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Abstract. Learning optical flow with neural networks is hampered by the need

for obtaining training data with associated ground truth. Unsupervised learning

is a promising direction, yet the performance of current unsupervised methods is

still limited. In particular, the lack of proper occlusion handling in commonly

used data terms constitutes a major source of error. While most optical flow

methods process pairs of consecutive frames, more advanced occlusion reason-

ing can be realized when considering multiple frames. In this paper, we propose a

framework for unsupervised learning of optical flow and occlusions over multiple

frames. More specifically, we exploit the minimal configuration of three frames

to strengthen the photometric loss and explicitly reason about occlusions. We

demonstrate that our multi-frame, occlusion-sensitive formulation outperforms

existing unsupervised two-frame methods and even produces results on par with

some fully supervised methods.

1 Introduction

Accurate estimation of optical flow is a long standing goal in computer vision, yet

certain aspects of the problem remain largely unsolved to date. This can be attributed

to the large degree of ambiguities inherent to this ill-posed problem which can only be

resolved using prior knowledge about the appearance and motion of image sequences.

Early approaches addressing the optical flow problem [1, 2] integrate simple local

smoothness assumptions about the optical flow field using variational optimization. To

overcome the limitations of local priors, patch-based MRF formulations [3–5] and se-

mantics [6, 7] have been exploited. More recently, deep neural networks [8–11] have

been successfully applied to the optical flow problem. Learning to solve optical flow

in an end-to-end fashion from examples is attractive as deep neural networks allow

for learning more complex hierarchical flow representations directly from annotated

data. However, training such models requires large datasets and obtaining ground truth

for real images is challenging as labeling dense correspondences by hand is intractable.

Unlike stereo where active sensors such as structured light or laser scanners can be used,

no other technology is able to directly deliver optical flow ground truth [12]. Thus, ex-

isting approaches train primarily on synthetic data [8, 13, 14]. However, creating data

from a distribution that resembles natural scenes is a hard problem on its own.
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(a) Past (b) Reference (c) Future (d) Warped (c) by (e)

(e) Ground Truth (f) 2F PWC-Net (g) 3F PWC-Net (h) Our Results

Fig. 1: Motivation. Unsupervised optical flow estimation is challenging as commonly

used photometric terms are violated in occluded regions. This example from our

RoamingImages dataset illustrates the problem of ghosting effects (d) when warping the

target frame (c) according to the true flow (e). Classical two-frame approaches produce

blurry results near occlusion boundaries (f). Using multiple frames without occlusion

reasoning neither alleviates the problem (g). In contrast, our multi-frame model with

explicit occlusion reasoning leads to accurate flow estimates with sharp boundaries (h).

Alternatively, optical flow can be treated as an unsupervised learning problem. In

the unsupervised case, a photometric loss is minimized [15–20], measuring how well

the predicted flow warps the target image to the reference frame. Particularly problem-

atic in this setting are occluded regions [19, 20] which provide misleading information

to the photometric loss function. This problem is illustrated in Fig. 1 with an example

from the synthetic ‘RoamingImages’ dataset which we have created based on randomly

moving image patches from Flickr. The photometric loss compares the reference im-

age (Fig. 1(b)) to the target image that is warped according to the optical flow estimate

(Fig. 1(d)). Note that occluded regions in the target image cannot be recovered correctly

even when using the ground truth optical flow field (Fig. 1(e)). Instead, the so-called

ghosting effects occur, i.e., parts of the occluder remain visible in the occluded regions.

Recent works [19, 20] propose to exclude these regions in the photometric loss by in-

ferring occluded regions using the backward flow, i.e., the flow from the target frame

to the reference frame. However, these approaches depend heavily on an accurate flow

prediction and use heuristics (e.g., thresholding) to infer occlusions.

We propose to model temporal relationships over multiple frames in order to learn

optical flow and occlusions jointly. For this purpose, we extend the two-frame archi-

tecture proposed in [11] to multiple frames. We estimate optical flow in both past and

future direction together with an occlusion map within a temporal window of three

frames. Our unsupervised loss evaluates the warped images from the past and the fu-

ture based on the estimated flow fields and occlusion map. In addition to typical spatial

smoothness constraints, we introduce a constant velocity constraint within the temporal

window. This allows to reason about occlusions in a principled manner while leveraging

temporal information for more accurate optical flow prediction in occluded regions.

We perform ablation studies on our RoamingImages dataset considering two-frame

and multi-frame formulations without occlusion modeling as our baselines. In addition,
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we evaluate our approach on KITTI 2015 [21, 22] and MPI Sintel [14]. Surprisingly,

our model trained only on the simplistic RoamingImages dataset outperforms all ex-

isting unsupervised optical flow approaches trained on FlyingChairs [15, 18, 19]. By

unsupervised fine-tuning on the respective training sets, we further improve our results,

reducing the gap to several supervised methods. We will make the code and the trained

models available upon the publication.

We summarize the contributions of this paper as follows:

• We propose a novel unsupervised, multi-frame optical flow formulation which

estimates past and future flow within a three-frame temporal window.

• By explicitly reasoning about occlusions, we increase the fidelity of the photo-

metric loss, resulting in sharper boundaries (Fig. 1(h)) in comparison to two-frame

(Fig. 1(f)) as well as three-frame formulations without occlusions (Fig. 1(g)).

• We demonstrate that temporal constraints enable more accurate optical flow pre-

dictions in occluded regions compared to just spatial propagation, as in all existing

unsupervised two-frame optical flow formulations.

2 Related Work

Classic Multi-Frame Optical Flow: While the majority of optical flow methods use

two input frames, few works have exploited the properties of temporal coherence in

video sequences. Early approaches to multi-frame optical flow use phase-based repre-

sentations for encoding the local image structure [23,24]. Later, variational optical flow

approaches [1, 2] have been extended to multiple frames via spatio-temporal regulariz-

ers [12, 25–29] using either a constant velocity prior [12, 30–33] or assuming constant

acceleration [34,35]. In addition to temporal constraints, multi-frame formulations also

allow to reason about the visibility of a pixel. Occluded regions are particularly prob-

lematic in unsupervised learning of optical flow due to the weak photometric terms

used for training. However, to the best of our knowledge, neither temporal constraints

nor occlusion reasoning with multiple frames have been explored in the context of un-

supervised learning. This paper presents the first approach to leverage a multi-frame

formulation for learning optical flow and occlusions in an unsupervised fashion. More

specifically, we focus on the minimal case of three frames which allows us to reason

about the visibility of a pixel while expecting only little appearance changes that mostly

adhere to the brightness constancy assumption.

Deep Neural Networks: In recent years, end-to-end approaches for learning the op-

tical flow problem have shown great promise [8–11]. Typically, a model composed

of encoder and decoder modules takes two stacked consecutive frames as input. This

kind of architecture for optical flow was first proposed in FlowNet [8] and extended

in FlowNet2 [10] by stacking multiple encoder-decoder networks one after the other.

Following the coarse-to-fine idea in traditional optical flow estimation, Ranjan et al. [9]

(SPyNet) use warped images over multiple scales for handling large displacements. Sun

et al. [11] (PWC-Net) combine different ideas from optical flow and stereo matching by

training a shallow Siamese network and constructing a cost volume at different scales.
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In this paper, we build on PWC-Net since their framework is lightweight, produces

state-of-the-art results and allows for an elegant integration of our multi-frame formu-

lation. In addition to optical flow, our model also reasons about occlusions. In contrast

to the fully supervised setting [8–11], we train our model without ground truth flow.

Unsupervised Learning: The dependency of deep neural networks on large anno-

tated datasets has recently motivated the development of unsupervised learning tech-

niques. Impressive results have been demonstrated for single image depth prediction

[16, 36–39], ego-motion estimation [16, 39, 40] and optical flow [15–20, 41, 42]. In a

typical unsupervised optical flow framework, a photometric loss is used in combination

with a smoothness loss for untextured regions [15–20, 41, 42]. More specifically, the

target image is warped according to the predicted flow and compared to the reference

image using a photometric loss. Typically, an encoder-decoder network [15, 17–20]

is used. Pătrăucean et al. [17] combine the simple encoder-decoder network with a

convolutional LSTM to incorporate information from previous frames. We also use a

photometric loss over multiple frames but instead of using an LSTM, we modify the

network architecture proposed in [11] to directly encode the temporal relationship with

a constant velocity assumption over three frames.

Recently, [19,20] proposed to exclude occluded regions from the photometric loss to

avoid misleading information. While both of them jointly learn the forward and back-

ward flow, Meister et al. [20] use a forward-backward consistency check and Wang

et al. [19] create a range map with the backward flow, counting the correspondences for

each pixel in the reference frame. However, both approaches use a heuristic to obtain the

final occlusion map. Instead of using a heuristic, we estimate the occlusion maps jointly

with the optical flow. We relate flow and occlusion estimates in our photometric loss by

weighting information from the future and the past according to occlusion estimates.

This joint formulation allows us to train our occlusion-aware model from scratch in

contrast to [20] that requires pre-training without occlusion reasoning. Another recent

work on unsupervised learning of depth and ego-motion [39] predicts explainability

masks to exclude dynamic objects and occlusions using a photometric loss function.

While [39] only addresses static scenes, we target the general unconstrained optical

flow problem and learn to jointly predict flow and occluded regions in this setting.

3 Method

In this paper, we propose an approach for unsupervised learning of optical flow and oc-

clusions by leveraging multiple frames. In unsupervised learning of optical flow, only

the photometric loss provides guidance. The photometric loss warps the target frame

according to the flow estimate and compares the warped target frame to the reference

frame. Local ambiguities caused by untextured regions are handled with an additional

spatial smoothness constraint that propagates information between neighboring pixels.

However, learning optical flow in an unsupervised fashion is complicated due to ambi-

guities caused by non-lambertian reflectance, occlusions, large motions and illumina-

tion changes. Considering multiple frames can help to resolve some of the ambiguities,

in particular those caused by occlusions. We thus propose a multi-frame formulation to

train a convolutional neural network to predict flow fields and occlusions jointly.
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3.1 Notation

We first introduce our notation. Let I = {IP , IR, IF } denote three consecutive RGB

frames It ∈ R
W×H×3. Our goal is to predict the optical flow UF ∈ R

W×H×2 from

reference frame IR to future frame IF while leveraging the past frame IP . In this short

temporal window, we assume the motion to be approximately linear. The simplest way

to enforce a linear motion is using a hard constraint by predicting only one flow field and

warping both images IP , IF to the reference image IR according to this flow field for

computing the photometric loss. However, realistic scenes usually contain more com-

plex motions which violate this hard constraint (e.g., road surface in KITTI). Therefore,

we formulate a soft constraint by predicting two optical flow fields and encouraging

constant velocity: We denote UF the flow field from reference frame IR to future frame

IF , and UP ∈ R
W×H×2 the flow field from reference frame IR to past frame IP .

Regardless of the motion model, photo-consistency is violated in occluded regions.

Considering three frames allows to resolve this problem by reasoning about occlusions

in a data-driven fashion. Let us consider a pixel p in reference frame IR. Note that by

definition the pixel is visible in the reference frame. Thus, there are only three possible

cases: Either it is visible in all frames, or it has been occluded in the past, or it becomes

occluded in the future. While there exists a possible fourth state, i.e., when a pixel is

solely visible in the reference frame, this is a very unusual case that rarely occurs in

practice and therefore can be discarded. Thus, the occlusion of each pixel can be rep-

resented with three states and we can always exploit information by either considering

the future or the past. More formally, we model occlusions by introducing a continuous

occlusion variable O ∈ [0, 1]W×H×2 at every pixel which allows to correctly evaluate

the photometric loss by reducing the importance of occluded pixels. Let O(p) ∈ [0, 1]2

denote the occlusion at pixel p where ‖O(p)‖1 = 1. If O(p) = (1, 0), we consider p

as backward occluded (i.e., occluded in the previous frame), if O(p) = (0, 1), pixel p

is forward occluded and if O(p) = (0.5, 0.5), pixel p is visible in all frames.

We propose to estimate UF , UP and O jointly using a neural network and enforcing

‖O(p)‖1 = 1 with a softmax at the last layer of the network.

3.2 Network Architecture

The recently proposed PWC-Net architecture [11] borrows ideas from the stereo lit-

erature and constructs a cost volume from the features of the reference frame and the

warped features of the future frame. Finally, a fully convolutional decoder returns the

optical flow for each level that is used to warp the features to the next level. This results

in a compact and discriminative representation producing state-of-the-art performance.

Inspired by the supervised two-frame PWC-Net model, we develop our unsuper-

vised multi-frame and occlusion aware formulation illustrated in Fig. 2. Similar to

PWC-Net, we estimate the flow fields and occlusion maps in a coarse-to-fine man-

ner. The first modification we make is to add the past frame to the image and feature

pyramids. In the original PWC-Net, a cost volume is constructed based on the features

of the reference frame and the features of the target frame warped according to the flow

estimate. In contrast, we construct two cost volumes: one for the past and one for the

future frame. The two separate cost volumes allow our network to detect occlusions
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Fig. 2: Network Architecture. Given the input sequence I, we construct an image and

a feature pyramid. The optical flow is estimated in a coarse-to-fine manner: at level l,

two cost volumes are constructed from the features F l of the past and future frame,

warped according to the current optical flow estimates Ul
P and Ul

F , respectively. The

two cost volumes are decoded resulting in the past flow Ul
P , future flow Ul

F and an

occlusion map Ol at level l. The estimations are passed to the upsampling block to

yield inputs for the next level l + 1 of the pyramid. See text for details.

and choose the relevant information for accurate optical flow estimation. Finally, we

use three separate decoders for future flow, past flow and occlusion map, respectively.

The cost volumes are stacked together and form the input to the decoders. We upsample

past flow, future flow and occlusion map predictions from the previous level and pro-

vide them accordingly as input to the decoders together with the cost volume and the

features of the reference frame. For all three decoders, we use the decoder architecture

proposed in [11], just for the occlusion decoder we add a softmax at the end.

Our architecture with two flow decoders is designed to encourage constant velocity

as a soft constraint. We also experiment with an architecture using one flow decoder for

both directions. In that case, the inverse future flow is treated as the estimation for past

flow. This corresponds to a hard constraint which is useful in cases where the linear

assumption always holds, e.g. on our RoamingImages dataset.

3.3 Loss Functions

Our goal is to learn accurate optical flow and occlusions within a temporal window in an

unsupervised manner. Let θ denote the parameters of a neural network which predicts

UF (θ), UP (θ) and O(θ) from the input images I. Our loss L(θ) is a linear combina-

tion of a photometric loss LP (θ), smoothness constraints LSP
(θ),LSF

(θ),LSO
(θ), a

constant velocity constraint LCV (θ) and an occlusion prior LO(θ):

L = LP + LSF
+ LSP

+ LSO
+ LCV + LO (1)

For clarity, we dropped the dependency on the parameters θ and the relative weights of

the loss functions. While the first two terms have been frequently employed by unsu-
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pervised methods before [15–20,41,42], we extend this formulation to the multi-frame

scenario with a simple but effective linear motion model and proper handling of occlu-

sions. In the following, we describe each individual term in detail.

Photometry: In unsupervised optical flow estimation, supervision is achieved by warp-

ing the images according to the predicted optical flow and comparing the intensity

or color residuals. Unlike existing approaches [15–20], we take advantage of multiple

frames to strengthen the photometric constraint. Similar to [19,20], our model takes oc-

clusions into account. While these methods use simple heuristics based on thresholding

to obtain occlusion maps for masking, we directly model occlusions in our formulation

and use them to weight the contribution of future and past estimates. Our approach is

able learn more sophisticated models which allow for more accurate occlusion reason-

ing. Moreover, our approach allows the network to avoid errors in occluded regions

since a pixel is by definition always visible in at least two frames. More formally, we

formulate our photometric loss as

LP =
∑

p∈Ω O(2)(p) · δ
(

ÎP (p+ uP (p)) , IR (p)
)

(2)

+
∑

p∈Ω O(1)(p) · δ
(

ÎF (p+ uF (p)) , IR (p)
)

where Ω denotes the domain of the reference image IR, uP and uF denote the past and

future flow at pixel p, and O(i)(p) denotes the i’th component of occlusion variable

O(p). Instead of handling occlusions in the warping function, we instead use bilinear

interpolation for warping [43] and a robust function δ(·, ·), detailed below, to measure

the photometric error between the warped images ÎP/F and the reference image IR.

Afterwards, we use our occlusion estimates to weight the photometric errors accord-

ingly. If a pixel p is more likely to be forward occluded, O(1)(p) < O(2)(p), the

information from past frame has a larger contribution. Similarly, if a pixel p is likely

backward occluded, O(1)(p) > O(2)(p), the future frame is weighted higher. In the

case of pixel p being visible within the whole window, O(1)(p) ≈ O(2)(p), both fu-

ture and past frames contribute equally. This soft weighting of the data terms ensures

that our photometric loss is fully differentiable.

Several photometric error functions have been proposed in the classical optical flow

literature. The most popular is the brightness constancy assumption [1] which mea-

sures the difference between pixel intensities or colors (Eq. (3)). Instead of the origi-

nal quadratic penalty function, we use the generalized Charbonnier penalty ρ [44] for

robustness against outliers Eq. (5). In realistic scenes with illumination changes, the

brightness constancy assumption is often violated and instead a gradient constancy as-

sumption is considered by comparing the gradients of the pixel intensities (Eq. (4)). In

this work, we use the brightness constancy assumption when training on synthetic data

and the gradient constancy assumption when training on KITTI.

δBC(I1, I2) = ρ (I1 − I2) (3)

δGC(I1, I2) = ρ

(

∂I1

∂x
−

∂I2

∂x

)

+ ρ

(

∂I1

∂y
−

∂I2

∂y

)

(4)

ρ(x) =
∑

i

√

x2
i + 0.0012 (5)
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Smoothness: It is well known that the photometric loss alone does not sufficiently

constrain the problem due to the aperture problem and the ambiguity of local appear-

ance. Thus, we add an additional regularizer which encourages smooth flow fields. In

particular, we use the following edge aware smoothness loss for UP :

LSP
=

∑

p∈Ω

ξ (∇xIR(p)) ρ (∇xUP (p)) +
∑

p∈Ω

ξ (∇yIR(p)) ρ (∇yUP (p)) (6)

where ξ(x) = exp(−‖x‖2) is a contrast sensitive weight to reduce the effect of the

smoothness prior at image boundaries, ∇xI(x, y) = I(x, y) − I(x − 1, y) and ∇xU,

accordingly, are the backward difference of the image and flow field in spatial direction

x. Following [19, 20], we can replace the first order smoothness (6) by a second order

smoothness which allows piecewise affine flow fields when training on KITTI [45]:

LSP
=

∑

p∈Ω

ξ (∇xIR(p)) ξ (∆xIR(p)) ρ (∇xUP (p)−∆xUP (p)) (7)

+
∑

p∈Ω

ξ (∇yIR(p)) ξ (∆yIR(p)) ρ (∇yUP (p)−∆yUP (p)) ,

Here, ∆xI(x, y) = I(x+1, y)−I(x, y) and ∆xU, accordingly, denote the forward dif-

ferences in direction x. The smoothness for the future flow LSF
is defined accordingly.

Additionally, we introduce a regularizer which encourages similar occlusion states

at neighboring pixels:

LSO
=

∑

p∈Ω

ξ (∇xIR(p)) ‖∇xO(p)‖
2
+

∑

p∈Ω

ξ (∇yIR(p)) ‖∇yO(p)‖
2

(8)

Instead of a robust function, we use the squared difference for a stronger penalization

of changes between occlusion states.

Constant Velocity: The photometric term and the smoothness term treat the future and

past flow separately. In the multi-frame setup, we can go one step further and assume a

linear motion model which corresponds to pixels moving with constant velocity within

the short temporal window. Despite its simplicity, constant velocity provides a reliable

source of information in case of occlusions in addition to spatial smoothness constraints.

Under this assumption, the future and past flow should be equal in length but differ in

direction. We thus formulate the constant velocity loss as follows:

LCV =
∑

p∈Ω

ρ (UP (p) +UF (p)) (9)

Occlusion Prior: The majority of pixels are typically visible in all frames while oc-

clusions only occur at motion boundaries. We encode this prior as follows:

LO = −
∑

p∈Ω

O(1)(p) ·O(2)(p) (10)

Note that Eq. (10) is minimized when all pixels are visible (i.e., O(p) = (0.5, 0.5)).
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4 Experimental Results

In this section, we analyze our approach in ablation studies showing the advantages

of the multi-frame formulation, occlusion reasoning and constant velocity assumption.

In addition, we compare our method to other unsupervised and supervised methods on

established optical flow datasets.

Following the original PWC-Net model [11], we weight the loss function at each

level according to the number of pixels, [0.005, 0.01, 0.02, 0.08, 0.32], and scale flow

values by 0.05 as in [8, 11]. For dataset specific hyper-parameters and settings, please

refer to the supplementary. We train our network end-to-end using Adam [46] with

β1 = 0.9 and β2 = 0.999. We use a batch size of 8 and start with a learning rate of

1e − 4 for pre-training and 1e − 5 for fine-tuning. We pre-train our models for 700K

iterations by halving the learning rate after every 200K iteration. For training, we do

not use data augmentation because of the large size of RoamingImages. For evaluation,

we consider three standard metrics:

• End-point Error (EPE) is defined as the average Euclidean distance between es-

timated and ground truth flow. We separately report EPE in occluded and visible

regions to better analyze the impact of the proposed model components.

• Average Percentage of Bad Pixels based on a threshold, i.e. outlier ratio, is used

for evaluation on the KITTI 2015 test set.

• Maximum F-Measure defined as the weighted harmonic mean of precision and

recall for evaluating occlusion estimates.

4.1 Datasets

We use three different datasets in our experiments. We created a simple dataset called

‘RoamingImages’ to pre-train our model and perform ablation studies. For comparison

to other methods, we use two established optical flow datasets in unsupervised setting,

the KITTI 2015 dataset [21, 22] and MPI Sintel [14].

RoamingImages: Curriculum learning (i.e., pre-training on a simple dataset before

fine-tuning on a more complicated one) has proven important when training deep mod-

els for optical flow estimation [9,10,15,47]. While deep learning approaches for optical

flow typically use the FlyingChairs dataset [8], our multi-frame formulation cannot be

trained on this dataset as it provides only two frames per scene. Thus, we have created

our own “RoamingImages” dataset by moving a random foreground image in front of a

random background image according to a random linear motion as illustrated in Fig. 1.

The goal is to gradually learn temporal and occlusion relationships by keeping the geo-

metric relations simple in the beginning. We created 80,000 examples with a resolution

of 640x320 that we split into 90% training set and 10% test set.

MPI Sintel: The MPI Sintel dataset [14] was created from the short movie MPI Sintel

in Blender and provides ground truth flow and occlusion masks for 1000 image pairs in

the training set. Two different rendering passes with different complexity are available

(“Clean” and “Final”) . In addition, MPI Sintel provides pixel-wise occlusion masks.
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Table 1: Ablation Study: We compare our results (Ours) to PWC-Net (Classic) and the

multi-frame extension without occlusions (Multi). In addition, we analyze the effect of

the constant velocity assumption by turning it off (Ours-None), using a soft constraint

(Ours-Soft) or a hard constraint (Ours-Hard). We report flow results using EPE for all

(All), non occluded (NOC), and occluded (OCC) pixels.

Method Frames Occlusions Constant Velocity All NOC OCC F-Measure

Classic 2 ✗ ✗ 14.14 9.07 32.03 -

Multi 3 ✗ hard 10.11 8.24 18.22 -

Ours-None 3 ✓ ✗ 8.37 6.47 16.26 0.76

Ours-Soft 3 ✓ soft 8.17 6.32 15.87 0.76

Ours-Hard 3 ✓ hard 6.93 6.89 8.55 0.83

KITTI 2015: In contrast to MPI Sintel, the KITTI 2015 dataset [21, 22] provides real

scenes that were captured from a mobile platform. While the optical flow training set

contains only 200 annotated images, the multi-view extension consists of approximately

4000 images. We use all frames except the annotated frames and their neighbors in the

training set (frames 9-12) for unsupervised fine-tuning of our model. We will refer to

this set as ‘KITTI 2015 MV’ throughout the remainder of this paper.

4.2 Ablation Study

In this section, we analyze different aspects of our approach on the RoamingImages

dataset. More specifically, our goal is to investigate the benefits of our multi-frame

formulation with occlusions in comparison to the two-frame case as well as the multi-

frame case without occlusion reasoning. In addition, we compare the hard constraint to

the soft constraint as well as to the case without any temporal constraints. We list our

results in Table 1 and discuss our findings in the next paragraph.

Multi-Frame and Occlusion Reasoning: We first analyze the importance of the multi-

frame assumption by training the original two-frame PWC-Net in an unsupervised fash-

ion on RoamingImages (Classic). We then extend PWC-Net to three frames but using

only one cost volume without occlusion reasoning (Multi). The multi-frame formulation

leads to a significant improvement in the performance reducing the overall EPE from

14.14 to 10.11 (see Table 1). With the multi-frame formulation, even without occlu-

sion reasoning, the error in occluded regions is almost reduced by half. The occlusion

reasoning (Ours-Hard) again reduces the error in occluded regions by half compared

to the multi-frame formulation without occlusion reasoning (Multi), reaching an over-

all EPE of 6.93. This clearly shows the benefit of ignoring misleading information in

accordance with the occlusion estimates.

Constant Velocity: As explained in Section 3, the constant velocity assumption can

be enforced in different ways with varying degrees of freedom. In Table 1, we compare

the soft constraint case (Ours-Soft) with separate flow fields for future and past optical

flow, to the hard constraint case (Ours-Hard) with only one flow estimate for both. In

addition, we show results without temporal constraint (Ours-None), i.e., turning off the
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Table 2: Quantitative Results: We compare our method to state-of-the-art supervised

and unsupervised methods on training and test sets of MPI Sintel and KITTI 2015.

We report the EPE except for the KITTI test set where we report the ratio of outliers.

Parentheses indicate cases where training was performed on the same dataset and ∗
marks cases where only the annotated samples were excluded from training. Missing

entries (-) were not reported for the respective method and bold fonts highlight the best

results among supervised and unsupervised methods.
Methods MPI Sintel Clean MPI Sintel Final KITTI 2015

Train Test Train Test Train Test

All NOC OCC All All NOC OCC All All NOC OCC All

S
u

p
er

v
is

ed

FlowNetS [8] 4.50 - - 7.42 5.45 - - 8.43 - - - -

FlowNetS-ft [8] (3.66) - - 6.69 (4.44) - - 7.46 - - - -

SpyNet [9] 4.12 - - 6.69 5.57 - - 8.43 - - - -

SpyNet-ft [9] (3.17) - - 6.64 (4.32) - - 8.36 - - -

FlowNet2 [10] 2.02 - - 3.96 3.14 - - 6.02 10.06 - - -

FlowNet2-ft [10] (1.45) - - 4.16 (2.01) - - 5.74 (2.3) - - 11.48%

PWC-Net [11] 2.55 - - - 3.93 - - - 10.35 - - -

PWC-Net-ft [11] (1.70) - - 3.86 (2.21) - - 5.17 (2.16) - - 9.60%

U
n

su
p

er
v

is
ed

DSTFlow [18] 6.93 5.05 - 10.40 7.82 5.97 - 11.11 24.30 14.23 - -

DSTFlow-ft [18] (6.16) (4.17) - 10.41 (6.81) (4.91) - 11.27 16.79* 6.96* - 39%

UnFlow-CSS [20] - - - - 7.91 - - 10.22 8.10* - - 23.30%

OccAwareFlow [19] 5.23 - - 8.02 6.34 - - 9.08 21.30 - - -

OccAwareFlow-ft [19] (4.03) - - 7.95 (5.95) - - 9.15 8.88* - - 31.2%*

UnFlow-CSS (R) [20] 8.91 - - - 10.01 - - - 19.26 11.44 - -

Ours-Hard 5.38 4.32 11.58 8.35 6.01 4.92 12.42 9.38 15.63 8.80 41.65 48.93 %

Ours-Hard-ft (6.05) (4.95) (12.10) - (7.09) (5.97) (13.42) - 11.58* 7.45* 27.29* -

Ours-None-ft (4.74) (3.60) (11.42) - (5.84) (4.72) (12.66) - 6.65* 3.24* 19.33* -

Ours-Soft-ft (3.89) (2.64) (11.21) 7.23 (5.52) (4.32) (12.87) 8.81 6.59* 3.22* 19.11* 22.94%

constant velocity term in the loss while still estimating two flow fields. As evidenced

by our results, the hard constraint achieves a significant improvement over the case

without temporal constraint on our RoamingImages dataset. In particular, in occluded

regions, the error is reduced from 16.26 to 8.55 EPE demonstrating the advantage of

the proposed temporal smoothness constraint over a purely spatially regularized model.

The soft constraint improves only marginally over the case without temporal constraint

demonstrating the benefit of directly encoding the temporal relationship into the model

in our restricted scenario.

4.3 Quantitative and Qualitative Results

In Table 2, we compare our method to the state-of-the-art unsupervised approaches

DSTFlow [18], UnFlow [20] and OccAwareFlow [19], as well as the leading supervised

approaches FlowNet [8], SPyNet [9], FlowNet2 [10], and PWC-Net [11] on MPI Sintel

and KITTI 2015. In addition, we show qualitative results on KITTI 2015 and MPI Sintel

in Fig. 3. We provide an extended version of Table 2 in the supplementary.

While the constant velocity hard constraint works well on the simplistic RoamingIm-

ages dataset, more realistic datasets like MPI Sintel and KITTI often exhibit non-linear

motions which violate the constant velocity assumption. Therefore, we exploit the soft
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Reference GT 2F PWC Ours GT Occ Ours

Fig. 3: Qualitative Results: We compare our final results (fourth column) to two-frame

PWC-Net (third column) on examples from KITTI 2015 (upper three rows) and MPI

Sintel Clean (middle three rows) and MPI Sintel Final (bottom three rows). Our model

produces better flow estimates with sharper boundaries as well as accurate occlusion

estimates (last column).

constraint network on these datasets initialized based on the hard constraint network

pre-trained on RoamingImages. More specifically, we copy the parameters of the flow

decoder in the pre-trained network to the future and past flow decoders while inverting

the sign of the past flow decoder’s output. We empirically found this to yield a good

initialization for further fine-tuning. Afterwards, we fine-tune our model on the target

datasets, i.e. KITTI 2015 MV and MPI Sintel. Note that, during fine-tuning, the model

is still trained in an unsupervised fashion. In the following, we present our results in

comparison to several state-of-the-art approaches.

Pre-training: Since fine-tuning on a specific dataset makes a big difference, we first

consider unsupervised methods without fine-tuning to evaluate our pre-trained model

on RoamingImages. Our pre-trained model (Ours-Hard) achieves comparable results on

MPI Sintel Clean and significantly outperforms all other unsupervised models without

fine-tuning on MPI Sintel Final and KITTI 2015. While the best EPE obtained by a

pre-trained unsupervised model is 6.34 on MPI Sintel Final and 21.30 on KITTI 2015,

our model achieves an EPE of 6.01 and 15.63, respectively. On MPI Sintel Final, we

are even on par with the model of OccAwareFlow fine-tuned on MPI Sintel. This is

particularly impressive considering the simplistic dataset used for training our model.

Hard vs. Soft Constraint: We compare our hard constraint network to our soft con-

straint variant to demonstrate the necessity to relax the constant velocity assumption for
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Table 3: Occlusion Estimates: We compare the performance of our occlusion estima-

tion to other approaches on MPI Sintel and KITTI 2015 using the maximum F-Measure.

Parentheses indicate cases where training was performed on the same dataset while ∗
marks cases where only the annotated samples were excluded from training. Note that

S2D [48] is a supervised method.

Methods MPI Sintel Clean MPI Sintel Final KITTI 2015

S2D [48] - 0.57 -

MODOF [49] - 0.48 -

OccAwareFlow-ft [19] (0.54) (0.48) 0.88*

Ours-Soft-ft (0.49) (0.44) 0.91*

more complex datasets. While our model with hard constraint (Ours-Hard-ft) improves

after fine-tuning on KITTI 2015, its performance is still behind other unsupervised,

fine-tuned approaches. On MPI Sintel, the performance decreases after fine-tuning be-

cause the constant velocity constraint is wrongly enforced on non-linear motion which

frequently occurs in this dataset. Switching to the soft constraint version (Ours-Soft-ft)

allows deviations from constant velocity assumption and results in significant improve-

ments on both datasets. For completeness, we include our fine-tuned model without

temporal constraint (Ours-None-ft) in the comparison. Similar to Table 1, the perfor-

mance of the model without temporal constraint (Ours-None-ft) is inferior to the one

with the soft constraint (Ours-Soft-ft) in all cases except the occluded regions (OCC) on

MPI Sintel Final. On KITTI 2015, the improvements are marginal due to dominating

complex motions. We conclude that fine-tuning with the soft constraint is in general

beneficial even when complex motions violate the constant velocity assumption.

Results with Fine-tuning: Our soft constraint model fine-tuned on MPI Sintel (Ours-

Soft-ft) achieves an EPE of 3.89 and 5.52 on Clean and Final, hence outperforming

all other unsupervised methods while even achieving comparable results to FlowNet

fine-tuned on MPI Sintel Clean. Similarly on the test set1, we outperform all other

unsupervised methods with 7.23 and 8.81 EPE on Clean and Final, performing on par

with supervised methods without fine-tuning, e.g. FlowNet and SPyNet. Fine-tuning

on KITTI 2015 MV improves the performance to 6.59 in comparison to 8.10, the best

achieved EPE by an unsupervised method so far. On the test set1, we even achieve better

performance than UnFlow that is trained on a large synthetic dataset (Synthia [10])

and KITTI Raw dataset. Fig. 3 shows qualitative results of our fine-tuned models on

each dataset. Compared to the two-frame formulation, our multi-frame formulation with

occlusions results in more accurate optical flow fields with sharp motion discontinuities

as well as occlusion estimates.

Occlusion Estimation: We evaluate our occlusion masks on both MPI Sintel and

KITTI 2015 datasets. We compare our results quantitatively to OccAwareFlow [19],

S2D [48], and MODOF [49] using the F-Measure (Table 3). While OccAwareFlow [19]

obtains occlusion estimations considering the backward flow, S2D [48] uses a binary

1 We submitted our results to MPI Sintel and KITTI 2015 under the name “Back2FutureFlow”.
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classification, and MODOF [49] uses a discrete-continuous optimization of an energy

function.

With unsupervised fine-tuning on MPI Sintel (Ours-Soft-ft), we obtain comparable

results to OccAwareFlow [19]. Learning occlusions on MPI Sintel in an unsupervised

fashion is very difficult since occlusions often occur in untextured regions with limited

guidance by the photometric loss. Even the supervised approach S2D struggles on the

MPI Sintel dataset, only reaching a F-Measure of 0.57. Moreover, similar to the original

PWC-Net [11], we estimate the optical flow and occlusion mask on quarter resolution.

While larger occlusions are mostly estimated correctly, fine details are usually missing

due to downsampling as can be observed in the qualitative results (Fig. 3). On KITTI

2015, the occlusion masks only contain pixels moving out of the image. Considering

these masks, we reach the best performance with our unsupervised fine-tuned model

(Outs-Soft-Kitti-ft). Note that several occlusions missing in the ground truth masks are

correctly estimated by our method, e.g. the vehicles leaving the image in Fig. 3.

Contribution of RoamingImages: In contrast to other unsupervised approaches, we

pre-train our model on our RoamingImages dataset since there are no simple multi-

frame datasets available. This raises the question whether the reason for the success of

our model is our dataset due to its size, simplicity or some other factor. To dispel this

doubt, we pre-train UnFlow CSS [20] on our dataset and compare its performance to our

pre-trained model. We use the code provided with default parameters only by changing

the learning rate to 1e − 5. As shown in Table 2, our pre-trained model (Ours-Hard)

performs significantly better than UnFlow CSS trained on the same data (UnFlow-CSS

(R)) on all datasets. This shows that the success of our approach is not solely based on

our new dataset but critically depends on the proposed multi-frame formulation.

5 Conclusion

We presented a method for unsupervised learning of optical flow and occlusions from

multiple frames. We proposed modifications to a state-of-the-art two-frame architecture

for handling multiple frames in order to predict past and future optical flow as well as an

occlusion map within a temporal window. We formulated unsupervised loss functions to

exclude misleading information in occluded regions and incorporate a simple temporal

model. In the experimental results, we show the benefits of the multi-frame formulation

with occlusions over classical two-frame formulations and the importance of directly

modeling temporal relations. We achieve impressive results with proper modeling and

unsupervised training on a simple dataset outperforming all other unsupervised methods

on complex datasets. After unsupervised fine-tuning, our approach is even on par with

some fully supervised methods.
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17. Pătrăucean, V., Handa, A., Cipolla, R.: Spatio-temporal video autoencoder with differen-

tiable memory. In: Proc. of the International Conf. on Learning Representations (ICLR).

(2016) 2, 4, 7

18. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical

flow estimation. In: Proc. of the Conf. on Artificial Intelligence (AAAI). (2017) 2, 3, 4, 7,

11
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