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Abstract

Can we detect low dimensional structure in high dimen-

sional data sets of images and video? The problem of di-

mensionality reduction arises often in computer vision and

pattern recognition. In this paper, we propose a new solu-

tion to this problem based on semidefinite programming.

Our algorithm can be used to analyze high dimensional

data that lies on or near a low dimensional manifold. It

overcomes certain limitations of previous work in mani-

fold learning, such as Isomap and locally linear embedding.

We illustrate the algorithm on easily visualized examples of

curves and surfaces, as well as on actual images of faces,

handwritten digits, and solid objects.

1. Introduction

Many data sets of images and video are characterized by

far fewer degrees of freedom than the actual number of pix-

els per image. The problem of dimensionality reduction is

to understand and analyze these images in terms of their

basic modes of variability—for example, the pose and ex-

pression of a human face, or the rotation and scaling of a

solid object. Mathematically, we can view an image as a

point in a high dimensional vector space whose dimension-

ality is equal to the number of pixels in the image [3, 20].

If the images in a data set are effectively parameterized by

a small number of continuous variables, then they will lie

on or near a low dimensional manifold in this high dimen-

sional space [12]. This paper is concerned with the unsuper-

vised learning of such image manifolds.

Beyond its applications in computer vision, manifold

learning is best described as a problem at the intersection

of statistics, geometry, and computation. The problem is il-

lustrated in Fig. 1. Given high dimensional data sampled

from a low dimensional manifold, how can we efficiently

compute a faithful (nonlinear) embedding? In the last few

years, researchers have uncovered a large family of algo-

rithms for computing such embeddings from the top or

bottom eigenvectors of an appropriately constructed ma-

trix. These algorithms—including Isomap [19], locally lin-

ear embedding (LLE) [14, 15], hessian LLE [8], Laplacian

eigenmaps [1], and others [5]—can reveal low dimensional

manifolds that are not detected by classical linear methods,

such as principal component analysis (PCA) [11].

Our main contribution in this paper is a new algorithm

for manifold learning based on semidefinite programming.

Like Isomap and LLE, it relies on efficient and tractable

Figure 1. The problem of manifold learning,

illustrated for N = 800 data points sampled

from a “Swiss roll”. (1). A discretized man-

ifold is revealed by connecting each data

point and its k = 6 nearest neighbors (2).

An unsupervised learning algorithm unfolds

the Swiss roll while preserving the local ge-

ometry of nearby data points (3). Finally, the

data points are projected onto the two dimen-

sional subspace that maximizes their vari-

ance, yielding a faithful embedding of the

original manifold (4).
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optimizations that are not plagued by spurious local min-

ima. Interestingly, though, our algorithm is based on a com-

pletely different geometric intuition (and optimization), and

it overcomes certain limitations of previous work.

2. Dimensionality Reduction

We study dimensionality reduction as a problem in un-

supervised learning. Given N high dimensional inputs
�Xi∈RD (where i = 1, 2, . . . , N ), the problem is to com-

pute outputs �Yi ∈ Rd in one-to-one correspondence with

the inputs that provide a faithful embedding in d < D di-

mensions. By “faithful”, we mean that nearby points re-

main nearby and that distant points remain distant; we

shall make this intuition more precise in what follows. Ide-

ally, an unsupervised learning algorithm should also

estimate the intrinsic dimensionality d of the manifold sam-

pled by the inputs �Xi.

Our algorithm for manifold learning builds on classical

linear methods for dimensionality reduction. We therefore

begin by briefly reviewing principal component analysis

(PCA) [11] and metric multidimensional scaling (MDS) [6].

The generalization from subspaces to manifolds is then

made by introducing the idea of local isometry.

2.1. Linear Methods

PCA and MDS are based on simple geometric intuitions.

In PCA, the inputs are projected into the lower dimensional

subspace that maximizes the projected variance; the basis

vectors of this subspace are given by the top eigenvectors of

the D×D covariance matrix, C = 1

N

∑

i
�Xi

�XT
i . (Here and

in what follows, we assume without loss of generality that

the inputs are centered on the origin:
∑

i
�Xi =�0.)

In MDS with classical scaling, the inputs are projected

into the subspace that best preserves their pairwise squared

distances | �Xi− �Xj |
2 or, as done in practice, their dot prod-

ucts �Xi · �Xj . The outputs of MDS are computed from the

top eigenvectors of the N×N Gram matrix with elements

Gij = �Xi · �Xj . Note that a set of vectors is determined up to

rotation by its Gram matrix of dot products.

Though based on different geometric intuitions, PCA

and MDS yield the same results—essentially a rotation of

the inputs followed by a projection into the subspace with

the highest variance. The correlation matrix of PCA and

the Gram matrix of MDS have the same rank and nonzero

eigenvalues up to a constant factor. Both matrices are semi-

positive definite, and gaps in their eigenvalue spectra indi-

cate that the high dimensional inputs Xi∈RD lie to a good

approximation in a lower dimensional subspace of dimen-

sionality d, where d is the number of appreciably positive

eigenvalues. These linear methods for dimensionality re-

duction generate faithful embeddings when the inputs are

mainly confined to a low dimensional subspace; in this case,

their eigenvalues also reveal the correct underlying dimen-

sionality. They do not generally succeed, however, in the

case that the inputs lie on a low dimensional manifold.

2.2. From Subspaces to Manifolds

We will refer to any method that computes a low dimen-

sional embedding from the eigenvectors of an appropriately

constructed matrix as a method in spectral embedding. If

PCA and MDS are linear methods in spectral embedding,

what are their nonlinear counterparts? In fact, there are sev-

eral, most of them differing in the geometric intuition they

take as starting points and in the generalizations of linear

transformations that they attempt to discover.

The nonlinear method we propose in this paper is based

fundamentally on the notion of isometry. (For the sake of

exposition, we defer a discussion of competing nonlinear

methods based on isometries [8, 19] to section 5.) For-

mally, two Riemannian manifolds are said to be isometric

if there is a diffeomorphism such that the metric on one

pulls back to the metric on the other. Informally, an isom-

etry is a smooth invertible mapping that looks locally like

a rotation plus translation, thus preserving distances along

the manifold. Intuitively, for two dimensional surfaces, the

class of isometries includes whatever physical transforma-

tions one can perform on a sheet of paper without intro-

ducing holes, tears, or self-intersections. Many interesting

image manifolds are isometric to connected subsets of Eu-

clidean space [7].

Isometry is a relation between manifolds, but we can ex-

tend the notion in a natural way to data sets. Consider two

data sets X = { �Xi}
N
i=1

and Y = {�Yi}
N
i=1

that are in one-

to-one correspondence. Let the N×N binary matrix η in-

dicate a neighborhood relation on X and Y , such that we

regard �Xj as a neighbor of �Xi if and only if ηij = 1 (and

similarly, for �Yj and �Yi). We will say that the data sets X

and Y are locally isometric under the neighborhood rela-

tion η if for every point �Xi, there exists a rotation, reflec-

tion and/or translation that maps �Xi and its neighbors pre-

cisely onto �Yi and its neighbors.

We can translate the above definition into various sets of

equality constraints on X and Y . To begin, note that the lo-

cal mapping between neighborhoods will exist if and only if

the distances and angles between points and their neighbors

are preserved. Thus, whenever both �Xj and �Xk are neigh-

bors of �Xi (that is, ηijηik = 1), for local isometry we must

have that:
(

�Yi−�Yj

)

·
(

�Yi−�Yk

)

=
(

�Xi− �Xj

)

·
(

�Xi− �Xk

)

. (1)

Eq. (1) is sufficient for local isometry because the triangle

formed by any point and its neighbors is determined up to

rotation, reflection and translation by specifying the lengths
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of two sides and the angle between them. In fact, such a tri-

angle is similarly determined by specifying the lengths of

all its sides. Thus, we can also say that X and Y are lo-

cally isometric under η if whenever �Xi and �Xj are them-

selves neighbors (that is, ηij = 1) or are common neigh-

bors of another point in the data set (that is, [ηT η]ij > 0),

we have:
∣

∣

∣

�Yi−�Yj

∣

∣

∣

2

=
∣

∣

∣

�Xi− �Xj

∣

∣

∣

2

. (2)

This is an equivalent characterization of local isometry as

eq. (1), but expressed only in terms of pairwise distances.

Finally, we can express these constraints purely in terms of

dot products. Let Gij = �Xi · �Xj and Kij = �Yi ·�Yj denote the

Gram matrices of the inputs and outputs, respectively. We

can rewrite eq. (2) as:

Kii+Kjj−Kij−Kji = Gii+Gjj−Gij−Gji. (3)

Eq. (3) expresses the conditions for local isometry purely

in terms of Gram matrices; it is in fact this formulation that

will form the basis of our algorithm for manifold learning.

3. Semidefinite Embedding

We can now formulate the problem of manifold learn-

ing more precisely, taking as a starting point the notion of

local isometry. In particular, given N inputs �Xi ∈RD and

a prescription for identifying “neighboring” inputs, can we

find N outputs �Yi ∈ Rd, where d < D, such that the in-

puts and outputs are locally isometric, or at least approxi-

mately so? Alternatively, we can state the problem in terms

of Gram matrices: can we find a Gram matrix Kij that sat-

isfies the constraints in eq. (3), and for which the vectors �Yi

(which are determined up to a rotation by the elements of

the Gram matrix) lie in a subspace of dimensionality d<D,

or at least approximately lie in such a subspace? In this sec-

tion, we show how this can be done by a constrained opti-

mization over the cone of semidefinite matrices.

Like PCA and MDS, the algorithm we propose for man-

ifold learning is based on a simple geometric intuition.

Imagine each input �Xi as a steel ball that is connected

to its k nearest neighbors by rigid rods. The effect of the

rigid rods is to fix the distances and angles between near-

est neighbors, no matter what other forces are applied to

the inputs. Now imagine that the inputs are pulled apart,

maximizing their total variance subject to the constraints

imposed by the rigid rods. Fig. 1 shows the unraveling ef-

fect of this transformation on inputs sampled from the Swiss

roll. The goal of this section is to formalize the steps of this

transformation—in particular, the constraints that must be

satisfied by the final solution, and the nature of the opti-

mization that must be performed.

3.1. Constraints

The constraints that we need to impose for local isome-

try are naturally represented by a graph with N nodes, one

for each input. Consider the graph formed by connecting

each input to its k nearest neighbors, where k is a free pa-

rameter of the algorithm. For simplicity, we assume that the

graph formed in this way is connected; if not, then each con-

nected component should be analyzed separately. The con-

straints for local isometry under this neighborhood relation

are simply to preserve the lengths of the edges in this graph,

as well as the angles between edges at the same node. In

practice, it is easier to deal only with constraints on dis-

tances, as opposed to angles. To this end, let us further con-

nect the graph by adding edges between the neighbors of

each node (if they do not already exist). Now by preserv-

ing the distances of all edges in this new graph, we preserve

both the distances of edges and the angles between edges in

the original graph—because if all sides of a triangle are pre-

served, so are its angles.

In addition to imposing the constraints represented by

the “neighborhood graph”, we also constrain the outputs �Yi

to be centered on the origin:
∑

i

�Yi = �0. (4)

Eq. (4) simply removes a translational degree of freedom

from the final solution. The centering constraint can be ex-

pressed in terms of the Gram matrix Kij as follows:

0 =
∣

∣

∣

∑

i

�Yi

∣

∣

∣

2

=
∑

ij

�Yi · �Yj =
∑

ij

Kij . (5)

Note that eq. (5) is a linear equality constraint on the ele-

ments of the output Gram matrix, just like eq. (3).

Because the geometric constraints on the outputs �Yi are

so naturally expressed in terms of the Gram matrix Kij (and

because the outputs are determined up to rotation by their

Gram matrix), we may view manifold learning as an op-

timization over Gram matrices Kij rather than vectors �Yi.

Not all matrices, however, can be interpreted as Gram ma-

trices: only symmetric matrices with nonnegative eigenval-

ues can be interpreted in this way. Thus, we must further

constrain the optimization to the cone of semidefinite ma-

trices [21].

In sum, there are three types of constraints on the Gram

matrix Kij , arising from local isometry, centering, and

semidefiniteness. The first two involve linear equality con-

straints; the last one is not linear, but importantly it is con-

vex. We will exploit this property in what follows. Note that

there are O(Nk2) constraints on O(N2) matrix elements,

and that the constraints are not incompatible, since at the

very least they are satisfied by the input Gram matrix Gij

(assuming, as before, that the inputs �Xi are centered on the

origin).
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3.2. Optimization

What function of the Gram matrix can we optimize to

“unfold” a manifold, as in Fig. 1? As motivation, consider

the ends of a piece of string, or the corners of a flag. Any

slack in the string serves to decrease the (Euclidean) dis-

tance between its two ends; likewise, any furling of the flag

serves to bring its corners closer together. More generally,

we observe that any “fold” between two points on a mani-

fold serves to decrease the Euclidean distance between the

points. This suggests an optimization that we can perform

to compute the outputs �Yi that unfold a manifold sampled

by inputs �Xi. In particular, we propose to maximize the sum

of pairwise squared distances between outputs:

T (Y ) =
1

2N

∑

ij

∣

∣

∣

�Yi − �Yj

∣

∣

∣

2

. (6)

By maximizing eq. (6), we pull the outputs as far apart as

possible, subject to the constraints in the previous section.

Before expressing this objective function in terms of the

Gram matrix Kij , let us verify that it is indeed bounded,

meaning that we cannot pull the outputs infinitely far apart.

Intuitively, the constraints to preserve local distances (and

the assumption that the graph is connected) prevent such a

divergence. More formally, let ηij =1 if �Xj is one of the

k nearest neighbors of �Xi, and zero otherwise, and let τ be

the maximal distance between any two such neighbors:

τ = max
ij

[

ηij

∣

∣

∣

�Xi − �Xj

∣

∣

∣

]

. (7)

Assuming the graph is connected, then the longest path

through the graph has a distance of at most Nτ . We ob-

serve furthermore that given two nodes, the distance of the

path through the graph provides an upper bound on their Eu-

clidean distance. Thus, for all outputs �Yi and �Yj , we must

have |�Yi − �Yj | < Nτ . Using this to provide an upper bound

on the objective function in eq. (6), we obtain:

T (Y ) ≤
1

2N

∑

ij

(Nτ)2 =
N3τ2

2
. (8)

Thus, the objective function cannot increase without bound

if we enforce the constraints to preserve local distances.

We can express the objective function in eq. (6) directly

in terms of the Gram matrix Kij of the outputs �Yi. Expand-

ing the terms on the right hand side, and enforcing the con-

straint that the outputs are centered on the origin, we ob-

tain:

T (Y ) =
∑

i

∣

∣

∣

�Yi

∣

∣

∣

2

=
∑

i

Kii = Tr(K). (9)

Thus, we can interpret the objective function for the outputs

in several ways: as a sum over pairwise distances in eq. (6),

as a measure of variance in eq. (9), or as the trace of their

Gram matrix in eq. (9). The second interpretation is remi-

niscent of PCA, but whereas in PCA we compute the lin-

ear projection that maximizes variance, here we compute

the locally isometric embedding. Put another way, the ob-

jective function for maximizing variance remains the same;

we have merely changed the allowed form of the dimen-

sionality reduction. We also emphasize that in eq. (9), we

are maximizing the trace, not minimizing it. While a stan-

dard relaxation to minimizing the rank [9] of a semidefinite

matrix is to minimize its trace, the intuition here is just the

opposite: we will obtain a low dimensional embedding by

maximizing the trace of the Gram matrix.

Let us now collect the costs and constraints of this opti-

mization. The problem is to maximize the variance of the

outputs {�Yi}
N
i=1

subject to the constraints that they are cen-

tered on the origin and locally isometric to the inputs

{ �Xi}
N
i=1

. In terms of the input Gram matrix Gij = �Xi · �Xj ,

the output Gram matrix Kij = �Yi · �Yj and the adja-

cency matrix ηij indicating nearest neighbors, the opti-

mization can be written as:

Maximize Tr(K) subject to K � 0,
∑

ij Kij = 0,

and ∀ij such that ηij =1 or [ηT η]ij =1,

Kii+Kjj−Kij−Kji = Gii+Gjj−Gij−Gji.

This problem is an instance of semidefinite programming

(SDP) [21]: the domain is the cone of semidefinite matrices

intersected with hyperplanes (represented by equality con-

straints), and the objective function is linear in the matrix

elements. The optimization is bounded above by eq. (8); it

is also convex, thus eliminating the possibility of spurious

local maxima. There exists a large literature on efficiently

solving SDPs, as well as a number of general-purpose tool-

boxes. The results in this paper were obtained using the Se-

DuMi and CSDP 4.7 toolboxes [4, 18] in MATLAB.

3.3. Spectral Embedding

From the Gram matrix learned by semidefinite program-

ming, we can recover the outputs �Yi by matrix diagonaliza-

tion. Let Vαi denote the ith element of the αth eigenvec-

tor, with eigenvalue λα. Then the Gram matrix can be writ-

ten as:

Kij =
N

∑

α=1

λαVαiVαj . (10)

An N -dimensional embedding that is locally isometric to

the inputs �Xi is obtained by identifying the αth element of

the output �Yi as:

Yαi =
√

λαVαi. (11)
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The eigenvalues of K are guaranteed to be nonnegative.

Thus, from eq. (11), a large gap in the eigenvalue spec-

trum between the dth and (d + 1)th eigenvalues indicates

that the inputs lie on or near a manifold of dimensional-

ity d. In this case, a low dimensional embedding that is ap-

proximately locally isometric is given by truncating the el-

ements of �Yi. This amounts to projecting the outputs into

the subspace of maximal variance, assuming the eigenval-

ues are sorted from largest to smallest. The quality of the

approximation is determined by the size of the truncated

eigenvalues; there is no approximation error for zero eigen-

values. The situation is analogous to PCA and MDS, but

here the eigenvalue spectrum reflects the underlying dimen-

sionality of a manifold, as opposed to merely a subspace.

The three steps of the algorithm, which we call Semidef-

inite Embedding (SDE), are summarized in Table 1. In its

simplest formulation, the only free parameter of the algo-

rithm is the number of nearest neighbors in the first step.

(I)

Nearest

Neighbors

Compute the k nearest neighbors of each

input. Form the graph that connects each

input to its neighbors and each neighbor to

other neighbors of the same input.

(II)

Semidefinite

Programming

Compute the Gram matrix of the maxi-

mum variance embedding, centered on the

origin, that preserves the distances of all

edges in the neighborhood graph.

(III)

Spectral

Embedding

Extract a low dimensional embedding

from the dominant eigenvectors of the

Gram matrix learned by semidefinite pro-

gramming.

Table 1. Steps of Semidefinite Embedding.

4. Results

We used several data sets of curves, surfaces, and images

to evaluate the algorithm in Table 1 for low dimensional em-

bedding of high dimensional inputs.

Fig. 1 shows N = 800 inputs sampled off a “Swiss

roll” [19]. The inputs to the algorithm had D=8 dimen-

sions, consisting of the three dimensions shown in the fig-

ure, plus five extra dimensions1 filled with low variance

Gaussian noise. The bottom plot of the figure shows the un-

folded Swiss roll extracted from the Gram matrix learned

1 For K = 6 nearest neighbors, the noise in extra dimensions helps to
prevent the manifold from “locking up” when it is unfolded subject to
the equality constraints in eqs. (1–3). Alternatively, the constraints in
the SDP can be slightly relaxed by introducing slack variables.

by semidefinite programming. The top three eigenvectors

are plotted, but the variance in the third dimension (shown

to scale) is negligible. The eigenvalue spectrum in Fig. 7 re-

veals two dominant eigenvalues—a major eigenvalue, rep-

resenting the unwrapped length of the Swiss roll, and a

minor eigenvalue, representing its width. (The unwrapped

Swiss roll is much longer than it is wide.) The other eigen-

values are nearly zero, indicating that SDE has discovered

the true underlying dimensionality (d=2) of these inputs.

Fig. 2 shows another easily visualized example. The left

plot shows N = 539 inputs sampled from a trefoil knot in

D = 3 dimensions; the right plot shows the d = 2 embed-

ding discovered by SDE using k=4 nearest neighbors. The

color coding reveals that local neighborhoods have been

preserved. In this case, the underlying manifold is a one-

dimensional curve, but due to the cycle, it can only be repre-

sented in Euclidean space by a circle. The eigenvalue spec-

trum in Fig. 7 reveals two dominant eigenvalues; the rest

are essentially zero, indicating the underlying (global) di-

mensionality (d=2) of the circle.

Figure 2. Left: N = 539 inputs sampled along

a trefoil knot in D=3 dimensions. Right: d=2
embedding computed by SDE using k = 4
nearest neighbors. The color coding shows

that local neighborhoods are preserved.

Fig. 3 shows the results of SDE applied to color im-

ages of a three dimensional solid object. The images were

created by viewing a teapot from different angles in the

plane. The images have 76 × 101 pixels, with three byte

color depth, giving rise to inputs of D=23028 dimensions.

Though very high dimensional, the images in this data set

are effectively parameterized by one degree of freedom—

the angle of rotation. SDE was applied to N = 400 images

spanning 360 degrees of rotation, with k =4 nearest neigh-

bors used to generate a connected graph. The two dimen-

sional embedding discovered by SDE represents the rotat-

ing object as a circle—an intuitive result analogous to the

embedding discovered for the trefoil knot. The eigenvalue

spectrum of the Gram matrix learned by semidefinite pro-

gramming is shown in Fig. 7; all but the first two eigenval-

ues are practically zero, indicating the underlying (global)

dimensionality (d=2) of the circle.
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Figure 3. Two dimensional embedding of

N =400 images of a rotating teapot, obtained

by SDE using k = 4 nearest neighbors. For

this experiment, the teapot was rotated 360

degrees; the low dimensional embedding is

a full circle. A representative sample of im-

ages are superimposed on top of the embed-

ding.

Fig. 4 was generated from the same data set of images;

however, for this experiment, only N = 200 images were

used, sampled over 180 degrees of rotation. In this case, the

eigenvalue spectrum from SDE detects that the images lie

on a one dimensional curve (see Fig. 7), and the d = 1 em-

bedding in Fig. 4 orders the images by their angle of rota-

tion.

Fig. 5 shows the results of SDE on a data set of N =1000
images of faces. The images contain different views and

expressions of the same face. The images have 28 × 20
grayscale pixels, giving rise to inputs with D = 560 di-

mensions. The plot in Fig. 5 shows the first two dimensions

of the embedding discovered by SDE, using k = 4 nearest

neighbors. Interestingly, the eigenvalue spectrum in Fig. 7

indicates that most of the variance of the spectral embed-

ding is contained in the first three dimensions.

Fig. 6 shows the results of SDE applied to another data

set of images. In this experiment, the images were a subset

of N = 638 handwritten TWOS from the USPS data set of

handwritten digits [10]. The images have 16×16 grayscale

pixels, giving rise to inputs with D = 256 dimensions. In-

tuitively, one would expect these images to lie on a low di-

mensional manifold parameterized by such features as size,

slant, and line thickness. Fig. 6 shows the first two dimen-

sions of the embedding obtained from SDE, with k=4 near-

est neighbors. The eigenvalue spectrum in Fig. 7 indicates a

latent dimensionality significantly larger than two, but still

much smaller than the actual number of pixels.

Figure 5. Top: two dimensional embedding of

N = 1000 images of faces, obtained by SDE

using k = 4 nearest neighbors. Representa-

tive faces are shown next to circled points.

Bottom: eigenvalues of SDE and PCA on this

data set, indicating their estimates of the un-

derlying dimensionality. The eigenvalues are

shown as a percentage of the trace of the out-

put Gram matrix for SDE and the trace of the

input Gram matrix for PCA. The eigenvalue

spectra show that most of the variance of

the nonlinear embedding is confined to many

fewer dimensions than the variance of the lin-

ear embedding.

5. Discussion

The last few years have witnessed a number of de-

velopments in manifold learning. Recently proposed al-

gorithms include Isomap [19], locally linear embedding

(LLE) [14, 15], hessian LLE (hLLE) [8], and Laplacian

eigenmaps [1]; there are also related algorithms for clus-

tering [17]. All these algorithms share the same basic struc-

ture as SDE, consisting of three steps: (i) computing neigh-

borhoods in the input space, (ii) constructing a square ma-

trix with as many rows as inputs, and (iii) spectral embed-

ding via the top or bottom eigenvectors of this matrix. SDE

is based on a rather different geometric intuition, however,

and as a result, it has different properties.

Comparing the algorithms, we find that each one at-

tempts to estimate and preserve a different geometric signa-
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Figure 4. One dimensional embedding of N = 200 images of a rotating teapot, obtained by SDE us-

ing k=4 nearest neighbors. For this experiment, the teapot was only rotated 180 degrees. Represen-

tative images are shown ordered by their location in the embedding.

Figure 6. Results of SDE using k = 4 nearest

neighbors on N = 638 images of handwritten

TWOS. Representative images are shown next

to circled points.

Figure 7. Eigenvalue spectra from SDE on

the data sets in this paper. The eigenvalues

are shown as a percentage of the trace of

the Gram matrix learned by semidefinite pro-

gramming. SDE identifies the correct under-

lying dimensionality of the Swiss roll, tre-

foil knot, and teapot data sets. The images

of faces and handwritten digits give rise to

many fewer non-zero eigenvalues than the

actual number of pixels.

ture of the underlying manifold. Isomap estimates geodesic

distances between inputs; LLE estimates the coefficients

of local linear reconstructions; hLLE and Laplacian eigen-

maps estimate the Hessian and Laplacian on the manifold,

respectively; SDE estimates local angles and distances. Of

these algorithms, only Isomap, hLLE, and SDE attempt to

learn isometric embeddings; they are therefore the easiest

to compare (since they seek the same solution, up to rota-

tion and scaling). The results on the data set in Fig. 8 reveal

some salient differences between these algorithms. While

SDE and hLLE reproduce the original inputs up to isome-

try, Isomap fails in this example because the sampled man-

ifold is not isometric to a convex subset of Euclidean space.

(This is a key assumption of Isomap, one that is not sat-

isfied by many image manifolds [7].) Moreover, compar-

ing the eigenvalue spectra of the algorithms, only SDE de-

tects the correct underlying dimensionality of the inputs;

Isomap is foiled by non-convexity, while the eigenvalue

spectra of LLE and hLLE do not reveal this type of infor-

mation [8, 15].

Overall, the different algorithms for manifold learning

should be viewed as complementary; each has its own ad-

vantages and disadvantages. LLE, hLLE, and Laplacian

eigenmaps construct sparse matrices, and as a result, they

are easier to scale to large data sets. On the other hand,

their eigenvalue spectra do not reliably reveal the under-

lying dimensionality of sampled manifolds, as do Isomap

and SDE. There exist rigorous proofs of asymptotic con-

vergence for Isomap [7, 22] and hLLE [8], but not for the

other algorithms. On the other hand, SDE by its very nature

provides finite-size guarantees that its constraints will lead

to locally isometric embeddings. We are not aware of any

finite-size guarantees provided by the other algorithms, and

indeed, the Hessian estimation in hLLE relies on numeri-

cal differencing, which can be problematic for small sample

sizes. Finally, while the different algorithms have different

computational bottlenecks, the second step in SDE (involv-

ing semidefinite programming) is more computationally de-

manding than the analogous steps in LLE and Isomap.

Our initial results for SDE appear promising. There are

many important directions for future work. The most obvi-

ous is the investigation of faster methods for solving the

semidefinite program in SDE. This study used a generic

solver that did not exploit the special structure of the con-

straints. A data set with N = 1000 points (and k = 4)

required about 30 minutes of computation time on a ma-

chine with a 2Ghz Pentium 4 processor. Data sets with

up to N = 1500 points took several hours. A specialized
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Figure 8. Top: embedding of a non-convex

two dimensional data set (N = 500) by differ-

ent algorithms for manifold learning. Isomap,

LLE, and hLLE were run with k = 10 nearest

neighbors; SDE, with k=5 nearest neighbors.

Only hLLE and SDE reproduce the original in-

puts up to isometry. Bottom: only SDE has an

eigenvalue spectrum that indicates the cor-

rect dimensionality (d=2).

solver should allow us to scale SDE up to larger data sets

and larger neighborhood sizes. Another direction is relax

the constraints in eqs. (1–3) by introducing slack variables.

While slack variables do not change the basic structure of

the semidefinite program, they may improve the robustness

of the algorithm on small or noisy data sets. Other directions

for future work include the investigation of image mani-

folds with different topologies [13] (such as those isomet-

ric to low dimensional spheres or torii), the extrapolation

of results to out-of-sample inputs [2], and the relation of

SDE to kernel methods for nonlinear dimensionality reduc-

tion [16]. Finally, as has been done for Isomap [7, 19, 22]

and hLLE [8], it would be desirable to formulate SDE in the

continuum limit and to construct rigorous proofs of asymp-

totic convergence. Such theoretical results would likely pro-

vide additional insight into the behavior of the algorithm.
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