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Abstract

We present a factorized hierarchical variational autoencoder, which learns disen-
tangled and interpretable representations from sequential data without supervision.
Specifically, we exploit the multi-scale nature of information in sequential data by
formulating it explicitly within a factorized hierarchical graphical model that im-
poses sequence-dependent priors and sequence-independent priors to different sets
of latent variables. The model is evaluated on two speech corpora to demonstrate,
qualitatively, its ability to transform speakers or linguistic content by manipulating
different sets of latent variables; and quantitatively, its ability to outperform an
i-vector baseline for speaker verification and reduce the word error rate by as much
as 35% in mismatched train/test scenarios for automatic speech recognition tasks.

1 Introduction

Unsupervised learning is a powerful methodology that can leverage vast quantities of unannotated
data in order to learn useful representations that can be incorporated into subsequent applications in
either supervised or unsupervised fashions. One of the principle approaches to unsupervised learning
is probabilistic generative modeling. Recently, there has been significant interest in three classes of
deep probabilistic generative models: 1) Variational Autoencoders (VAEs) [23} 134} 22]], 2) Generative
Adpversarial Networks (GANs) [11]], and 3) auto-regressive models [30} [39]]; more recently, there are
also studies combining multiple classes of models [6} 127, 26]. While GANs bypass any inference of
latent variables, and auto-regressive models abstain from using latent variables, VAEs jointly learn an
inference model and a generative model, allowing them to infer latent variables from observed data.

Despite successes with VAEs, understanding the underlying factors that latent variables associate
with is a major challenge. Some research focuses on the supervised or semi-supervised setting using
VAEs [21}[17]. There is also research attempting to develop weakly supervised or unsupervised
methods to learn disentangled representations, such as DC-IGN [25], InfoGAN [1]], and 5-VAE [13]].
There is yet another line of research analyzing the latent variables with labeled data after the model
is trained [33| [15]. While there has been much research investigating static data, such as the
aforementioned ones, there is relatively little research on learning from sequential data [18} 13} 2} 9} [7}
18, 136]. Moreover, to the best of our knowledge, there has not been any attempt to learn disentangled
and interpretable representations without supervision from sequential data. The information encoded
in sequential data, such as speech, video, and text, is naturally multi-scaled; in speech for example,
information about the channel, speaker, and linguistic content is encoded in the statistics at the
session, utterance, and segment levels, respectively. By leveraging this source of constraint, we can
learn disentangled and interpretable factors in an unsupervised manner.

In this paper, we propose a novel factorized hierarchical variational autoencoder, which learns
disentangled and interpretable latent representations from sequential data without supervision by
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Figure 1: FHVAE (a = 0) decoding results of three combinations of latent segment variables z; and
latent sequence variables z5 from two utterances in Aurora-4: a clean one (top-left) and a noisy one
(bottom-left). FHVAEsS learn to encode local attributes, such as linguistic content, into z1, and encode
global attributes, such as noise level, into zo. Therefore, by replacing z» of a noisy utterance with
zo of a clean utterance, an FHVAE decodes a denoised utterance (middle-right) that preserves the
linguistic content. Reconstruction results of the clean and noisy utterances are also shown on the
right. Audio samples are available athttps://youtu.be/naJZITvCfI4.

explicitly modeling the multi-scaled information with a factorized hierarchical graphical model. The
inference model is designed such that the model can be optimized at the segment level, instead
of at the sequence level, which may cause scalability issues when sequences become too long. A
sequence-to-sequence neural network architecture is applied to better capture temporal relationships.
We evaluate the proposed model on two speech datasets. Qualitatively, the model demonstrates an
ability to factorize sequence-level and segment-level attributes into different sets of latent variables.
Quantitatively, the model achieves 2.38% and 1.34% equal error rate on unsupervised and supervised
speaker verification tasks respectively, which outperforms an i-vector baseline. On speech recognition
tasks, it reduces the word error rate in mismatched train/test scenarios by up to 35%.

The rest of the paper is organized as follows. In Section 2} we introduce our proposed model, and
describe the neural network architecture in Section[3} Experimental results are reported in Section ]
We discuss related work in Section 3} and conclude our work as well as discuss future research plans
in Sectionlﬂ We have released the code for the model described in this paperﬂ

2 Factorized Hierarchical Variational Autoencoder

Generation of sequential data, such as speech, often involves multiple independent factors operating
at different time scales. For instance, the speaker identity affects fundamental frequency (FO) and
volume at the sequence level, while phonetic content only affects spectral contour and durations of
formants at the segmental level. This multi-scale behavior results in the fact that some attributes,
such as FO and volume, tend to have a smaller amount of variation within an utterance, compared to
between utterances; while other attributes, such as phonetic content, tend to have a similar amount of
variation within and between utterances.

We refer to the first type of attributes as sequence-level attributes, and the other as segment-level
attributes. In this work, we achieve disentanglement and interpretability by encoding the two types of
attributes into latent sequence variables and latent segment variables respectively, where the former
is regularized by an sequence-dependent prior and the latter by an sequence-independent prior.

We now formulate a generative process for speech and propose our Factorized Hierarchical Variational
Autoencoder (FHVAE). Consider some dataset D = {X (1M, consisting of M i.i.d. sequences,

where X = {2}V i5 a sequence of N observed variables. N is referred to as the

'https://github.com/wnhsu/FactorizedHierarchicalVAE
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Figure 2: Graphical illustration of the proposed generative model and inference model. Grey nodes
denote the observed variables, and white nodes are the hidden variables.

number of segments for the i-th sequence, and (™ is referred to as the n-th segment of the i-th
sequence. Note that here a “segment” refers to a variable of smaller temporal scale compared to the
“sequence”, which is in fact a sub-sequence. We will drop the index ¢ whenever it is clear that we are
referring to terms associated with a single sequence. We assume that each sequence X is generated

from some random process involving the latent variables Z; = {z§n) N Zy= {zén)}ﬁf:l, and

2. The following generation process as illustrated in Figure [2fa) is considered: (1) a s-vector

W2 is drawn from a prior distribution pg(p2); (2) N i.i.d. latent sequence variables {zén) N
and latent segment variables {z%n)}ﬁ;l are drawn from a sequence-dependent prior distribution
po(z2|p2) and a sequence-independent prior distribution py(z;) respectively; (3) N i.i.d. observed
variables {(™}N_, are drawn from a conditional distribution py (2|21, 22). The joint probability
for a sequence is formulated in Eq.

N
po(X, Z1, Zo, p12) = po(p) [ | po(a™ |2, 28" )pa(21" )po (25" |112). (1)
n=1

Specifically, we formulate each of the RHS term as follows:

po(x|21, 22) = N (x| f,., (21, 22), diag(fo2 (21, 22)))
po(z1) = N(z1]0,02 1), po(z2|pe) = N(2z2|p2, 02,1), po(pa) = N(p2]0,07,1),

where the priors over the s-vectors po and the latent segment variables z; are centered isotropic
multivariate Gaussian distributions. The prior over the latent sequence variable z5 conditioned on 1o
is an isotropic multivariate Gaussian centered at po. The conditional distribution of the observed
variable x is the multivariate Gaussian with a diagonal covariance matrix, whose mean and diagonal
variance are parameterized by neural networks f,,, (-,-) and fo2 (-, ) with input z; and z;. We use ¢
to denote the set of parameters in the generative model.

This generative model is factorized in a way such that the latent sequence variables z5 within a
sequence are forced to be close to po as well as to each other in Euclidean distance, and therefore are
encouraged to encode sequence-level attributes that may have larger variance across sequences, but
smaller variance within sequences. The constraint to the latent segment variables z; is imposed glob-
ally, and therefore encourages encoding of residual attributes whose variation is not distinguishable
inter and intra sequences.

In the variational autoencoder framework, since the exact posterior inference is in-
tractable, an inference model, gy ( Zfl), ZQ(Z), ug) | X ()), that approximates the true posterior,

pg(Zfi), Zéi), ,uéi) | X (1)), for variational inference [19] is introduced. We consider the following
inference model as Figure [2[(b):

N@®
a6(21". 23" 1571 X ) = a(0as”) [T ao (" 2, 25" )ao (257 2)

n=1
a5 (15”) = N (18 lg4,., (1), 03,1),  as(z2]@) = N(22g,., (2), diag(g,: (@)
q¢(zl |£U, 22) = N(zl ‘g/tzl (.’1}, ZQ)) diag(gaﬁl (SC, zQ)))v



where the posteriors over po, 21, and z9 are all multivariate diagonal Gaussian distributions. Note that
the mean of the posterior distribution of g5 is not directly inferred from X, but instead is regarded as
part of inference model parameters, with one for each utterance, which would be optimized during
training. Therefore, g,,,, (-) can be seen as a lookup table, and we use ﬁg) = 9yu,, (i) to denote
the posterior mean of po for the i-th sequence; we fix the posterior covariance matrix of po for all

sequences. Similar to the generative model, g,.., (-), 92, (‘) Gz, (), and 92, (+,-) are also neural

networks whose parameters along with Ypin, (+) are denoted collectively by ¢. The variational lower
bound for this inference model on the marginal likelihood of a sequence X is derived as follows:

N
L(0,6;X) =Y L(0, ;0™ |faz) + log po(fiz) + const

n=1

£(0: 652" |fiz) =B, (0 110 o [ g 0@ 217, 23]

—E, (o0 iy [Drc(ao(z” 2, 25™) Ipo(21™)))

— Dicr(ap (23" |2™)|[po (25" |a2)).

The detailed derivation can be found in Appendix A. Because the approximated posterior of po does
not depend on the sequence X, the sequence variational lower bound L(0, ¢; X ') can be decomposed
into the sum of £(6, ¢; (™ |fi3), the conditional segment variational lower bounds, over segments,
plus the log prior probability of f1o and a constant. Therefore, instead of sampling a batch at the
sequence level to maximize the sequence variational lower bound, we can sample a batch at the
segment level to maximize the segment variational lower bound:

1
£(0,952M) = L(0, 632" |f12) + 5 log po(fia) + const. @

This approach provides better scalability when the sequences are extremely long, such that computing
an entire sequence for a batched update is too computationally expensive.

In this paper we only introduce two scales of attributes; however, one can easily extend this model
to more scales by simply introducing p, for k = 2,3, - - ~that constrains the prior distribution of
latent variables at more scales, such as having session-dependent prior or dataset-dependent prior.

2.1 Discriminative Objective

The idea of having sequence-specific priors for each sequence is to encourage the model to encode
the sequence-level attributes and the segment-level attributes into different sets of latent variables.
However, when 1o = 0 for all sequences, the prior probability of the s-vector is maximized, and the
KL-divergence of the inferred posterior of 25 is measured from the same conditional prior for all
sequences. This would result in trivial s-vectors pto, and therefore z; and z5 would not be factorized
to encode sequence and segment attributes respectively.

To encourage z, to encode sequence-level attributes, we use zéz’"), which is inferred from (™, to

infer the sequence index i of (™). We formulate the discriminative objective as:

M
log p(i|z5"™) = log p(2$"™|i) — log Zp(zéi’") |7)  (p(i) is assumed uniform)
j=1

M
= logpy(z3™" ag”) —log (3 po(25"|5"),

j=1

Combining the discriminative objective using a weighting parameter o with the segment variational
lower bound, the objective function to maximize then becomes:

£9(0, ¢; ™) = £(0, 6; M) + alog plilz5™), 3)

which we refer to as the discriminative segment variational lower bound.

The index starts from 2 because we do not introduce the hierarchy to z;.



2.2 Inferring S-Vectors During Testing

During testing, we may want to use the s-vector o of an unseen sequence X = {Z(WN_ | as
the sequence-level attribute representation for tasks such as speaker verification. Since the exact
maximum a posterior estimation of po is intractable, we approximate the estimation using the
conditional segment variational lower bound as follows:

ps = argmax log py(p2| X) = argmax log po (X, )
M2 M2

N

—argmax (> log pg(&™)|p2)) + log po(2)

K2 n=1

~argmax Y L0, ¢; ™ |p2) + log pe (). &)

M2 n=1

The closed form solution of p3 can be derived by differentiating Eq. ] w.r.t. po (see Appendix B):

N 5 (7
* Zn:l gNZQ (CB( L))

= (5)
2 N+‘7§2/0i2

3 Sequence-to-Sequence Autoencoder Model Architecture

In this section, we introduce the detailed neural network architectures for our proposed FHVAE. Let
a segment x = x1.7 be a sub-sequence of X that contains 7" time steps, and x; denotes the ¢-th time
step of . We use recurrent network architectures for encoders that capture the temporal relationship
among time steps, and generate a summarized fixed-dimension vector after consuming an entire
sub-sequence. Likewise, we adopt a recurrent network architecture that generates a frame step by
step conditioned on the latent variables z; and zo. The complete network can be seen as a stochastic
sequence-to-sequence autoencoder that encodes x1.7 stochastically into 2, 22, and stochastically
decodes from them back to x1.7.
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Figure 3: Sequence-to-sequence factorized hierarchical variational autoencoder. Dashed lines indicate
the sampling process using the reparameterization trick [23l]. The encoders for z; and z5 are pink
and amber, respectively, while the decoder for « is blue. Darker colors denote the recurrent neural
networks, while lighter colors denote the fully-connected layers predicting the mean and log variance.
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Figure |3[shows our proposed Seq2Seq-FHVAE architectureE] Here we show the detailed formulation:

(Pzy by Capt) = LSTM(2y—1,hzy 11, €2y 015 PLSTM, 2,)
q¢(z2]w1.7) = N (22| MLP (h2, 73 dMLP,, 2, ), diag(exp(MLP (hz, 7; dMLP 5 ,2,))))
(hzy 5 €20 t) = LSTM([24-1; 22), Bz -1, €20 015 02, )
q¢(z1|21.1, 22) = N (21| MLP(hz, 75 dMLP,, 2, ), diag(exp(MLP (hz, 75 oMLP 5 21))))

(ha.tsCar) = LSTM([21; 22], B t—1, Cot—1; Pa)

po(wi|z1, 22) = N (2| MLP (hg t; oMLP, o), diag(exp(MLP (hg ¢; omLp_, 2)))),

where LSTM refers to a long short-term memory recurrent neural network [[14]], and MLP refers to a
multi-layer perceptron, ¢, are the related weight matrices. None of the neural network parameters

are shared. We refer to this model as Seq2Seq-FHVAE. Log-likelihood and qualitative comparison
with alternative architectures can be found in Appendix D.

3Best viewed in color.



4 Experiments

We use speech, which inherently contains information at multiple scales, such as channel, speaker,
and linguistic content to test our model. Learning to disentangle the mixed information from the
surface representation is essential for a wide variety of speech applications: for example, noise robust
speech recognition [41], 38} 37, [16]], speaker verification [3]], and voice conversion [40, 29] 24].

The following two corpora are used for our experiments: (1) TIMIT [10]], which contains broadband
16kHz recordings of phonetically-balanced read speech. A total of 6300 utterances (5.4 hours) are
presented with 10 sentences from each of 630 speakers, of which approximately 70% are male and
30% are female. (2) Aurora-4 [32], a broadband corpus designed for noisy speech recognition tasks
based on the Wall Street Journal corpus (WSJ0) [31]]. Two microphone types, CLEAN/CHANNEL
are included, and six noise types are artificially added to both microphone types, which results in
four conditions: CLEAN, CHANNEL, NOISY, and CHANNEL+NOISY. Two 14 hour training sets are
used, where one is clean and the other is a mix of all four conditions. The same noise types and
microphones are used to generate the development and test sets, which both consist of 330 utterances
from all four conditions, resulting in 4,620 utterances in total for each set.

All speech is represented as a sequence of 80 dimensional Mel-scale filter bank (FBank) features
or 200 dimensional log-magnitude spectrum (only for audio reconstruction), computed every 10ms.
Mel-scale features are a popular auditory approximation for many speech applications [28]. We
consider a sample x to be a 200ms sub-sequence, which is on the order of the length of a syllable,
and implies 7" = 20 for each x. For the Seq2Seq-FHVAE model, all the LSTM and MLP networks
are one-layered, and Adam [20] is used for optimization. More details of the model architecture and
training procedure can be found in Appendix C.

4.1 Qualitative Evaluation of the Disentangled Latent Variables
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Figure 4: (left) Examples generated by varying different latent variables. (right) An illustration
of harmonics and formants in filter bank images. The green block ‘A’ contains four reconstructed
examples. The red block ‘B’ contains ten original sequences on the first row with the corresponding
reconstructed examples on the second row. The entry on the ¢-th row and the j-th column in the blue
block ‘C’ is the reconstructed example using the latent segment variable z; of the ¢-th row from block
‘A’ and the latent sequence variable z5 of the j-th column from block ‘B’.

To qualitatively study the factorization of information between the latent segment variable z; and the
latent sequence variable z», we generate examples & by varying each of them respectively. Figure 4]
shows 40 examples in block ‘C’ of all the combinations of the 4 latent segment variables extracted
from block ‘A’ and the 10 latent sequence variables extracted from block ‘B.” The top two examples
from block ‘A’ and the five leftmost examples from block ‘B’ are from male speakers, while the rest
are from female speakers, which show higher fundamental frequencies and harmonicsEl

“The harmonics corresponds to horizontal dark stripes in the figure; the more widely these stripes are spaced
vertically, the higher the fundamental frequency of the speaker is.
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Figure 5: FHVAE (a = 0) decoding results of three combinations of latent segment variables z;
and latent sequence variables z5 from one male-speaker utterance (top-left) and one female-speaker
utterance (bottom-left) in Aurora-4. By replacing z5 of a male-speaker utterance with 25 of a female-
speaker utterance, an FHVAE decodes a voice-converted utterance (middle-right) that preserves the
linguistic content. Audio samples are available at https://youtu.be/VMX3IZYWYdg.

We can observe that along each row in block ‘C’, the linguistic phonetic-level content, which manifests
itself in the form of the spectral contour and temporal position of formants, as well as the relative
position between formants, is very similar between elements; the speaker identity however changes
(e.g., harmonic structure). On the other hand, for each column we see that the speaker identity remains
consistent, despite the change of linguistic content. The factorization of the sequence-level attributes
and the segment-level attributes of our proposed Seq2Seq-FHVAE is clearly evident. In addition, we
also show examples of modifying an entire utterance in Figure[I|and[5] which achieves denoising
by replacing the latent sequence variable of a noisy utterance with those of a clean utterance, and
achieves voice conversion by replacing the latent sequence variable of one speaker with that of
another speaker. Details of the operations we applied to modify an entire utterance as well as more
larger-sized examples of different « values can be found in Appendix E. We also show extra latent
space traversal experiments in Appendix H.

4.2 Quantitative Evaluation of S-Vectors — Speaker Verification

To quantify the performance of our model on disentangling the utterance-level attributes from the
segment-level attributes, we present experiments on a speaker verification task on the TIMIT corpus
to evaluate how well the estimated w2 encodes speaker-level informationﬂ As a sanity check, we
modify Eq. [5]to estimate an alternative s-vector based on latent segment variables z; as follows:

Qw1 = 21]:[:1 G, (&™) /(N + 02,). We use the i-vector method [5] as the baseline, which is
the representation used in most state-of-the-art speaker verification systems. They are in a low
dimensional subspace of the Gaussian mixture model (GMM) mean supervector space, where the
GMM is the universal background model (UBM) that models the generative process of speech.
I-vectors, w1, and e can all be extracted without supervision; when speaker labels are available
during training, techniques such as linear discriminative analysis (LDA) can be applied to further
improve the linear separability of the representation. For all experiments, we use the fast scoring
approach in [4]] that uses cosine similarity as the similarity metric and compute the equal error rate
(EER). More details about the experimental settings can be found in Appendix F.

We compare different dimensions for both features as well as different «’s in Eq[3] for training
FHVAE models. The results in Table[T|show that the 16 dimensional s-vectors g outperform i-vector
baselines in both unsupervised (Raw) and supervised (LDA) settings for all ’s as shown in the fourth
column; the more discriminatively the FHVAE model is trained (i.e., with larger «), the better speaker

STIMIT is not a standard corpus for speaker verification, but it is a good corpus to show the utterance-level
attribute we learned via this task, because the main attribute that is consistent within an utterance is speaker
identity, while in Aurora-4 both speaker identity and the background noise are consistent within an utterance.
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verification results it achieves. Moreover, with the appropriately chosen dimension, a 32 dimensional
p2 reaches an even lower EER at 1.34%. On the other hand, the negative results of using g¢; also
validate the success in disentangling utterance and segment level attributes.

Table 1: Comparison of speaker verification equal error rate (EER) on the TIMIT test set

Features Dimension « Raw LDA (12 dim) LDA (24 dim)

48 - 10.12% 6.25% 5.95%
i-vector 100 - 9.52% 6.10% 5.50%
200 - 9.82% 6.54% 6.10%
16 0 5.06% 4.02% -
16 1071 491% 4.61% -
1% 16 109 3.87% 3.86% -
16 10! 2.38%  2.08% -
32 10! 238%  2.08% 1.34%
16 109 2277% 15.62% -
M1 16 101 27.68% 22.17% -
32 10t 2247% 16.82% 17.26%

4.3 Quantitative Evaluation of the Latent Segment Variables — Domain Invariant ASR

Speaker adaptation and robust speech recognition in automatic speech recognition (ASR) can often
be seen as domain adaptation problems, where available labeled data is limited and hence the data
distributions during training and testing are mismatched. One approach to reduce the severity of this
issue is to extract speaker/channel invariant features for the tasks.

As demonstrated in Section[f.2] the s-vector contains information about domains. Here we evaluate
if the latent segment variables contains domain invariant linguistic information by evaluating on
an ASR task: (1) train our proposed Seq2Seq-FHVAE using FBank feature on a set that covers
different domains. (2) train an LSTM acoustic model [[12} 35} 42] on the set that only covers partial
domains using mean and log variance of the latent segment variable z; extracted from the trained
Seq2Seq-FHVAE. (3) test the ASR system on all domains. As a baseline, we also train the same ASR
models but use the FBank features alone. Detailed configurations are in Appendix G.

For TIMIT we assume that male and female speakers constitute different domains, and show the
results in Table@ The first row of results shows that the ASR model trained on all domains (speakers)
using FBank features as the upper bound. When trained on only male speakers, the phone error rate
(PER) on female speakers increases by 16.1% for FBank features; however, for z;, despite the slight
degradation on male speakers, the PER on the unseen domain, which are female speakers, improves
by 6.6% compared to FBank features.

Table 2: TIMIT test phone error rate of acoustic models trained on different features and sets

Train Set and Configuration Test PER by Set
ASR FHVAE Features Male Female All
Train All - FBank 201% 16.7%  19.1%
Train Male . . FBank 21.0% 32.8% 252%

Train All, « = 10 2z 22.0% 262% 23.5%

On Aurora-4, four domains are considered, which are clean, noisy, channel, and noisy+channel (NC
for short). We train the FHVAE on the development set for two purposes: (1) the FHVAE can be
considered as a general feature extractor, which can be trained on an arbitrary collection of data that
does not necessarily include the data for subsequent applications. (2) the dev set of Aurora-4 contains
the domain label for each utterance so it is possible to control which domain has been observed by the
FHVAE. Table 3| shows the word error rate (WER) results on Aurora-4, from which we can observe
that the FBank representation suffers from severe domain mismatch problems; specifically, the WER



increases by 53.3% when noise is presented in mismatched microphone recordings (NC). In contrast,
when the FHVAE is trained on data from all domains, using the latent segment variables as features
reduce WER from 16% to 35% compare to baseline on mismatched domains, with less than 2%
WER degradation on the matched domain. In addition, 5-VAEs [13]] are trained on the same data as
the FHVAE to serve as the baseline feature extractor, from which we extract the latent variables z as
the ASR feature and show the result in the third to the sixth rows. The 5-VAE features outperform
FBank in all mismatched domains, but are inferior to the latent segment variable z; from the FHVAE
in those domains. The results demonstrate the importance of learning not only disentangled, but also
interpretable representations, which can be achieved by our proposed FHVAE models. As a sanity
check, we replace z; with 25, the latent sequence variable and train an ASR, which results in terrible
WER performance as shown in the eighth row as expected.

Finally, we train another FHVAE on all domains excluding the combinatory NC domain, and shows
the results in the last row in Table [3] It can be observed that the latent segment variable still
outperforms the baseline feature with 30% lower WER on noise and channel combined data, even
though the FHAVE has only seen noise and channel variation independently.

Table 3: Aurora-4 test word error rate of acoustic models trained on different features and sets

Train Set and Configuration Test WER by Set

ASR {FH-,3-}VAE Features Clean Noisy Channel NC All

Train All - FBank 3.60% 7.06% 8.24% 1849% 11.80%
- FBank 347% 5097% 3699% 71.80% 55.51%
Dev, 5 =1 z (B-VAE) 4.95% 23.54% 31.12% 46.21% 32.47%
Dev, 5 =2 z (B-VAE) 3.57% 27.24%  30.56% 48.17% 34.75%

Train Clean Dev, 5 =4 z (8-VAE) 3.89% 24.40% 29.80% 47.87% 33.38%
Dev, 5 =8 z (B-VAE) 5.32% 34.84% 36.13% 58.02% 42.76%
Dev, o = 10 z1 (FHVAE) 5.01% 1642% 20.29% 36.33% 24.41%
Dev, o = 10 zo (FHVAE) 41.08% 68.73% 61.89% 86.36% 72.53%

Dev\NC, « =10 z; (FHVAE) 5.25%  16.52% 19.30% 40.59% 26.23%

5 Related Work

A number of prior publications have extended VAEs to model structured data by altering the un-
derlying graphical model to dynamic Bayesian networks, such as SRNN [3] and VRNN [9], or to
hierarchical models, such as neural statistician 7] and SVAE [18]. These models have shown success
in quantitatively increasing the log-likelihood, or qualitatively generating reasonable structured data
by sampling. However, it remains unclear whether independent attributes are disentangled in the
latent space. Moreover, the learned latent variables in these models are not interpretable without
manually inspecting or using labeled data. In contrast, our work presents a VAE framework that
addresses both problems by explicitly modeling the difference in the rate of temporal variation of the
attributes that operate at different scales.

Our work is also related to 5-VAE [[13] with respect to unsupervised learning of disentangled repre-
sentations with VAEs. The boosted KL-divergence penalty imposed in -VAE training encourages
disentanglement of independent attributes, but does not provide interpretability without supervision.
We demonstrate in our domain invariant ASR experiments that learning interpretable representations
is important for such applications, and can be achieved by our FHVAE model. In addition, the idea
of boosting KL-divergence regularization is complimentary to our model, which can be potentially
integrated for better disentanglement.

6 Conclusions and Future Work

We introduce the factorized hierarchical variational autoencoder, which learns disentangled and
interpretable representations for sequence-level and segment-level attributes without any supervision.
We verify the disentangling ability both qualitatively and quantitatively on two speech corpora. For
future work, we plan to (1) extend to more levels of hierarchy, (2) investigate adversarial training for
disentanglement, and (3) apply the model to other types of sequential data, such as text and videos.
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