
OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 95

DOI:10.1145/2001269.2001295

Unsupervised Learning of
Hierarchical Representations
with Convolutional Deep
Belief Networks
By Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng

Abstract

There has been much interest in unsupervised learning of

hierarchical generative models such as deep belief networks

(DBNs); however, scaling such models to full-sized, high-

dimensional images remains a difficult problem. To address

this problem, we present the convolutional deep belief net-

work, a hierarchical generative model that scales to realistic

image sizes. This model is translation-invariant and sup-

ports efficient bottom-up and top-down probabilistic infer-

ence. Key to our approach is probabilistic max-pooling, a

novel technique that shrinks the representations of higher

layers in a probabilistically sound way. Our experiments

show that the algorithm learns useful high-level visual fea-

tures, such as object parts, from unlabeled images of objects

and natural scenes. We demonstrate excellent performance

on several visual recognition tasks and show that our model

can perform hierarchical (bottom-up and top-down) infer-

ence over full-sized images.

1. INTRODUCTION

Machine learning has been highly successful in tackling
many real-world artificial intelligence and data mining prob-
lems, such as optical character recognition, face detection,
autonomous car driving, data mining of biological data, and
Web search/information retrieval. However, the success of
machine learning systems often requires a large amount of
labeled data (which is expensive to obtain) and significant
manual feature engineering. These feature representations
are often hand-designed, require significant amounts of
domain knowledge and human labor, and do not generalize
well to new domains. Therefore, it is desirable to be able to
develop feature representations automatically while using a
small amount of labeled data.

Given these issues, we consider the problem of learn-
ing feature representations from unlabeled data, which
we call unsupervised feature learning. Here, we are inter-
ested in primarily using unlabeled data because we can
easily obtain a virtually unlimited amount of unlabeled
data via the Internet. In fact, even though we do not have
labels, there often exist rich structures in unlabeled data.
For example, if we look at images of a specific object (e.g.,
a face), we can easily discover high-level structures such
as object parts (e.g., face parts). Given natural images, we

may be able to discover low-level structures such as edges,
as well as high-level structures such as corners, local cur-
vatures, and shapes. The main assumption of unsuper-
vised feature learning is that such structures in unlabeled
data can be useful in machine learning tasks. For example,
if the input data have structures generated from specific
object classes (e.g., cars vs. faces), then discovering class-
specific patterns (e.g., car wheels or face parts) will be
useful for classification, possibly combined with a small
amount of labeled data. Similarly, even simple image fea-
tures (e.g., edges or corners) learned from unlabeled natu-
ral images can be useful for object recognition tasks that
deal with completely unrelated images. In this context,
how can we discover such useful high-level features from
unlabeled data?

In recent years, “deep learning” approaches have gained
significant interest as a way of building hierarchical rep-
resentations from unlabeled data.2, 10, 15, 26, 28 Deep architec-
tures attempt to learn hierarchical structures and seem
promising in learning simple concepts first and then suc-
cessfully building up more complex concepts by composing
the simpler ones together. Specifically, deep architectures
consist of feature detector units arranged in layers. Lower
layers detect simple features and feed into higher layers,
which in turn detect more complex features. In particu-
lar, the DBN10 is a multilayer generative model where each
layer encodes statistical dependencies among the units in
the layer below, and it can be trained to (approximately)
maximize the likelihood of its training data. DBNs have
been successfully used to learn high-level structures in a
wide variety of domains, including handwritten digits10 and
human motion capture data.31 We build upon the DBN in
this paper because we are interested in learning a genera-
tive model of images that can be trained in a purely unsu-
pervised manner.

While DBNs have been successful in controlled domains,
scaling them to realistic-sized (e.g., 200 × 200 pixel) images
remains challenging for two reasons. First, images are high-
dimensional, so the algorithms must scale gracefully and be

A previous version of this paper appeared in Proceedings
of the 26th International Conference on Machine Learning
(Montreal, Canada, 2009).

96 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

research highlights

computationally tractable even when applied to large images.
Second, objects can appear at arbitrary locations in images;
thus, it is desirable that representations be invariant at least
to local translations of the input. We address these issues by
incorporating translation invariance. Like LeCun et al.17 and
Grosse et al.,7 our algorithm learns feature detectors shared
among all locations in an image because a feature detector
that captures useful information in one part of an image can
pick up the same information elsewhere. Thus, our model
can represent large images using a small number of feature
detectors.

This paper presents the convolutional deep belief network,
a hierarchical generative model that scales to full-sized
images. We also present probabilistic max-pooling, a novel
technique that allows higher-layer units to cover larger
areas of the input in a probabilistically sound way. To the
best of our knowledge, ours is the first unsupervised, trans-
lation-invariant deep learning model that scales to realistic
image sizes and supports full probabilistic inference. The
first, second, and third layers of our network learn edge
detectors, object parts, and objects, respectively. We show
that these representations achieve excellent performance
on several visual recognition tasks and allow hidden object
parts to be inferred from high-level object information.

2. PRELIMINARIES

2.1. Restricted Boltzmann machines

In this section, we briefly review the restricted Boltzmann
machine (RBM) and DBN models.

The RBM is a two-layer, bipartite, undirected graphical
modela with a set of binary hidden random variables (units)
h of dimension K, a set of (binary or real-valued) visible
random variables (units) v of dimension D, and symmet-
ric connections between these two layers represented by a
weight matrix W ∈ RD × K. (See Figure 1 for an illustration of
the RBM.) Intuitively, the RBM can be viewed as a Markov
Random Field that tries to represent the input data (visible
units) with latent factors (hidden units). Here, the weights
encode a statistical relationship between the hidden nodes
and visible nodes. For example, the weights between the
jth hidden node (h

j
) and all visible nodes are denoted as jth

“basis” vector, and h
j
 are assigned to 1 with high probabil-

ity whenever the input data match the jth basis vector (see
Equation 4). The formal probabilistic semantics for an RBM
is defined by its energy function as follows:

 (1)

where Z is a normalization constant. If the visible units are
binary valued, the energy function can be defined as

 (2)

where b
j
 are hidden unit biases (b ∈ RK) and c

i
 are visible

unit biases (c ∈ RD). If the visible units are real-valued,
we can define the energy function by adding a quadratic term
to make the distribution well defined:

 (3)

The above energy function defines a joint probability dis-
tribution and conditional probability distribution. From
the energy function, it is clear that the hidden units are
conditionally independent of one another given the visible
layer, and vice versa. In particular, the units of a binary hid-
den layer (conditioned on the visible layer) are independent
Bernoulli random variables as follows:

 (4)

where is the sigmoid function. Similarly, if the
visible layer is binary-valued, the visible units (conditioned
on the hidden layer) are independent Bernoulli random vari-
ables as follows:

 (5)

If the visible layer is real-valued, the visible units (condi-
tioned on the hidden layer) are independent Gaussians with
diagonal covariance as follows:

 (6)

where N (.,.) is a Gaussian distribution. Therefore, we can
perform efficient block Gibbs sampling by alternately sam-
pling each layer’s units (in parallel) given the other layer. We
will often refer to a unit’s expected value as its activation.

The RBM is a generative model, so, in principle, its
parameters can be optimized by performing stochastic
gradient descent on the log-likelihood of training data.
Unfortunately, computing the exact gradient of the log-like-
lihood is intractable. Instead, one typically uses the contras-
tive divergence approximation,8 which has been shown to
work well in practice.

2.2. Deep belief networks

The RBM by itself is limited in what it can represent. Its
real power emerges when RBMs are stacked to form a DBN,
a generative model consisting of many layers. In a DBN,

v1 v2 v3

h1 h2

Figure 1. An example RBM with three visible units (D = 3) and two

hidden units (K = 2). See text for details.

a See Koller and Friedman14 for background on undirected graphical mod-

els. In short, the undirected graphical models denote probabilistic models

whose joint probability can be written as the product of non-negative poten-

tial functions, as in Equations 1–3.

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 97

each layer comprises a set of binary or real-valued units.
Two adjacent layers have a full set of connections between
them, but no two units in the same layer are connected.
Hinton et al.10 proposed an efficient algorithm for train-
ing DBNs, by greedily training each layer (from lowest to
highest) as an RBM using the previous layer’s activations
as inputs.

For example, once a layer of the network is trained, the
parameters W

ij
, b

j
, c

i
’s are frozen and the hidden unit values

(given the data) are inferred. These inferred values serve
as the input data used to train the next higher layer in the
network. Hinton et al.10 showed that by repeatedly apply-
ing such a procedure, one can learn a multilayered DBN. In
some cases, this iterative greedy algorithm can be shown to
be optimizing a variational lower-bound on the data like-
lihood, if each layer has at least as many units as the layer
below. This greedy layer-wise training approach has been
shown to provide a good initialization for parameters for the
multilayered network.

3. ALGORITHM

Both RBMs and DBNs ignore the 2D structure of images, so
weights that detect a given feature must be learned sepa-
rately for each location. This redundancy makes it difficult
to scale these models to full images. One possible way of
scaling up is to use massive parallel computation, such as
using GPUs, as shown in Raina et al.25 However, this method
may still suffer from having a huge number of parameters.
In this section, we present a new method that scales up
DBNs using weight-sharing. Specifically, we introduce
our model, the convolutional DBN (CDBN), where weights
are shared among all locations in an image. This model
scales well because inference can be done efficiently using
convolution.

3.1. Notation

For notational convenience, we will make several sim-
plifying assumptions. First, we assume that all inputs to
the algorithm are N

V
 × N

V
 images, even though there is no

requirement that the inputs be square, equally sized, or even
2D. We also assume that all units are binary-valued, while
noting that it is straightforward to extend the formulation
to the real-valued visible units (see Section 2.1). We use * to
denote convolution,b and • to denote an element-wise prod-
uct followed by summation, i.e., A • B = tr AT B. We place a
tilde above an array (Ã) to denote flipping the array horizon-
tally and vertically.

3.2. Convolutional RBM

First, we introduce the convolutional RBM (CRBM).
Intuitively, the CRBM is similar to the RBM, but the weights
between the hidden and visible layers are shared among all
locations in an image. The basic CRBM consists of two lay-
ers: an input layer V and a hidden layer H (corresponding to
the lower two layers in Figure 2). The input layer consists of

an N
V
 × N

V
 array of binary units. The hidden layer consists

of K groups, where each group is an N
H

 × N
H

 array of binary
units, resulting in N

H
2 K hidden units. Each of the K groups

is associated with a N
W

 × N
W

 filter (N
W

 ∆= N
V
 − N

H
 + 1); the filter

weights are shared across all the hidden units within the
group. In addition, each hidden group has a bias b

k
 and all

visible units share a single bias c.
We define the energy function E(v, h) as

 (7)

Using the operators defined previously,

 (8)

As with standard RBMs (Section 2.1), we can perform block
Gibbs sampling using the following conditional distributions:

 (9)

 (10)

where σ (.) is the sigmoid function.c Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

To learn high-level representations, we stack CRBMs into a
multilayer architecture analogous to DBNs. This architec-
ture is based on a novel operation that we call probabilistic
max-pooling.

In general, higher-level feature detectors need infor-
mation from progressively larger input regions. Existing

Figure 2. Convolutional RBM with probabilistic max-pooling. For

simplicity, only group k of the detection layer and the pooling layer are

shown. The basic CRBM corresponds to a simplified structure with

only visible layer and detection (hidden) layer. See text for details.

v

Wk

hki,j

pk
a

Pk(pooling layer)

Hk(detection layer)

V(visible layer)

C

N
P

N
WN

V

N
H

b The convolution of an m × m array with an n × n array (m > n) may result in

an (m + n − 1) × (m + n − 1) array (full convolution) or an (m − n + 1) × (m − n + 1)

array (valid convolution). Rather than inventing a cumbersome notation to

distinguish between these cases, we let it be determined by context.

c For the case of real-valued visible units, we can follow the standard formula-

tion as in Section 2.1 and show that

 (11)

98 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

research highlights

translation-invariant representations (e.g., convolutional
networks) often involve two kinds of alternating layers:
“detection” layers, where responses are computed by
convolving a feature detector with the previous layer, and
“pooling” layers, which shrink the representation of the
detection layers by a constant factor. More specifically,
each unit in a pooling layer computes the maximum acti-
vation of the units in a small region of the detection layer.
Shrinking the representation with max-pooling allows
higher-layer representations to be invariant to small trans-
lations of the input and reduces the computational burden.

Max-pooling was intended only for deterministic and
feed-forward architectures,17 and it is difficult to perform
probabilistic inference (e.g., computing posterior probabili-
ties) since max-pooling is a deterministic operator. In con-
trast, we are interested in a generative model of images that
supports full probabilistic inference. Hence, we designed
our generative model so that inference involves max-
pooling-like behavior.

To simplify the notation, we consider a model with a vis-
ible layer V, a detection layer H, and a pooling layer P, as
shown in Figure 2. The detection and pooling layers both
have K groups of units, and each group of the pooling layer
has N

P
 × N

P
 binary units. For each k ∈ {1, …, K}, the pooling

layer P k shrinks the representation of the detection layer Hk
by a factor of C along each dimension, where C is a small
integer such as 2 or 3. In other words, the detection layer Hk
is partitioned into blocks of size C × C, and each block a is
connected to exactly one binary unit pk

a
 in the pooling layer

(i.e., N
P
 = N

H
/C). Formally, we define B

a
 ∆= , {(i, j) : h

ij
 belongs

to the block a}.
The detection units in the block B

a
 and the pooling unit

p
a
 are connected in a single potential which enforces the

following constraints: at most one of the detection units
may be on, and the pooling unit is on if and only if a detec-
tion unit is on. By adding this constraint, we can efficiently
sample from the network without explicitly enumerating all
2C2

 configurations, as we show later. With this constraint,
we can consider these C2 + 1 units as a single (softmax) ran-
dom variable which may take on one of C2 + 1 possible val-
ues: one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simplified
probabilistic max-pooling-CRBM as follows:

We now discuss sampling the detection layer H and the pool-
ing layer P given the visible layer V. Note that hidden units in
group k receive the following bottom-up signal from layer V:

 (13)

Now, we sample each block independently as a multinomial
function of its inputs. Suppose hk

i, j
 is a hidden unit contained

in block a (i.e., (i, j) ∈ B
a
), the increase in energy caused by

turning on unit hk
i, j

 is –I(hk
i, j

) , and the conditional probability
is given by

 (14)

 (15)

In our implementation, we sample the random variables
{hk

i, j
} and pk

a
 in each block a from a multinomial distribu-

tion, and this can be done in parallel since the blocks are
disjoint (i.e., each hidden unit belongs to only one block).
Sampling the visible layer V given the hidden layer H can
be performed in the same way as described in Section 3.2
(e.g., Equation 10 or 11).

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the representa-
tion is much larger than the size of the inputs. In fact, since
the first hidden layer of the network contains K groups of
units, each roughly the size of the image, it is overcomplete
roughly by a factor of K. In general, overcomplete models run
the risk of learning trivial solutions, such as feature detectors
representing single pixels. One common solution is to force
the representation to be “sparse,” meaning only a tiny frac-
tion of the units should be active in relation to a given stimu-
lus. Following Lee et al.,18 we regularize the objective function
(log-likelihood) to encourage each hidden unit group to have
a mean activation close to a small constant. Specifically, we
find that the following simple update (followed by contras-
tive divergence update) works well in practice:

 (16)

where p is a target sparsity, and each image is treated as a
mini-batch. The learning rate for sparsity update is chosen
as a value that makes the hidden group’s average activa-
tion (over the entire training data) close to the target spar-
sity, while allowing variations depending on specific input
images. The overall training algorithm for the convolu-
tional RBM (with probabilistic max-pooling) is described in
Algorithm 1.d

3.5. Convolutional deep belief network

Finally, we are ready to define the CDBN, our hierarchi-
cal generative model for full-sized images. Analogous
to DBNs, this architecture consists of several max-pool-
ing-CRBMs stacked on top of one another. The network
defines an energy function by summing the energy func-
tions for all the individual pairs of layers. Training is
accomplished with the same greedy, layer-wise procedure
described in Section 2.2: once a given layer is trained, its
weights are frozen, and its activations are used as input
for the next layer. There is one technical point about
learning the biases for each intermediate hidden layer.

d To reduce the variance, we followed Hinton and Salakhutdinov11 by setting

V n:= E
p(V|H (n–1))

[V|H(n−1))]; also, we used 1-step CD (N
cd

 = 1).

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 99

Specifically, the biases of a given layer are learned twice:
once when the layer is treated as the “hidden” layer of the
CRBM (using the lower layer as visible units), and once
when it is treated as the “visible” layer (using the upper
layer as hidden units). We resolved this problem by sim-
ply fixing the biases with the learned hidden biases in
the former case (i.e., using only the biases learned when
treating the given layer as the hidden layer of the CRBM).
However, we note that a potentially better solution would
be to jointly train all the weights for the entire CDBN,
using the greedily trained weights as the initialization
(e.g., Hinton et al.10, 29).

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we compute the
network’s representation of an image by sampling from the
joint distribution over all of the hidden layers conditioned
on the input image. To sample from this distribution, we use
block Gibbs sampling, where each layer’s units are sampled
in parallel (see Sections 2.1 and 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V, a detection layer H, a pooling layer P, and
another, subsequently higher detection layer H′. Suppose H′
has K′ groups of nodes, and there is a set of shared weights
G = {G 1,1, …, G K,K′} where G k, is a weight matrix connecting
pooling unit Pk to detection unit H ′. The definition can be
extended to deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each of
the groups in the detection layers and interaction terms
between V and H and between P and H′:e

 (20)

To sample the detection layer H and pooling layer P, note
that the detection layer Hk receives the following bottom-up
signal from layer V:

 (21)

and the pooling layer P k receives the following top-down signal
from layer H′:

 (22)

Now, we sample each of the blocks independently as a mul-
tinomial function of their inputs, as in Section 3.3. If (i, j) ∈
B

a
, the conditional probability is given by

 (23)

 (24)

As an alternative to block Gibbs sampling, mean-field (e.g.,
Salakhutdinov et al.30) can be used to approximate the
posterior distribution. In all our experiments except for
Section 4.5, we used the mean-field approximation to esti-
mate the hidden layer activations given the input.f

3.7. Discussion

Our model used undirected connections between layers.
This approach contrasts with Hinton et al.,10 which used
undirected connections between the top two layers, and
top-down directed connections for the layers below. Hinton
et al.10 proposed approximating the posterior distribution
using a single bottom-up pass. This feed-forward approach
can often effectively estimate the posterior when the image
contains no occlusions or ambiguities,g but the higher lay-
ers cannot help resolve ambiguities in the lower layers. This
is due to feed-forward computation, where the lower layer
activations are not affected by the higher layer activations.
Although Gibbs sampling may more accurately estimate
the posterior, applying block Gibbs sampling would be dif-
ficult because the nodes in a given layer are not condition-
ally independent of one another given the layers above and
below. In contrast, our treatment using undirected edges
enables combining bottom-up and top-down information
more efficiently, as shown in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers. Moreover,
weight-sharing (convolutions) speeds up the algorithm further.

e To avoid clutter, we removed all the terms that do not depend on h and p.

f We found that a small number of mean-field iterations (e.g., five iterations)

sufficed.
g In our experiments, this feed-forward approximation scheme also resulted

in similar posteriors of the hidden units and classification performance in

most cases.

Algorithm 1 A training algorithm for the convolutional RBM

 repeat {over the training data (e.g., a set of training images)}
 Set V (0) := V (e.g., set the current image as a mini-batch)
 Compute the posterior Q(0) ∆= P(H|V (0)) (Equations 14

and 15).
 Sample H(0) from Q(0).
 for n = 1 to N

cd
 do

 Sample V n from P(V|H (n−1)) (Equation 10 or 11).c

 Compute the posterior Q(n) ∆= P(H|V n) (Equations 14
and 15).

 Sample H (n) from Q (n).
 end for

Update weights and biases with contrastive divergence
and sparsity regularization:

 (17)

 (18)

 (19)

 until convergence

100 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

research highlights

For example, convolutions between K filters and an input
image are more efficient both in memory and time than
repeating K N

H
2 times of inner products between the input

image and each of the basis vectors (without weight shar-
ing). As a result, inference in a three-layer network (with
200 × 200 input images) with weight-sharing but without
max-pooling is about 10 times slower. Without weight-
sharing, it is more than 100 times slower.

In contemporary work that was done independently of
ours, Desjardins and Bengio4 and Norouzi et al.21 also applied
convolutional weight-sharing to RBMs. Our work, however,
developed more sophisticated elements such as probabilis-
tic max-pooling to make the algorithm more scalable.

In another contemporary work, Salakhutdinov and
Hinton29 proposed an algorithm to train Boltzmann machines
with layer-wise connections (i.e., the same topological struc-
ture as in DBNs, but with undirected connections). They called
this model the deep Boltzmann machine (DBM). Specifically,
they proposed algorithms for pretraining and fine-tuning
DBMs. Our treatment of undirected connections is closely
related to DBMs. However, our model is different from theirs
because we apply convolutional structures and incorporate
probabilistic max-pooling into the architecture. Although
their work is not convolutional and does not scale to as large
images as our model, we note that their pretraining algorithm
(a modification of contrastive divergence that duplicates the
visible units or hidden units when training the RBMs) or fine-
tuning algorithm (joint training of all the parameters using a
stochastic approximation procedure32, 35, 37) can also be applied
to our model to improve the training procedure.

4. EXPERIMENTAL RESULTS

4.1. Learning hierarchical representations from

natural images

We first tested our model’s ability to learn hierarchical rep-
resentations of natural images. Specifically, we trained a
CDBN with two hidden layers from the Kyoto natural image
dataset.h The first layer consisted of 24 groups (or “bases”)i

of 10 × 10 pixel filters, while the second layer consisted of
100 bases, each one 10 × 10 as well. Since the images were
real-valued, we used Gaussian visible units for the first-
layer CRBM. The pooling ratio C for each layer was 2, so the
 second-layer bases covered roughly twice as large an area
as the first-layer bases. We used 0.003 as the target sparsity
for the first layer and 0.005 for the second layer.

As Figure 3 (top) shows, the learned first layer bases are
oriented, localized edge filters; this result is consistent
with much previous work.1, 9, 22, 23, 28, 33 We note that sparsity
regularization during training was necessary to learn these
oriented edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges. The learned second
layer bases are shown in Figure 3 (bottom), and many of
them empirically responded selectively to contours, corners,
angles, and surface boundaries in the images. This result is
qualitatively consistent with previous work.12, 13, 18

4.2. Self-taught learning for object recognition

In the self-taught learning framework,24 a large amount of
unlabeled data can help supervised learning tasks, even
when the unlabeled data do not share the same class labels
or the same generative distribution with the labeled data. In
previous work, sparse coding was used to train single-layer
representations from unlabeled data, and the learned rep-
resentations were used to construct features for supervised
learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101 object
classification task. More specifically, given an image from
the Caltech-101 dataset,5 we scaled the image so that its
longer side was 150 pixels and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image
by half and concatenated all the activations to construct
features. We used an SVM with a spatial pyramid match-
ing kernel for classification, and the parameters of the
SVM were cross-validated. We randomly selected 15 or
30 images per class for training test and testing set, and
normalized the result such that classification accuracy for
each class was equally weighted (following the standard
protocol). We report results averaged over 10 random tri-
als, as shown in Table 1. First, we observe that combin-
ing the first and second layers significantly improves the

Figure 3. The first layer bases (top) and the second layer bases

(bottom) learned from natural images. Each second layer basis

(filter) was visualized as a weighted linear combination of the first

layer bases.

h Available at http: //www. cnbc. cmu.edu/cplab/data_kyoto.html
i We will call one hidden group’s weights a “basis.”

Table 1. Test classification accuracy for the Caltech-101 data.

Training size (per class) 15 30

CDBN (first layer) 53.2% ± 1.2% 60.5% ± 1.1%

CDBN (first + second layer) 57.7% ± 1.5% 65.4% ± 0.5%

Raina et al.24 46.6% —

Ranzato et al.27 — 54.0%

Mutch and Lowe20 51.0% 56.0%

Lazebnik et al.16 54.0% 64.6%

Zhang et al.38 59.0% ± 0.56% 66.2% ± 0.5%

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 101

classification accuracy relative to the first layer alone.
Overall, we achieve 57.7% test accuracy using 15 training
images per class, and 65.4% test accuracy using 30 training
images per class. Our result is competitive with state-of-
the-art results using a single type of highly specialized fea-
tures, such as SIFT, geometric blur, and shape-context.3,

16, 38 In addition, recall that the CDBN was trained entirely
from natural scenes, which are completely unrelated to
the classification task. Hence, the strong performance of
these features implies that our CDBN learned a highly gen-
eral representation of images.

We note that current state-of-the-art methods use mul-
tiple kernels (or features) together, instead of using a single
type of features. For example, Gehler and Nowozin6 rve-
ported a better performance than ours (77.7% for 30 train-
ing images/class), but they combined many state-of-the-art
features (or kernels) to improve performance. In another
approach, Yu et al.36 used kernel regularization using a (pre-
viously published) state-of-the-art kernel matrix to improve
the performance of their convolutional neural network
model (achieving 67.4% for 30 training examples/class).
However, we expect our features can also be used in both
settings to further improve performance.

4.3. Handwritten digit classification

We also evaluated the performance of our model on the
MNIST handwritten digit classification task, a widely used
benchmark for testing hierarchical representations. We
trained 40 first layer bases from MNIST digits, each 12 × 12
pixels, and 40 second layer bases, each 6 × 6. The pooling
ratio C was 2 for both layers. The first layer bases learned pen-
strokes that comprise the digits, and the second layer bases
learned bigger digit-parts that combine the pen-strokes. We

constructed feature vectors by concatenating the first and
second (pooling) layer activations, and used an SVM for clas-
sification using these features. For each labeled training set
size, we report the test error averaged over 10 randomly cho-
sen training sets, as shown in Table 2. For the full training
set, we obtained 0.8% test error. Our result is comparable to
the state of the art.27

4.4. Unsupervised learning of object parts

We now show that our algorithm can learn hierarchical
object-part representations without knowing the position of
the objects and the object-parts. Building on the first layer
representation learned from natural images, we trained two
additional CDBN layers using unlabeled images from single
Caltech-101 categories. Training was performed on up to 100
images, and testing was performed on images different than
those in the training set. The pooling ratio for the first layer
was set as 3. The second layer contained 40 bases, each 10 × 10,
and the third layer contained 24 bases, each 14 × 14. The
pooling ratio in both cases was 2. We used 0.005 as the target
sparsity level in both the second and third layers. As shown in
Figure 4, the second layer learned features that corresponded
to object parts, even though the algorithm was not given any
labels that specified the locations of either the objects or
their parts. The third layer learned to combine the second
layer’s part representations into more complex, higher-level
features. Our model successfully learned hierarchical object-
part representations of most of the other Caltech-101 catego-
ries as well. We note that some of these categories (such as
elephants and chairs) have fairly high intra-class appearance
variation, due to deformable shapes or different viewpoints.
Despite this variation, our model still learns hierarchical,
part-based representations fairly robustly.

Table 2. Test error for MNIST dataset.

Labeled Training Samples 1,000 2,000 3,000 5,000 60,000

CDBN 2.62% ± 0.12% 2.13% ± 0.10% 1.91% ± 0.09% 1.59% ± 0.11% 0.82%

Ranzato et al.27 3.21% 2.53% — 1.52% 0.64%

Hinton and Salakhutdinov11 — — — — 1.20%

Weston et al.34 2.73% — 1.83% — 1.50%

Figure 4. Columns 1–4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the

second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).

102 COMMUNICATIONS OF THE ACM | OCTOBER 2011 | VOL. 54 | NO. 10

research highlights

Higher layers in the CDBN learn features that are not only
higher level, but also more specific to particular object cat-
egories. We quantitatively measured the specificity of each
layer by determining how indicative each individual feature is
of object categories. (This setting contrasts with most work in
object classification, which focuses on the informativeness of
the entire feature set, rather than individual features.) More
specifically, we considered three CDBNs trained on faces,
motorbikes, and cars, respectively. For each CDBN, we tested
the informativeness of individual features from each layer for
distinguishing among these three categories. For each fea-
ture, we computed the area under the precision-recall curve
(larger means more specific). In detail, for any given image,
we computed the layer-wise activations using our algorithm,
partitioned the activation into L × L regions for each group,
and computed the q% highest quantile activation for each
region and each group. If the q% highest quantile activation
in region i was g, we then defined a Bernoulli random variable
X

i, L, q
 with probability g of being 1. To measure the informa-

tiveness between a feature and the class label, we computed
the mutual information between X

i, L, q
 and the class label. We

report results using (L, q) values that maximized the average
mutual information (averaging over i). Then for each feature,
by comparing its values over positive and negative examples,
we obtained the precision-recall curve for each classification
problem. As shown in Figure 5, the higher-level representa-
tions are more selective for the specific object class.

We further tested if the CDBN can learn hierarchical
object-part representations when trained on images from
several object categories, rather than just one. We trained
the second and third layer representations using unlabeled
images randomly selected from four object categories (cars,
faces, motorbikes, and airplanes). As shown in Figure 4 (far
right), the second layer learns class-specific and shared
parts, and the third layer learns more object-specific repre-
sentations. The training examples were unlabeled, so, in a
sense, the third layer implicitly clusters the images by object
category. As before, we quantitatively measured the specific-
ity of each layer’s individual features to object categories.
Since the training was completely unsupervised, whereas
the AUC-PR statistic requires knowing which specific

object or object parts the learned bases should represent,
we computed the conditional entropy instead. Specifically,
we computed the quantile features g for each layer as previ-
ously described, and measured conditional entropy H(class
|g > 0.95). Informally speaking, conditional entropy mea-
sures the entropy of the posterior over class labels when
a feature is active. Since lower conditional entropy corre-
sponds to a more peaked posterior, it indicates greater spec-
ificity. As shown in Figure 6, the higher-layer features have
progressively less conditional entropy, suggesting that they
activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford19 proposed that the human visual cortex
can be modeled conceptually as performing “hierarchical
Bayesian inference.” For example, imagine that you observe
a face image with its left half in dark illumination, then you
would still be able to recognize the face and further infer
the darkened parts by combining the image with your prior
knowledge of faces. In this experiment, we show that our
model can tractably perform such (approximate) hierarchical
probabilistic inference in full-sized images. More specifically,
we tested the network’s ability to infer the locations of hidden
object parts.

To generate examples for evaluation, we used Caltech-101
face images (distinct from the ones the network was trained
on). For each image, we simulated an occlusion by zero-
ing out the left half of the image. We then sampled from
the joint posterior over all the hidden layers by performing

Figure 7. Hierarchical probabilistic inference. For each column:

(top) input image; (middle) reconstruction from the second layer

units after single bottom-up pass, by projecting the second layer

activations into the image space; (bottom) reconstruction from

the second layer units after 20 iterations of block Gibbs sampling.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

First layer
Second layer
Third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

First layer
Second layer
Third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

First layer
Second layer
Third layer

Features Faces Motorbikes Cars

First layer 0.39 ± 0.17 0.44 ± 0.21 0.43 ± 0.19

Second layer 0.86 ± 0.13 0.69 ± 0.22 0.72 ± 0.23

Third layer 0.95 ± 0.03 0.81 ± 0.13 0.87 ± 0.15

Figure 5. (top) Histogram of the area under the precision-recall curve

(AUC-PR) for three classification problems using class-specific

object-part representations. (bottom) Average AUC-PR for each

classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

First layer

Second layer

Third layer

Figure 6. Histogram of conditional entropy for the representation

learned from the mixture of four object classes.

OCTOBER 2011 | VOL. 54 | NO. 10 | COMMUNICATIONS OF THE ACM 103

Gibbs sampling. Figure 7 shows a visualization of these sam-
ples. To ensure that the filling-in required top-down infor-
mation, we compared with a control condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since there
is no evidence from the first layer, the second layer does
not respond to the left side. However, with full Gibbs sam-
pling, the bottom-up inputs combine with the context pro-
vided by the third layer which has detected the object. This
combined evidence significantly improves the second layer
representation. Selected examples are shown in Figure 7.
Our method may not be competitive to state-of-the-art face
completion algorithms using significant prior knowledge
and heuristics (e.g., symmetry). However, we find these
results promising and view them as a proof of concept for
top-down inference.

5. CONCLUSION

We presented the CDBN, a scalable generative model for
learning hierarchical representations from un-labeled
images, and showed that our model performs well in a vari-
ety of visual recognition tasks. We believe our approach
holds promise as a scalable algorithm for learning hierarchi-
cal representations from high-dimensional, complex data.

Acknowledgments

We give warm thanks to Daniel Oblinger and Rajat Raina
for helpful discussions. This work was supported by the
DARPA transfer learning program under contract number
FA8750-05-2-0249.

Henderson, D., Howard, R.E., Hubbard,
W., Jackel, L.D. Backpropagation
applied to handwritten zip code
recognition. Neural Comput. 1 (1989),
541–551.

 18. Lee, H., Ekanadham, C., Ng, A.Y.
Sparse deep belief network model for
visual area V2. In Advances in Neural
Information Processing Systems 20,
2008.

 19. Lee, T.S., Mumford, D. Hierarchical
Bayesian inference in the visual
cortex. J. Opt. Soc. Am. A 20, 7
(2003), 1434–1448.

 20. Mutch, J., Lowe, D.G. Multiclass
object recognition with sparse,
localized features. In Proceedings of
the IEEE Conference on Computer
Vision and Pattern Recognition, 2006.

 21. Norouzi, M., Ranjbar, M., Mori, G.
Stacks of convolutional restricted
Boltzmann machines for shift-
invariant feature learning. In
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition, 2009.

 22. Olshausen, B.A., Field, D.J.
Emergence of simple-cell receptive
field properties by learning a sparse
code for natural images. Nature 381
(1993), 607–609.

 23. Osindero, S., Welling, M., Hinton, G.E.
Topographic product models applied
to natural scene statistics. Neural
Comput. 18, 2 (2006), 381–344.

 24. Raina, R., Battle, A., Lee, H., Packer, B.,
Ng, A.Y. Self-taught learning: Transfer
learning from unlabeled data. In
Proceedings of the International
Conference on Machine Learning,
2007.

 25. Raina, R., Madhavan, A., Ng, A.Y.
Large-scale deep unsupervised
learning using graphics processors.
In Proceedings of the International
Conference on Machine Learning,
2009.

 26. Ranzato, M., Boureau, Y., LeCun, Y.
Sparse feature learning for deep
belief networks. In Advances in
Neural Information Processing
Systems, 2007.

 27. Ranzato, M., Huang, F.-J., Boureau,
Y.-L., LeCun, Y. Unsupervised learning
of invariant feature hierarchies with
applications to object recognition.
In Proceedings of the IEEE
Conference on Computer Vision

and Pattern Recognition, 2007.
 28. Ranzato, M., Poultney, C., Chopra, S.,

LeCun, Y. Efficient learning of sparse
representations with an energy-
based model. In Advances in Neural
Information Processing Systems
(2006), 1137–1144, 2006.

 29. Salakhutdinov, R., Hinton, G.E. Deep
Boltzmann machines. In Proceedings
of the International Conference on
Artificial Intelligence and Statistics,
2009.

 30. Salakhutdinov, R., Mnih, A., Hinton, G.
Restricted Boltzmann machines for
collaborative filtering. In Proceedings
of the International Conference on
Machine learning, 2007.

 31. Taylor, G.W., Hinton, G.E., Roweis,
S.T. Modeling human motion using
binary latent variables. In Advances
in Neural Information Processing
Systems 19, 2007.

 32. Tieleman, T. Training restricted
Boltzmann machines using
approximations to the likelihood
gradient. In Proceedings of the
International Conference on Machine
Learning, 2008.

 33. van Hateren, J.H., van der Schaaf, A.
Independent component filters of
natural images compared with simple
cells in primary visual cortex. Proc. R.
Soc. B 265 (1998), 359–366.

 34. Weston, J., Ratle, F., Collobert, R.
Deep learning via semi-supervised
embedding. In Proceedings of the
International Conference on Machine
Learning, 2008.

 35. Younes, L. Maximum of likelihood
estimation for Gibbsian fields. Probab.
Theory Relat. Fields 82 (1989),
625–645.

 36. Yu, K., Xu, W., Gong, Y. Deep learning
with kernel regularization for visual
recognition. In Advances in Neural
Information Processing Systems,
2009.

 37. Yuille, A.L. The convergence of
contrastive divergences. In Advances
in Neural Information Processing
Systems 17, 2005.

 38. Zhang, H., Berg, A.C., Maire, M.,
Malik, J. SVM-KNN: Discriminative
nearest neighbor classification
for visual category recognition. In
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition, 2006.

References
 1. Bell, A.J., Sejnowski, T.J. The

‘independent components’ of natural
scenes are edge filters. Vis. Res. 37,
23 (1997), 3327–3338.

 2. Bengio, Y., Lamblin, P., Popovici,
D., Larochelle, H. Greedy layer-
wise training of deep networks. In
Advances in Neural Information
Processing Systems, 2007.

 3. Berg, A.C., Berg, T.L., Malik, J. Shape
matching and object recognition using
low distortion correspondence. In
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition, 2005.

 4. Desjardins, G., Bengio, Y. Empirical
evaluation of convolutional RBMs for
vision. Technical report, University of
Montreal, Monreal, Quebec, Canada,
2008.

 5. Fei-Fei, L., Fergus, R., Perona, P.
Learning generative visual models
from few training examples: An
incremental Bayesian approach
tested on 101 object categories. In
CVPR Workshop on Generative Model
Based Vision, 2004.

 6. Gehler, P., Nowozin, S. On feature
combination for multiclass object
classification. In Proceedings of
the International Conference on
Computer Vision, 2009.

 7. Grosse, R., Raina, R., Kwong, H., Ng,
A.Y. Shift-invariant sparse coding for
audio classification. In Proceedings
of the Conference on Uncertainty in
Artificial Intelligence, 2007.

 8. Hinton, G.E. Training products of
experts by minimizing contrastive
divergence. Neural Comput. 14, 8
(2002), 1771–1800.

 9. Hinton, G.E., Osindero, S., Bao, K.
Learning causally linked MRFs.
In Proceedings of the International
Conference on Artificial Intelligence
and Statistics, 2005.

 10. Hinton, G.E., Osindero, S., Teh, Y.-W. A
fast learning algorithm for deep belief
nets. Neural Comput. 18, 7 (2006),
1527–1554.

 11. Hinton, G.E., Salakhutdinov, R.
Reducing the dimensionality of data
with neural networks. Science 313,
5786 (2006), 504–507.

 12. Hyvarinen, A., Gutmann, M., Hoyer,
P.O. Statistical model of natural
stimuli predicts edge-like pooling of
spatial frequency channels in V2. BMC
Neurosci. 6 (2005), 12.

 13. Ito, M., Komatsu, H. Representation
of angles embedded within contour
stimuli in area V2 of macaque
monkeys. J. Neurosci. 24, 13 (2004),
3313–3324.

 14. Koller, D., Friedman, N. Probabilistic
Graphical Models: Principles
and Techniques. The MIT Press,
Cambridge, MA, 2009.

 15. Larochelle, H., Erhan, D., Courville, A.,
Bergstra, J., Bengio, Y. An empirical
evaluation of deep architectures
on problems with many factors
of variation. In Proceedings of the
International Conference on Machine
Learning, 2007.

 16. Lazebnik, S., Schmid, C., Ponce, J.
Beyond bags of features: Spatial
pyramid matching for recognizing
natural scene categories. In
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition, 2006.

 17. LeCun, Y., Boser, B., Denker, J.S.,

Honglak Lee (honglak@eecs.umich.
edu), Computer Science and Engineering
Division, University of Michigan, Ann
Arbor, MI.

Roger Grosse (rgrosse@mit.edu), CSAIL,
Massachusetts Institute of Technology,
Cambridge, MA.

Rajesh Ranganath and Andrew Y. Ng
({rajeshr,ang}@cs.stanford.edu), Computer
Science Department, Stanford University,
Stanford, CA.

© 2011 ACM 0001-0782/11/10 $10.00

