete
sums (using point-mass measures).

The infrequency of unit pulses occurs while the synapse
m;; continually modifies its behavior. When instantaneous
pulse information is not available, the synapse ‘‘fills in’’
with expected pulse frequencies, and hence Hebbian
learning. Since signal Hebbian learning is unconditionally
stable (the ABAM theorem, reviewed below) in many
nonlinear dynamical systems, including popular feedback
neural networks, pulse-coded differential Hebbian dy-
namical systems may be stable over a wider range of sys-
tem parameters than earlier velocity-acceleration stability
assumptions [32], [33] suggested.

D. Differential Competitive Learning

The fourth unsupervised learning law is a new hybrid
learning law, the differential competitive law:

(11)

The idea is learn only if change. As with the competi-
tive learning law (3), the neurons in F, compete for acti-
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vation, and the nonnegative signal functions S; keep score.
The signal velocity S in (11) is a local remforcement
mechanism. Its sign 1nd1cates whether the jth neurons are
winning or losing, and its magnitude measures by how
much. The coding and dynamical behavior of (11) can be
analyzed with the pulse-coding interpretation [10], [11]
of signal functions and by comparison with Kohonen’s
recent “‘supervised’’ adaptive-vector-quantization algo-
rithm [24].

The pulse-coded differential competitive learning law
is the difference of nondifferential competitive laws:

;= (Yj - Sj)[si - mij] (12)
= )’j[si - - 5}[51‘ - m,J] (13)

where x; is a 0-1 pulse function. Hence the standard com-
petitive learning law (3) is recovered when ¥; = l and §;
= 0. This occurs when the jth unit has just won the com-
petition for activation within Fy.

Usually in a competition there are many more losers
than winners. So suppose the jth neuron in Fy is a loser at
time ¢. Then y;(#) = 0 holds and has held over some,
perhaps short, past interval [¢’, t]. Then S;(t) =0 (or
nearly 0) by the exponential-weight structure of (6). So
no change, no learning.

Now suppose the jth unit wins in the next instant . Then
¥; = 1 over some interval [#, ¢"] of nonzero Lebesgue
measure. During this interval the exponential-weight
structure of §; soon drives §; toward 1, which we take as
the upper bound of §;. This means m;; quickly approaches
a positively scaled version of the signal S;.

Now suppose the jth unit goes from winning to losing.
Then at first y; = O and §; = 1. As §; quickly falls to zero,
learning slows then stops when y; = §; = 0. Meanwhile
m;; has “*‘moved away’’ from the signal S;. The signal ve-
locity S has ‘‘punished’’ the jth unit.

Kohonen [24] uses a sign change to punish misclassi-
fying prototype vectors trained with the competitive
learning law in his feedforward ‘‘supervised’’ adaptive
vector quantization (AVQ) system. In vector formulation,
the p reference vectors m(t), . . ., m, (1) are the respec-
tive prototypes at time ¢ of the p decision classes Dy,

, D, that partition the signal space R". The p refer-
ence vectors are also the p columns of the synaptic matrix
M. m; = (my;, ..., m,) is the fan-in of synapses of the
ith neuron in Fy. All Fy neurons are engaged in winner-
take-all competition. Given a random training sample
vector x(t) presented at Fy, the Fy competition is sum-
marized by finding the reference vector m;(t) closest to
x(t) in Euclidean distance: || x — m;|| = min {[|x — m,||:
i=1,...,p}. “Supervision’’ means we know which
decision class the random vector x was chosen from. If x
belongs to Dj, the class represented by m;, then m; is re-
warded by moving m; a little closer to x. This allows m;
to gradually approximate the centroid of D;. (The cen-
troid, or conditional expectation, minimizes the mean-
squared-error of vector quantization [37].) Else if x does
not belong to D;, m; is punished for misclassifying x as a
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D; pattern by moving m; a little farther away from x, pre-
sumably out of regions of misclassification. This is
achieved by a simple sign change:

mi(t) + c(t)[x(¢) = m(1)], xeD
(14)

x ¢ D;
(15)

m;(t + 1) = my(¢) for all losing neurons in Fy (16)

where ¢(0), c(1), ¢(2), . is a slowly decreasing se-
quence of small (¢(0) < 1) learning constants. Koho-
nen’s ‘‘unsupervised’’ AVQ algorithm eliminates the
punishment equation (15) and relaxes (14) by allowing
x(t) to belong to any decision class. The unsupervised
algorithm is clearly a discrete stochastic version of the
competitive law (3) in vector notation. Kohonen shows
that under appropriate statistical conditions, the equilib-
rium condition of the AVQ unsupervised-clustering al-
gorithm occurs when the p reference vectors m; asymp-
totically arrive at the centroids of their respective decision
classes. Kohonen next shows that the equilibrium condi-
tion of the supervised AVQ algorithm is similar in struc-
ture to that of the optimum unit-cost Bayes classifier, and
cites simulation data in support of this similarity.

The differential competitive law (11) can be viewed as
a local unsupervised approximation of Kohonen’s super-
vised AVQ algorithm. Indeed preliminary simulations of
(11) in stochastic feedforward mode show similar classi-
fication performance in many noise environments.

The pulse-coded differential competitive law (12), as
discussed above, can be expected to often behave as the
competitive law (3) with 0-1 threshold signal function S;.
This is precisely when the competitive law has been shown
[32] globally stable when embedded in the nonlinear dy-
namical systems below. For this reason, we here limit the
stability analysis of the differential competitive law to that
of the competitive law with steep signal function S;. We
simlarly limit the stability analysis of the differential Hebb
law (4) to the analysis of the signal Hebb law, even though
differential Hebb dynamical systems are known [32], [33]
globally stable in the special case that signal velocities are
comparable to signal accelerations.

mi(t + 1) =
mi(t) = c(0)[x(2) — my(1)],

III. UNIDIRECTIONAL AND BIDIRECTIONAL NONLINEAR
DyYNAMICAL SYSTEMS

We study nonlinear dynamical systems described by
Cohen-Grossberg [6], [14] dynamics. In the unidirec-
tional or autoassociative case, when Fy = Fyand M =
M7, a neural network possesses Cohen-Grossberg dy-
namics if its activation equations can be written in the
abstract form

X = _ai(xi)|:bi(xi) - ZS,-(x,-)mij} (17)
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where a;(x;) = 0 is an amplification function, b, is arbi-
trary so long as it keeps the integrals bounded in the Lya-
punov functions below, and S; is a bounded monotone
nondecreasing (S; = 0) signal function. The global sta-
bility of nonlearning autoassociative systems described by
(17) is ensured by the Cohen-Grossberg theorem [6],
which is abstractly equivalent—in the sense that R" X R”
= R"*"—to the BAM theorem below for nonlearning het-
eroassociative networks and a special case of the ABAM
theorem reviewed in the next section.

Perhaps the most important special cases of (17) are
additive and shunting networks, the popular versions of
which are the respective Hopfield circuit [19] and the
Hodgkin-Huxley membrane equation [18]. Grossberg
[14], has also shown that (17) reduces tothe additive
brain-state-in-a-box model of Anderson [11, [2] and the
shunting masking field model [7] upon appropriate change
of variables. An autoassociative system has additive ac-
tivation dynamics if the amplification function a; is con-
stant and the b; function is linear. For instance, if a;, =
1/Ci7 bi - (X/R) In Si(xi) = gi(xi) :'Vi’ and con-
stant m; = = T; = Tj;, where C; and R; are positive
constants and mput I; is constant or slowly varying rela-
tive to fluctuations in x;, then (17) reduces to the Hopﬁeld
01rcu1t [19]:

Cx; =

Xi
~E+JZV,T,,+1,-. (18)

Grossberg [13] has shown that neurons with additive
dynamics saturate at their upper bounds (if they have
them) when inputs are arbitrarily large, thus ignoring the
relative pattem information in the’ mput pattern (1, . .
1,).

An autoassociative network has shunting or multipli-
cative activation dynamics when the amplification func-
tion g; is linear and b; is nonlinear. For instance, if a; =
—x,-, m; =1 (self-excitation in lateral inhibition), and b;

= (1/x)[—Aix; + B(S; + I') — x(8; + I7) —
C (Eﬁe, §;my; + I7)], gives the distance-dependent (my;
m;) umdlrectlonal shunting network:

.

= —4;x; + (B, — x)[Si(x) + I}']

- (G + x,-)[ ; S;(x))my + 1,.—} (19)

where A; is a positive decay constant and B; and C; are
positive saturation constants. The first term on the right-
hand side of (19) is a passive decay term. The second and
third terms are, respectively, positive and negative feed-
back terms. (Strictly speaking, a;(x;) must be kept posi-
tive. x; can always be translated to achieve this.) If the
shunting x; terms in the positive and negative feedback
terms are scaled to zero, (19) reduces to an additive
model. Grossberg also showed that shunting models do
not saturate when presented with arbitrarily large positive
inputs. They remain sensitive to the relative pattern in-
formation in ([, ..., I,). Perhaps more important for

neurobiologists, Grossberg [13], [14] observed that the
shunting model (19) is naturally generalized by the cele-
brated Hodgkin-Huxley membrane equation:

av,

e =V =Vl + (V= V)gh + (VT = Ve

(20)

where V7, V*, and V'~ are respective pass1ve excitatory
(sodium Na* ) and inhibitory (potassium K™ ) saturation
upper bounds with corresponding shuntmg conductances
g7, &', and g, and where the constant capacitance ¢ >
0 scales time. The shunting model (19) becomes the mem-
brane equation (20) if V; = x;,, ¥V’ =0, V' =B, V™ =
—Cgl =48 =S(x)+1I,and g = L Simy +
Q-

Continuous bidirectional associative memories [28]-
[32] (BAM’s) arise when twa (or more) neural fields Fy
and Fy are connected in the forward direction, from Fy to
Fy, by an arbitrary n-by-p synaptic matrix M and con-
nected in the backward direction, from Fy to Fy, by the
p-by-n matrix N = M’ T where M7 is the transpose of M.
BAM activations also possess Cohen-Grossberg dynam-
ics, and their extensions:

X,-=

“ai,(xi)l:bi(xi) - j§1 Sj(yj)mij:| (21)

_aj()’j)[bj()’j) - ,_1;1 Si(xi)mij] (22)

Y
with corresponding Lyapunov function L:

L= —Z Z S8;S;m;; + Z So S7(6;) b;(6;) db;
i i

+ Z S 8! (¢) bi(¢;) de;

where the functions b; and b; must be suitably constrained
to keep L bounded.

The quadratic form in L is bounded because the signal
functions §; and S; are bounded. Boundedness of the in-
tegral terms requires additional technical hypotheses to
avoid pathologies as discussed by Cohen and Grossberg
[6]. For our purpose we simply assume the integral terms
are bounded.

All BAM results extend to any number of BAM-con-
nected fields. Complex topologies are possible and, in
theory, will equilibrate as rapidly as the two-layer BAM
system. The back-and forth flow of information in a BAM
facilitates natural large-scale optical implementations
[20], [28].

The BAM model (21), (22) clearly reduces to the
Cohen-Grossberg model if both neural fields collapse into
one, F, Fx = Fy, and the constant matrix M is symmetnc M
=M. Conversely, the BAM system, which is always
globally stable, can be abstractly viewed [30] as symme-
trizing an arbitrary matrix M. For if the two BAM fields
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are abstractly concatenated into a new field F, F; = Fy
U Fy, with zero block diagonal synaptic matrix W that
contains M and M7 as respective upper and lower blocks,
then the BAM dynamical system (21), (22) is equivalent
to the autoassociative system (17).

The BAM system (21) includes additive and shunting
models. If ; = 1 = a;, b; = x; — I, and b=y —J;
for relatively constant inputs 7, and J;, then an additive
BAM [30], [31] results:

I

Y= x4 2 S5(y)my + (23)
J

yi=-y+ 2 Si(xiymy + J; (24)
where again constants can be added or multiplied as de-
sired. More generally, if a; = —x;, a = -y, b =
(1/x)[—x + (Bi — xp)[8i(x)) + 1] — x;1; ], and b;
= (I/Yj)[ -y + (B; — )’j)[s}()’j) + Jj+] = ¥J; 1, then
a shunting BAM [30] results:

Rad

=%+ (B, —x)[S + 1] - xi|:z Smy; + [i_:‘
j

(25)

V= -y + (B =y +J] - y/[zi: Sim; + Jf]~
(26)

The shunting BAM (25), (26) reminds us that in general
distance-dependent competition occurs within fields Fy
and Fy. Suppose the n-by-n matrix R and the p-by-p ma-
trix § describe the distance-dependent (R = RT,§=8T)
lateral inhibition within Fy and Fy, respectively. Then the
general BAM model (21), (22) must be augmented to a
competitive BAM [29]:

—a;(x;)| bi(x;) — jZSj(yj)mij - ‘kﬂﬂ Sk(xk)rki}

Ral
I

(27)

n p
Y = —a,-()’j) bj()’j) - Z,: Si(xi)mij - Z/: Sl(yl)sljjl~

(28)

An adaptive bidirectional associative memory (ABAM)
is a globally stable dynamical system with activation dy-
namics described by (21), (22) or (27); (28) and synaptic
dynamics described by a first-order learning law. The
original ABAM [30] restricted the choice of learning law
to the signal Hebb law (1). Signal Hebb ABAM’s are un-
conditionally globally stable, though limited in their abil-
ity to estimate continuous functions. Better, though more
costly, estimation can be gotten with highef.order signal
Hebb ABAM’s. For example, in autoassociative notation,
the second-order signal Hebb ABAM {32] is described by
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(29)-(31):
X = _ai(xi)[bi(xi) -2 §(x;)my;
i
- ; ; Si(x;) Sk(xk)nijk:| (29)
iy = —my; + 5,(x;) §(x) (30)
e = =g+ S;(x;) 8;(x;) Si(xe) (31)
with corresponding Lyapunov function L:
= -3 ; JZ SiSimy — § ; ; ; 8 8; Skmijx
+ 2 So S51(6:) b;(6;) db; + + 2 X m}
i i
M RIPIDIN (32)
[

The Lyapunov function remains bounded in the adap-
tive case. The new terms

Y2 2w and {5 X D n,
L o

in (32) are bounded because the solutions to (30) and (31)
are bounded since, ultimately, the signal functions S; are
bounded. )

If a;(x;) > 0 and §/ > 0, and if (32) is differentiated
with respect to time, rearranged, and (29), (30) are used
to eliminate terms, then L strictly decreases along trajec-
tories, yielding asymptotic stability (and in general ex-
ponential convergence), since

Si (xi) 12
RO

1 <
R

(33)

. 1
L= - =2 2k
20

(34)

if any activation or synaptic velocity is nonzero. The strict
monotonicity assumption S§; > 0 and (33) further imply
that L = 0 if and only if all parameters stop changing: ;
= my; = . = 0 for all i, j, k. All like higher order
ABAM’s are globally stable.

The restriction to sighal Hebbian learning was relaxed
[32] to allow competitive learning with (3) provided §; is
steep, and further relaxed to allow differential Hebbian
learning with (4) provided signal velocities and signal ac-
celerations agree in sign. A competitive ABAM (CA-
BAM) results from (27), (28) if learning is governed by
the competitive learning law (3) and if S, behaves essen-
tially as a 0-1 step fuinction. For then, upon time differ-
entiation, the appropriate Lyapuriov function L takes the
form

L:_Zsi’(xi)x’g_ 500 ,
i a; J aj

- ; ; mij[Si(xf) Sj(yj) - mU] (35)
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The trick is to eliminate 71; in (34) with the competitive
law (3) and exploit the 0-1 threshold (steep-sigmoid) be-
havior of §;. Then the relevant product becomes non-
negative:

[ S;S; — my] = 8;(8; —

k
(8 —

Thus both winners and losers in Fy keep L decreasing
and ensure that every CABAM is globally stable.

CABAM'’s are topologically equivalent to adaptive res-
onance theory (ART) systems [13]. The idea behind ART
systems is learn only if resonate. Resonance, though, is
simply joint stability at Fy and Fy mediated by the forward
connections M and the backward connections N. When N
= M7 and activation dynamics are described by (27), (28),
ART models become CABAM models so long as learning
is described by a globally stable learning law, in partic-
ular the competitive law (3) with steep signal function S;.
This is the case with the recent ART-2 model [5] since
the activation (short-term memory) dynamics of Fy and
Fy are described by shunting equations and, in the nota-
tion of Carpenter and Grossberg, the learning (long-term
memory) dynamics are described by CABAM-style com-
petitive learning laws with threshold signal functions in
Fy:

my)[5:8; — my]

Sj()’j) =0

2
my),  Si(y) =L

top-down (Fy = Fy):z; = g(y;))[pi — z:] (36)

bottom-up (Fx = Fy):z; = g(y)[p: — ;] (37)
where g is a threshold signal function and p; is the signal
pattern (itself involving complicated L?-norm computa-
tions) transmitted from Fy. Equation (36) says matrix Z
contains forward projections and its transpose Z” contains
backward connections. .

In contrast, the earlier binary ART-1 model [4] is not
extended by the CABAM model because Weber law struc-
ture is imposed on the forward ‘‘bottom-up’’ synaptic
projections, and thus the forward and backward connec-
tion matrices are not related by transposition. This in part
explains why binary inputs in ART-2 need not produce
ART-1 behavior. It also suggests that the ART-2 model
can in principle be similarly modified by adding Weber
law structure to (36), producing an ART-2’ model that is
not a CABAM.

These connections among unsupervised feedback dy-
namical systems are summarized by the taxonomy in Fig.
2 of artificial neural networks (ANN’s) and placed in con-
text with unsupervised feedforward adaptive vector quan-
tizers and the extremely popular supervised feedforward
gradient-descent networks:

The more general RABAM model is developed below.

Finally, for completeness, we state the form of ABAM
systems that adapt (and activate) with signal velocity in-

DECODING

FEEDFORWARD FEEDBACK
O 3
%] GRADIENT DESCENT
Z = we
w BACKPROPAGATION
— % REINFORCEMENT LEARNING
- 2]
o RABAM
BROWNIAN ANNEALING
E BOLTZMANN LEARNING
ABAM
[& ] VECTOR QUANTIZATION ART-2
E BAM = COHEN-GROSSBERG MODEL
] SELF-ORGANIZING MAPS HOPFIELD CIHCUIT
z o COMPETITIVE LEARNING BRAIN-STATE-IN-A-80X
> COUNTER-PROPAGATION MASKING FIELD
@ ADAPTIVE RESONANCE
w =z ART-§
= ART:2*

NEURAL NETWORK TAXONOMY
Fig. 2.

formation by using the differential Hebb learning law [33]:

Ral

= —a,-(x,»)[b,-(x,-) - 2 §m; ~ % S,-m,-,} (38)

V= —aj(yj){bj(yj) - Z Simy; — Z Simij:| (39)

iy = —my; + 8,85 + 8.5 (40)
and the further assumptions §; = §, §; = §;, where in
general (40) can be loosened to only require that signal
velocities and accelerations tend to have the same sign (as
in clipped exponentials). The corresponding Lyapunov
function now includes a ‘‘kinetic energy’’ term to account

for signal velocities:

L= -2 XSSm; - 22 585m;
[ o

+ 2 [ sy b0y

Yi
0

+ 2 S 5 (¢) b(e) de; + 3 2 2 md,

IV. StABILITY-CONVERGENCE DILEMMA AND THE
ABAM THEOREM

Stability and convergence are equilibrium properties.
Stability is equilibrium in a neuronal field: (d/dt)Fy =
O. Convergence is equilibrium in a synaptic web:
(d/dt)M = O. Global stability is joint stability and con-
vergence for all inputs and all network parameters. Pat-
tern formation occurs across field Fy when it stabilizes.
The stable signals across Fy make up the formed pattern.
Stability is trivial in a feedforward network.

Global stability is difficult to achieve in unsupervised
feedback networks. After all, most feedback systems are
unstable. Global stability requires a delicate dynamical
balance between stability and convergence. Achieving
such a balance is arguably the central problem in analyz-
ing, and building, unsupervised feedback dynamical sys-
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tems. The chief difficulty stems from the dynamical asym-
metry between neural and synaptic fluctuations. Neurons
fluctuate orders of magnitude faster than synapses: learn-
ing is slow. In real neural systems, neuronal fluctation
may be at the millisecond level, while synaptic fluctuation
may be at the second or even minute level.

The stability-convergence dilemma arises from the
asymmetry in neuronal and synaptic fluctuation rates. The
dilemma unfolds as follows. Neurons change faster than
synapses change. Patterns form when neurons stabilize,
when (d/dt)Fy = O and (d/dt)Fy = O. The slowly
varying synapses M try to learn these patterns. Since the
neurons are stable for more than a synaptic moment, the
synapses begin to adapt to the neuronal patterns—learning
begins. So (d/dt)Fx = O and (d/dt)Fy = O imply
(d/dt)M # O. Since there are numerous feedback paths
from the synapses to the neurons, the neurons tend to
change state. So (d/dr)M # O implies (d/dt)Fy # O
and (d/dt)Fy #+ O. Learning tends to undo the very sta-
bility patterns to be encoded, and hence the dilemma. In
summary, for two fields of neurons Fy and Fy connected
in the forward direction by M and in the backward direc-
tion by M7, the stability-convergence dilemma has four
parts, described as follows.

A. Stability-Convergence Dilemma

1) Asymmetry: Neurons in Fy and Fy fluctuate faster
than the synapses M.

d d
2) Stability: o Fy = 0 and & Fy = O(pattern forma-

tion).
., d d d
3) Learning: thx = 0O and thy =0 dtM * 0.

d
4) Undot'ng.‘ EM +#0- %FX # O and :i'd;Fy *+ 0.

The ABAM theorem [32] provides one resolution of the
stability-convergence dilemma. The adaptive resonance
concept provides another. Though as discussed in the pre-
vious section, the recent ART-2 instantiation of the con-
cept is a CABAM. The ABAM theorem ensures the global
stability, the joint stability and convergence, of dynami-
cal systems with activation dynamics described by (21)
and (22) and that learn according to the signal Hebb learn-
ing law (1). The extensions to competitive and differential
Hebbian learning (and thus differential competitive learn-
ing) discussed above all require more assumptions than
learning with the signal Hebb law, which requires none.
Since the ABAM theorem is the starting point for the ran-
dom-process extension to the RABAM theorem below, we
review its statement and proof.

B. ABAM Theorem

Every signal Hebb BAM is asymptotically stable, where
the network dynamics are described by

X = _ai(xi)[bi(xi) - IZS,()’,)mU—’ (41)
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I

3 —aj(yj)[bj(yj) - Z‘J Si(xi)mfj} (42)

(43)

and a; > 0 and a; > 0, and §; and §; are bounded
monotone increasing (S; > 0 and §; > 0) signal func-
tions. At equilibrium, all activation and synaptic veloci-
ties are zero.

Proof. Consider the global Lyapunov function L:

my = —my; + 8;(x;) S;( ;)

L= =S ¥ssm+ 3 | 5(6)506) db
i i

Yj
+ 2 S S(e) bi(g) de; + L 2 2mp.  (44)
j Jo i
Then time differentiation and collection of like terms gives

L=-% Si'ffi[bf -2 S,m,,} + 2 Sf}"{b/‘ -2 S,»m,]}
i J J i

- 2 2SS — my).
5 LSS = my) (45)

Then, using the positivity of a; and a;, the terms in braces

can be eliminated with the respective equations (41)-(43).

This proves that L is strictly decreasing along trajectories:

. S! S!
L=-223 -2 232 -Z 2w <0 (46)
i a; i a; i

for any activation or synaptic change. Since S > 0 and
S/ > 0,L = 0ifandonly if x; = y; = rn;; = 0 forall i
and j. Q.E.D.

The strictly inequality sign in (46) yields asymptotic
stability, which ensures that trajectories end in equilib-
rium points, not merely near them. Asymptotic stability
also ensures that the eigenvalues of the Jacobian matrix
of the system (41)-(43) have nonpositive real parts near
equilibria. A nondegenerate Hessian further ensures that
the real parts of the eigenvalues are negative. Then [16]
the nonlinear system (41)-(43) converges exponentially
quickly as if it were linear.

V. RANDOM ADAPTIVE BIDIRECTIONAL ASSOCIATIVE
MEMORIES

Random adaptive bidirectional associative memory
(RABAM) models are everywhere perturbed by Brownian
diffusions. The differential equations in (41)-(43) now be-
come stochastic differential equations, with random pro-
cesses as solutions. In the simplest case, Brownian dif-
fusions are simply added to deterministic differential
equations. In the more general case adopted here, every
activation and synaptic variable represents a separate sto-
chastic process. The stochastic differential equations re-
late the time evolution of these stochastic processes.
Brownian diffusions, or ‘‘noise’’ processes, are then
added to the stochastic differential equations. In principle
this Ito calculus approach need not preserve the chain rule
of deterministic differential calculus. The final section,
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though, discusses why for RABAM models the classical
chain-rule relationships still hold.

Let B;, B;, and B; be Brownian motion (independent
Gaussian increment) processes [35], [41] perturbing the
ith neuron in Fy, the jth neuron in Fy, and the synapse m;,
respectively. The Brownian motions are allowed to have
time-varying diffusion parameters. Then the diffusion
RABAM is described by (47)-(49):

dx; —ai(xf)[bf(xi) -2 S,-(y,»)m.,-] dt + dB; (47)

dy, —aj(yj)[b,(yj) - 2 S,-(x,-)m,-j:| dt + dB; (48)

The signal Hebb diffusion law (49) can be replaced with
the competitive diffusion law

dmy; = S;(y;)[S; — my]dt + dB;; (50)

if §; is sufficiently steep. Or it can be replaced with dif-
ferential Hebb or differential competitive diffusion laws if
tighter constraints are imposed. For simplicity, we shall
formulate the RABAM model in the signal Hebb case
only. The extensions to competitive and differential learn-
ing proceed exactly as the above extensions of the ABAM
theorem. All RABAM results, like all ABAM results, also
immediately extended to high-order systems of arbitrarily
high order.

The RABAM model can be restated in more familiar,
less rigorous, ‘‘noise notation.’’ Intuitively independent
zero-mean noise is added to the ABAM model. The sto-
chastic differential equations then describe the time evo-
lution of network ‘‘signals plus noise.’’” This implicitly
means that the noise processes are independent of the
nonlinear ‘‘signal’’ processes. For emphasis, though, we
explictly make the weaker assumption that the noise pro-
cesses are uncorrelated with the ‘‘signal’’ processes. We
further assume that the noise processes have finite vari-
ances, though they may be time varying. Then the noise
RABAM model is described by the stochastic differential
equations

X = _ai(xi)[bi(xi) - Sj(yj)mij] +n (51)
Y= _aj()’j)[bj()’j) - E,: Si(xi)mij] + n (52)
iy = —my + Si(x:) S;i(y;) + ny (53)
E(n) = E(n;) = E(n;) = 0 (54)
V(n) = o'm < o, o} <o, o; <o (55)

Noise can be added within the general b; and b; terms,
perhaps reflecting random input signals. A separate anal-
ysis [34] shows that additive input noise can be accom-
modated for additive and shunting activation models. For

additive activation models, such additive activation noise
can be included in the noise terms »; and n;

Will so much noise destabilize the system? So much
noise with so much feedback would seem to promote
chaos, especially since the network dimensions n and p
can be arbitrarily large. How can stable learning occur?

The RABAM theorem ensures stochastic stability.
Nonlinear interactions suppress noise and suppress it ex-
ponentially quickly. In effect, RABAM equilibria are
ABAM equilibria that randomly vibrate. The diffusion pa-
rameters, or the noise variances, control the range of vi-
bration. Average RABAM behavior is just ABAM behav-
ior. Since noise perturbations do not destroy equilibria,
the RABAM theorem says that unsupervised learning is
structurally stable in the stochastic sense. The result ap-
plies with equal force, though with less theoretical inter-
est, for unsupervised learning in feedforward networks.

The RABAM theorem can be motivated with a simple
thought experiment or, better, a few hand calculations.
Consider a discrete additive BAM with fixed matrix M.
Find its bipolar fixed points in the product space { —1,
1}" x {—1, 1}”. Now add a small amount of zero-mean
noise to each memory element m;;. Since a discrete BAM
signal function is a threshold function, it is unlikely that
more than very few neurons, if any, change state differ-
ently during iterations than they did before. It is even less
likely that they will do so as n and p increase. The same
fixed points tend to be reached, and tend to persist once
reached. This corresponds to adding noise at the synaptic
level. Now repeat the computation, but also add zero-
mean noise to each neuron’s activation at each iteration.
Then repeat this computation, adding new noise to the
matrix M each time. This allows the synaptic noise pro-
cesses to be ‘‘lower”’ than the neuronal noise processes.
Again the threshold signal functions make it unlikely that
the signal patterns will change significantly, if at all, dur-
ing iterations or in equilibrium.

A. RABAM Theorem

The RABAM model (47)-(50), or (51)-(55) is globally
stable. If signal functions are strictly increasing and am-
plification functions g; and g; are strictly positive, the RA-
BAM model is asymptotically stable.

Proof. The ABAM Lyapunov function (44) is now a
random process. At each time ¢, L(¢) is a random vari-
able. We conjecture that the expected ABAM Lyapunov
function E(L) is a Lyapunov function for the RABAM sys-
tem, where the expectation is with respect to all random
parameters:

E(L) = E ng(X, Y, M)dXdY dM. (56)

(Recall that each activation and synaptic parameter rep-
resents a random process separate from the random pro-
cess got simply by adding noise to a deterministic vari-
able.)

The proof strategy is to replace the time derivative of
the expectation with the expectation of the time derivative
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of the ABAM Lyapunov function, which we calculated
above. Technically we need to assume sufficient smooth-
ness conditions on the RABAM model to bring the time
derivative inside the multiple integrals in (56). This as-
sumption adds little burden. Then

E(L) = E(L) and by (45)

= E{Z s;x,-[bi -2 sjm,.j}
i J

+ZS’yj[ ZSm]

= 20 2 tig[ —my + SiSj]}
i

2
= E{—Z s;a,-[b,. -2 s,m,.,}
i Jj

2
_ jzs;aj[bj - Z s,.m,.j]

LSS ey + s,-s,-f}
i

+ ZE{nis;[bi - Zs,.m,.,B
+ZEan’[ Zsm B

= 2R E{m[-m; + 551} (57)
upon eliminating the activation and synaptic velocities in
(57) with the RABAM dynamical equations (51)~(53)

= E[Lupau] + 2 E(n) E{s;[bi - X S’”B

+ B0y 3]s - o

- IZIZE('ZU) E[-m; + 5;5)] (58)
by the uncorrelatedness (independence) of the ‘‘signal’
and additive noise terms in the RABAM model, and by
the facts that 7 and S; are nonnegative functions of x; and
y; respectively, and a; and a; are nonnegative essentially
arbitrary functions (so §; = a; and S = g; possible)

= E[LABAM]
by (54). So E(L) < 0 or E(L) < 0 along trajectories
according as Lygam < 0 or Lygam < O. Q.E.D.

VI. NOISE-SATURATION DILEMMA AND THE RABAM
NoOISE SUPPRESSION THEOREM

How much do RABAM trajectories and equilibria vi-

brate? To answer this question we need to examine the
second-order behavior of the RABAM model. This be-
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havior depends fundamentally on the variances of the ad-
ditive noise processes. Observe that the zero-mean as-
sumption (54) 1mphes that the time-varying ‘‘variances’’
02, o;, and a,, are the respectlve instantaneous mean-
squared ‘‘noises’’ E(n ), E(n ), and E(n,j), since in gen-
eral V(x) = E(x?) — EX(x).

Observed RABAM second-order behavior consists of
the observed instantaneous mean-squared velocities
E(x?), E(yj) and E(m,j) The mean-squared velocities
measure the magnitude of instantaneous RABAM change.
They are at least as large as the underlying instantaneous
““‘variances’’ of the activation velocity and synaptic ve-
locity processes, since, for example

B(x}) = E(i}) - E(&) = V(%) (59)

Intuitively the mean-squared velocities should depend
on the instantaneous ‘‘variances’’ of the noise processes
in (51)~(53). The more the noise processes hop about their
means, the greater the potential for the activations and
synapses to change state. But this intuition seems to run
counter to the structural stability established by the RA-
BAM theorem. Surely, it seems, if the magnitudes of the
noise fluctuations grow arbitrarily large, there comes a
point—and perhaps a point quickly reached in the midst
of massive noisy feedback—where the RABAM: system
transitions from stability to instability.

The RABAM noise suppression theorem guarantees that
no noise processes can destabilize a RABAM if the noise
processes have finite instantaneous variances. (Cauchy
noise, for example, in theory could destabilize a RABAM
since it has infinite variance. In practice, though, even
Cauchy variance is finite, and so it will never destabilize
a RABAM.) Preliminary simulations {43], where noise
fluctuations are many orders of magnitude greater than
activation and synaptic fluctuations, have confirmed this
surprising prediction. In some sense noise cannot beat
RABAM stability. Moreover, the RABAM noise suppres-
sion theorem ensures that noise will be ‘‘quenched,”’ to
use Grossberg’s term [13], exponentially quickly in most
cases.

To prove the RABAM noise suppression theorem, we
must make explicit how RABAM instantaneous mean-
squared velocities depend on the underlying instantaneous
noise variances. The following lemma grounds the intui-
tion that observed second-order behavior—the instanta-
neous mean-squared velocities—involves at least as much
fluctuation as is found in the noise itself.

Lemma:

E(x}) = o2 E(3}) = o},
Proof. All three inequalities are proved by squaring
both sides of the RABAM equations (51)-(53), taking ex-
pectations, and using (54) and the fact that the noise is
uncorrelated with the additive nonlinear ‘‘signal’” terms.
Q.E.D.
It is not true that the squared velocity processes are
never less than the squared noise processes at every in-
stant. It is only true on average at every instant.

E(in}) = o7 (60)
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Grossberg’s noise-saturation dilemma [13] motivates
the use of the term ‘‘noise suppression’’ in the RABAM
corollary below. The noise-saturation dilemma asks how
neurons can have an effective infinite dynamical range
when they operate between upper and lower bounds and
yet not treat small input signals as noise: “‘If the x; are
sensitive to large inputs, then why do not small inputs get
lost in internal system noise? If the x; are sensitive to small
inputs, then why do they not all saturate at their maximum
values in response to large inputs?’’ [14] This vexing and
ubiquitous dilemma, it even confronts the salesperson who
trys to balance her presentation between “‘little’” and
“‘big’’ customers, is the supreme motivator behind Gross-
berg’s shunting-model perspective of neural networks.

Grossberg resolves the saturation half of the dilemma
by showing [13], as mentioned above, that shunting
models remain sensitive to relative pattern information
over a wide range of inputs. He also shows that additive
models quickly saturate to upper bounds for large inputs.
Indeed this saturation invariance result is arguably Gross-
berg’s greatest achievement. Besides giving information-
processing insights into the global dynamics of Hodgkin-
Huxley type networks, it also drives Grossberg’s concep-
tion and implementation of ART behavior, and is at the
heart of his recent vision theory. On the other hand, as
Carver Mead and other neural VLSI designers have ob-
served, it is well known that a simple logarithmic trans-
duction of local input light intensity into electric potential
in the visual system achieves in one stroke both sensitivity
to input light intensities over many orders of magnitude
and ‘‘discounts the illuminant’’ [14] by equating voltage
differences to logarithms of intensity ratios.

Grossberg’s resolution of the noise half of the noise-
saturation dilemma is far less satisfactory. Grossberg [13]
argues that noisy patterns are uniform input patterns and
that, for a particular small threshold value, uniform noise
is “‘suppressed’’ by all neurons in the field shutting off.
Besides the dependence on a specific noise threshold, this
argument is objectionable on at least two counts. First,
noise permeates all parameters and all signals and cer-
tainly need not be uniform. Grossberg admits this in his
above description of the noise-saturation dilemma when
he asks why small inputs do not ‘‘get lost in internal sys-
tem noise.’’ System noise makes everything ‘‘jiggle,”” in-
cluding relative input pattern values. This is the noise
modeled by the additive noise processes in the RABAM
equations (51)—(53) or, more realistically, by the additive
diffusion processes in the diffusion RABAM equations
(47)-(49).

Second, shutting off neurons to suppress noise seems
akin to curing the patient by killing him. The goal is to
continue ‘‘computing’’ as accurately as possible no mat-
ter how noisy the environment. Background noise can be
high in feedback systems where noise can multiply by re-
circulating. In fairness, Grossberg [14] argues that special
classes of signal functions, especially sigmoid signal
functions, help quench pattern noise by contrast-enhanc-
ing input signals. Signal function nonlinearities surely
help suppress this special occurrence of noise. But what
about synaptic noise? What about joint synaptic and ac-

tivation noise? What about noise compounded by feed-
back? How do we know such pervasive noise will not pre-
vent an ART system from adaptively resonating, or ruin
an adaptive-resonance equilibrium once achieved?

The RABAM noise suppression theorem is an alterna-
tive resolution of the noise half of the noise-saturation
dilemma. It guarantees that second-order behavior in RA-
BAM systems is as good as it can be: mean-square veloc-
ities decrease exponentially quickly to their lower bounds.
As the above lemma shows, these lower bounds are just
the underlying driving noise variances. Thus the observed
fluctuations, the mean-squared velocities, track the unob-
served noise fluctuations. Unaided feedback intuitions
might easily lead to the prediction that, in light of the
lemma, mean-squared velocities may tend toward infin-
ity, especially for widely fluctuating noise processes.

A. RABAM Noise Suppression Theorem

For strictly increasing signal functions S; and §;, posi-
tive amplification functions a;, and nondegenerate Hes-
sian conditions: as the RABAM system (51)-(55) con-
verges exponentially quickly, mean-squared activation
and synaptic parameters decrease to their lower bounds
exponentially quickly:

E(x}) Vo, E(y) e, E(mi)ldk (61)

Proof. The proof uses the asymptotic convergence es-
tablished in the above RABAM theorem for the monoton-
icity and positivity assumptions and the lower bound on
mean-square velocities established in the lemma (60).
Then

E(L) = E(L)
_ E[Z Sk (n; — x;) > Sy — 3)

i a; j a;
- ZI‘ ; i (ny; — m,y)]
by using the positivity of the amplification functions and

(51)-(53) to eliminate the terms in braces in (57) in the
proof of the RABAM theorem

kY4 S
=E| X2 -2y - XX
i a; ]aj i j

i
i

' S
+E[ZS'5C,'H,‘+ 2 —’yjnj+22m,~jn,.j}
. i a; T
joq ,
= E[Lapan] — 2 E(n) E[S[ (bi -2 Sjmij>]
! J

- X E(n) E[S/ (b, -2 S,-m,-jJ
j i

- 3 X E(ny) E[—-my, + S,
[

/ S
+E[zing D YA I zzng}
i a j 4 i
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by using (51)-(53) again to eliminate activation and syn-
aptic velocities in the second expectation above, rearrang-
ing, and, as in the proof of the RABAM theorem, using
the uncorrelatedness of noise and ‘‘signal’’ terms in (51)-
(53) as discussed above to obtain (59)

L FCELIEEE R

Y

- 2 2 (E(ij) — o) (62)
by the zero-mean noise assumption (54) and rearrange-
ment. The lemma ensures that the double sum is nonneg-
ative. The RABAM theorem establishes that the Lyapu-
nov function E(L) strictly decreases along trajectories,
and thus trajectories end at equilibrium points and arrive
there exponentially quickly. This, together with the pos-
itivity (and well behavedness [34]) of the weight ratios
S’/a, yields the equilibrium conditions:

E(x}) =0}, E(3]) =9}, E(m}) =0l (63)

This implies (62). Q.E.D.

The RABAM noise suppression generalizes the equilib-
rium conditions obtained in the ABAM theorem in the
asymptotic-convergence case. For if the instantaneous
“‘variances’’ in (63) are zero, then [38] the squared ve-
locities, and thus the velocities, are zero almost every-
where. The zero-variance case is the deterministic case.
The sigma-algebra of the probability space is degenerate;
it only contains the whole space and the null set. Thus the
activation and synaptic velocities are zero everywhere, as
in the strict ABAM case. Also note that throughout the
proofs of the RABAM theorem and the RABAM noise
suppression theorem, the synaptic terms are easier to work
with, and the results are ‘‘cleaner,’” because they do not
possess nonlinear signal and amplification terms. We re-
call again that the above two theorems are also valid for
suitably randomized competitive, differential Hebb, and
differential competitive learning laws under appropriate
conditions.

VII. RABAM ANNEALING AND THE ITO-
STRATONOVICH STOCHASTIC CALCULUS

Gradient systems are globally stable. The above theo-
rems are an extension of this general Lyapunov fact. For
example, Cohen and Grossberg [6] showed that their sym-
metric nonlearning autoassociative system can be written
in pseudogradient form for monotone increasing signal
functions and positive amplification functions.

Geman and Hwang [8] recently showed that stochastic
gradient systems with scaled additive Brownian diffusions
(noise) perform simulated annealing in a weak sense. The
gradient is formed from a cost function to be searched by
scaled random hill climbing. If the noise is initially scaled
high enough (to a physically unrealizable size), then grad-
ually decreasing the nonnegative °‘temperature’ T(z)
scaling factor can bounce the system state out of local
minima and trap it in global minima. The convergence,
though, must proceed exponentially slowly and is only
convergence in the weak sense [38] for measures (analo-
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gous to the convergence in distribution found in central
limit theorems). The result is not true for convergence
with probability one or even convergence probability.
There is still some probability that the system state will
bounce out of global or near-global minima as ‘‘cooling’’
finishes.

We now extend the RABAM theorem and RABAM
noise suppression theorem to include simulated annealing
in the general Geman-Hwang sense. For this we intro-
duce the activation ‘‘temperatures’’ or annealing sched-
ules 7;(¢) and T;(¢) and the synaptic schedules T;(¢). The
temperatures are nonnegative deterministic functions. So
they can be brought outside all expectations in proofs.
The RABAM annealing model is more general than the
Geman-Hwang gradient model, and vastly more general
than popular additive-activation annealing models, be-
cause learning is permitted and because learning too can
be annealed, although perhaps at a different rate than ac-
tivation annealing. The RABAM annealing model is de-
fined by scaling the diffusion differentials in (47)-(49)
with the square root of the corresponding annealing
schedules or, in the noise RABAM, by replacing (51)-
(53) with (64)-(66):

X = —a{b,— -2 S}m,j:‘ + JTin, (64)
J

where again (67) can be replaced with the other unsuper-
vised learning laws discussed above with appropriate ad-
ditional constraints.

A. RABAM Annealing Theorem

The RABAM annealing model is globally stable, and
asymptotically stable for monotone increasing signal
functions and positive amplification functions, in which
case the mean-squared activation and synaptic velocities
decrease to their temperature-scaled instantaneous ‘‘vari-
ances’’ exponentially fast:

E(x}) | Tie}, E(3})1Te}, E(ij) ! To}.

(67)

Proof. The proof largely duplicates the proofs of the
RABAM theorem and RABAM noise suppression theo-
rem. Again E(L) is a sufficiently smooth Lyapunov func-
tion that allows time differentiation of the integrand. When
the diffusion or noise RABAM annealing equations are
used to eliminate activation and synaptic velocities in the
time-differentiated Lyapunov function, the resulting tem-
perature functions that occur can be factored outside all
expectations. The nonnegativity of the temperature func-
tions keeps them from affecting the structure of expanded
time derivative of E(L). The random weight functions
S’/a are assumed sufficiently well behaved to keep the
expectations in which they occur nonnegative. The above
lemma is immediately extended to show, for instance, that
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the mean-squared velocity E(x?) is bounded below by
T;0?. Then, (62) is generalized to

E(L) = -2 E[i (&7 - Tm?)}

J a;

-2e 2651
ST (ER) - Ted). ()
Q.E.D.

The RABAM annealing theorem is a nonlinear and con-
tinuous generalization of Boltzmann machine learning
[40], provided learning is Hebbian and very slow. The
Boltzmann machine uses discrete symmetric additive au-
toassociative dynamics. Binary neurons are annealed dur-
ing periods of Hebbian and anti-Hebbian learning. Here
Hebbian learning corresponds to (66) with T;(z) = 0 for
all ¢. Anti-Hebbian learning further replaces the Hebb
product §;§; in (66) with the negative product —S;S;. Anti-
Hebbian learning (during ‘‘free-running’’ training [40])
can in principle destabilize a RABAM system. This is less
likely to occur, though, the slower the anti-Hebbian learn-
ing. (The activation terms in the time derivative of E(L)
stay negative and can outweigh the possibly positive anti-
Hebbian terms, even if learning is fast.) Incidental insta-
bility perhaps is not even a problem in this phase of an-
nealing, since the intention is to undo some of the learn-
ing in the ‘‘environmental’’ annealing phase. The
fundamental distinction between unsupervised RABAM
learning and temperature-supervised annealing learning is
how noise is treated. Simulated annealing systems search
or learn with noise. Unsupervised RABAM systems learn
despite noise. During ‘‘cooling,’’ the continuous anneal-
ing schedules define the flow of RABAM equilibria in the
product state space of continuous nonlinear random pro-
cesses. Equation (67) implies that no finite temperature
value, however large, can destabilize a RABAM.

Finally, the proofs of the above RABAM theorems re-
peatedly use the familiar chain rule of differential calcu-
lus. In general, the chain rule does not apply to systems
of nonlinear stochastic differential equations, at least not
in the general case where each nonlinear parameter is it-
self a stochastic process. This is the general setting for
the Ito calculus. One exception is the related Stratonovich
calculus, which defines a stochastic integral (an integral
defined with respect to a random measure [41] with as
lightly different partitioning of the time interval. The Stra-
tonovich calculus includes the classical chain rule, though
in general at the expense of possessing non-Markovian
solution processes.

Maybeck [35] shows that, with probability one, the Ito
stochastic differential equals the Stratonovich stochastic
differential plus a term involving the nonlinear random
scaling factor on the underlying Brownian diffusion. The
two differentials and corresponding integrals are equal
when this extra term is zero. This is fortunately always
true for RABAM systems since noise terms are scaled with
constants or sequences of constants (deterministic an-

nealing schedules). The extra term involves the derivative
of this constant with respect to the corresponding random
activation or synapse. Thus RABAM models enjoy the
best of both stochastic-calculus worlds. They maintain the
familiar chain rule of Stratonovich stochastic dynamical
systems and inherit the better-explored properties of Ito
stochastic dynamical systems. For instance, all RABAM
solution processes are Markov processes. This promises
a new approach to nonlinear stochastic optimal estimation
and control.

VIII. CoNCLUSIONS

The RABAM model unifies many popular feedforward
and feedback unsupervised learning systems and extends
them to the more realistic, and more complex, random
process domain. Unsupervised learning is structurally sta-
ble for wide families of nonlinear feedback dynamical
systems. This holds for the popular signal Hebb and com-
petitive learning feedback systems under quite general
conditions. It holds to a lesser extent for the largely unex-
plored signal-velocity learning feedback systems that
adapt with differential Hebb or differential competitive
laws. Pulse-coded [10], [11] signal functions augment the
class of feedback systems that can stably learn with the
differential Hebb and differential competitive laws, since
in this case they give back, respectively, signal Hebb and
competitive learning behavior much of the time. The
pulse-coding framework also promises new engineering
approaches to implementing adaptive networks, perhaps
with sinusoidal techniques, as well as suggesting new
roles for signal-velocity synaptic mechanisms in real
neural systems. The feedback in these stable dynamical
systems can always be eliminated to produce unsuper-
vised feedforward systems that stably learn with Hebbian,
competitive, or signal-velocity learning laws.

The stability of RABAM models yields the structural
stability of ABAM models. From an engineering perspec-
tive, this means we can more confidently build large-scale
ABAM networks with electrical, optical, electrooptic, and
perhaps other (molecular, fluid, plasma, polymer, etc.)
devices.

For the neurobiologist, the structural stability of ABAM
models suggests that at least some of the consistent criti-
cism that neural models are ‘‘unrealistic’’ is unfounded.
The many intricate neuronal and molecular properties that
the neurobiologist studies, and finds missing in neural
network models, are modeled in RABAM systems as ran-
dom unmodeled effects. The RABAM noise suppression
theorem says these unmodeled effects are ignored by the
network’s global computations almost as quickly as they
are encountered. Like many quantum-level effects in elec-
trical devices, these unmodeled effects simply do not af-
fect the structure of global network computations—so long
as they are net random effects.

How plausible is this? Some unmodeled effects of
course depend on neuronal and synaptic behavior and so
are not accurately modeled as independent noise pro-
cesses, though perhaps central-limit (Gaussian) effects
emerge from the interaction of many such processes.
Many correlated effects can also be incorporated as slowly
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varying parameters in the ‘‘signal’’ part of the RABAM
model.

In general, the sheer number (sample size) of unmod-
eled effects suggests a Brownian approximation. To the
extent that the unmodeled synaptic and neuronal effects
involve many independently interacting continuous phe-
nomena, the net result is a Brownian diffusion, as as-
sumed by RABAM models. This is because finite-vari-
ance continuous processes with independent increments
in time have Gaussian increments [35], and hence give
rise to a Brownian diffusion.
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