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This study reports the results of using minimum description length (MDL) analysis to model

unsupervised learning of the morphological segmentation of European languages, using corpora

ranging in size from 5,000 words to 500,000 words. We develop a set of heuristics that rapidly

develop a probabilistic morphological grammar, and use MDL as our primary tool to determine

whether the modi�cations proposed by the heuristics will be adopted ornot. The resulting grammar

matches well the analysis that would be developed by a human morphologist.

In the �nal section, we discuss the relationship of this style of MDL grammatical analysis to

the notion of evaluation metric in early generative grammar.

1. Introduction

This is a report on the present results of a study on unsupervised acquisition
of morphology.1 The central task of morphological analysis is the segmentation of
words into the components that form the word by the operation of concatenation.
While that view is not free of controversy, it remains the traditional conception of
morphology, and the one that we shall employ here.2 Issues of interface with phonol-
ogy, traditionally known as morphophonology, and with syntax are not directly
addressed.3 While some of the discussion is relevant to the unrestricted set of
languages, some of the assumptions made in the implementation restrict the use-
ful application of the algorithms to languages in which the average number of af�xes
per word is less than what is found in such languages as Finnish, Hungarian, and
Swahili, and we restrict our testing in the present report to more widely studied Eu-
ropean languages. Our general goal, however, is the treatment of unrestricted natural
languages.

Department of Linguistics, University of Chicago, 1010 E. 59th Street, Chicago, IL 60637. E-mail:
ja-goldsmith@uchicago.edu.

1 Some of the work reported here was done while I was a visitor at Microsoft Research in the winter of
1998, and I am grateful for the support I received there. A �rst version was written in September, 1998,
and a much-revised version was completed in December, 1999. This work was also supported in part
by a grant from the Argonne National Laboratory-University of Chicago consortium, which I thank for
its support. I am also grateful for helpful discussion of this material with a number of people,
including Carl de Marcken, Jason Eisner, Zhiyi Chi, Derrick Higgins, Jorma Rissanen, Janos Simon,
Svetlana Soglasnova, Hisami Suzuki, and Jessie Pinkham. As noted below, I owe a great deal to the
remarkable work reported in de Marcken’s dissertation, without which I would not have undertaken
the work described here. I am grateful as well to several anonymous reviewers for their considerable
improvements to the content of this paper.

2 Sylvain Neuvel has recently produced an interesting computational implementation of a theory of
morphology that does not have a place for morphemes, as described at http://www.neuvel.net. It is
well established that nonconcatenative morphology is found in some scattered language families,
notably Semitic and Penutian. African tone languages require simultaneous morphological analyses of
the tonal and the segmental material.

3 But see the following note.
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The program in question takes a text �le as its input (typically in the range of 5,000
to 1,000,000 words) and produces a partial morphological analysis of most of the words
of the corpus; the goal is to produce an output that matches as closely as possible the
analysis that would be given by a human morphologist. It performs unsupervised
learning in the sense that the program’s sole input is the corpus; we provide the
program with the tools to analyze, but no dictionary and no morphological rules
particular to any speci�c language. At present, the goal of the program is restricted to
providing the correct analysis of words into component pieces (morphemes), though
with only a rudimentary categorical labeling.

The underlying model that is utilized invokes the principles of the minimum
description length (MDL) framework (Rissanen 1989), which provides a helpful per-
spective for understanding the goals of traditional linguistic analysis. MDL focuses
on the analysis of a corpus of data that is optimal by virtue of providing both the
most compact representation of the data and the most compact means of extracting
that compression from the original data. It thus requires both a quantitative account
whose parameters match the original corpus reasonably well (in order to provide
the basis for a satisfactory compression) and a spare, elegant account of the overall
structure.

The novelty of the present account lies in the use of simple statements of mor-
phological patterns (called signatures below), which aid both in quantifying the MDL
account and in constructively building a satisfactory morphological grammar (for MDL
offers no guidance in the task of seeking the optimal analysis). In addition, the system
whose development is described here sets reasonably high goals: the reformulation in
algorithmic terms of the strategies of analysis used by traditional morphologists.

Developing an unsupervised learner using raw text data as its sole input offers
several attractive aspects, both theoretical and practical. At its most theoretical, un-
supervised learning constitutes a (partial) linguistic theory, producing a completely
explicit relationship between data and analysis of that data. A tradition of consider-
able age in linguistic theory sees the ultimate justi�cation of an analysis A of any single
language L as residing in the possibility of demonstrating that analysis A derives from
a particular linguistic theory LT, and that that LT works properly across a range of
languages (not just for language L). There can be no better way to make the case that
a particular analysis derives from a particular theory than to automate that process,
so that all the linguist has to do is to develop the theory-as-computer-algorithm; the
application of the theory to a particular language is carried out with no surreptitious
help.

From a practical point of view, the development of a fully automated morphology
generator would be of considerable interest, since we still need good morphologies
of many European languages and to produce a morphology of a given language “by
hand” can take weeks or months. With the advent of considerable historical text avail-
able on-line (such as the ARTFL database of historical French), it is of great interest
to develop morphologies of particular stages of a language, and the process of auto-
matic morphology writing can simplify this stage—where there are no native speakers
available—considerably.

A third motivation for this project is that it can serve as an excellent preparatory
phase (in other words, a bootstrapping phase) for an unsupervised grammar acqui-
sition system. As we will see, a signi�cant proportion of the words in a large corpus
can be assigned to categories, though the labels that are assigned by the morpholog-
ical analysis are corpus internal; nonetheless, the assignment of words into distinct
morphologically motivated categories can be of great service to a syntax acquisition
device.
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Table 1
Some signatures from Tom Sawyer.

Signature Example Stem Count (type) Token Count
NULL.ed.ing betray betrayed betraying 69 864
NULL.ed.ing.s remain remained remaining remains 14 516
NULL.s. cow cows 253 3,414
e.ed.es.ing notice noticed notices noticing 4 62

The problem, then, involves both the determination of the correct morphological
split for individual words, and the establishment of accurate categories of stems based
on the range of suf�xes that they accept:

1. Splitting words: We wish to accurately analyze any word into successive
morphemes in a fashion that corresponds to the traditional linguistic
analysis. Minimally, we wish to identify the stem, as opposed to any
in�ectional suf�xes. Ideally we would also like to identify all the
in�ectional suf�xes on a word which contains a stem that is followed by
two or more in�ectional suf�xes, and we would like to identify
derivational pre�xes and suf�xes. We want to be told that in this corpus,
the most important suf�xes are -s, -ing, -ed, and so forth, while in the
next corpus, the most important suf�xes are -e, -en, -heit, -ig, and so on.
Of course, the program is not a language identi�cation program, so it
will not name the �rst as “English” and the second as “German” (that is
a far easier task), but it will perform the task of deciding for each word
what is stem and what is af�x.

2. Range of suf�xes: The most salient characteristic of a stem in the languages
that we will consider here is the range of suf�xes with which it can
appear. Adjectives in English, for example, will appear with some subset
of the suf�xes -er, -est, -ity, -ness, etc. We would like to determine
automatically what the range of the most regular suf�x groups is for the
language in question, and rank suf�x groupings by order of frequency in
the corpus.4

To give a sense of the results of the program, consider one aspect of its analysis
of the novel The Adventures of Tom Sawyer—and this result is consistent, by and large,
regardless of the corpus one chooses. Consider the top-ranked signatures, illustrated
in Table 1: a signature is an alphabetized list of af�xes that appear with a particular
stem in a corpus. (A larger list of these patterns of suf�xation in English are given in
Table 2, in Section 5.)

The present morphology learning algorithm is contained in a C++ program called
Linguistica that runs on a desktop PC and takes a text �le as its input.5 Analyzing a

4 In addition, one would like a statement of general rules of allomorphy as well; for example, a
statement that the stems hit and hitt (as in hits and hitting, respectively) are forms of the same linguistic
stem. In an earlier version of this paper, we discussed a practical method for achieving this. The work
is currently under considerable revision, and we will leave the reporting on this aspect of the problem
to a later paper; there is a very brief discussion below.

5 The executable is available at http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000,
along with instructions for use. The functions described in this paper can be incrementally applied to a
corpus by the user of Linguistica.
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corpus of 500,000 words in English requires about �ve minutes on a Pentium II 333.
Perfectly respectable results can be obtained from corpora as small as 5,000 words.
The system has been tested on corpora in English, French, German, Spanish, Italian,
Dutch, Latin, and Russian; some quantitative results are reported below. The corpora
that serve as its input are largely materials that have been obtained over the Internet,
and I have endeavored to make no editorial changes to the �les that are the input.

In this paper, I will discuss prior work in this area (Section 2), the nature of the
MDL model we propose (Section 3), heuristics for the task of the initial splitting of
words into stem and af�x (Section 4), the resulting signatures (Section 5), use of MDL
to search the space of morphologies (Section 6), results (Section 7), the identi�cation
of entirely spurious generalizations (section 8), the grouping of signatures into larger
units (Section 9), and directions for further improvements (Section 10). Finally, I will
offer some speculative observations about the larger perspective that this work sug-
gests and work in progress (Section 11).

2. Previous Research in this Area

The task of automatic word analysis has intrigued workers in a range of disciplines,
and the practical and theoretical goals that have driven them have varied consider-
ably. Some, like Zellig Harris (and the present writer), view the task as an essential
one in de�ning the nature of the linguistic analysis. But workers in the area of data
compression, dictionary construction, and information retrieval have all contributed
to the literature on automatic morphological analysis. (As noted earlier, our primary
concern here is with morphology and not with regular allomorphy or morphophonol-
ogy, which is the study of the changes in the realization of a given morpheme that
are dependent on the grammatical context in which it appears, an area occasionally
confused for morphology. Several researchers have explored the morphophonologies
of natural language in the context of two-level systems in the style of the model de-
veloped by Kimmo Koskenniemi [1983], Lauri Karttunen [1993], and others.) The only
general review of work in this area that I am aware of is found in Langer (1991), which
is ten years old and unpublished.

Work in automatic morphological analysis can be usefully divided into four major
approaches. The �rst approach proposes to identify morpheme boundaries �rst, and
thus indirectly to identify morphemes, on the basis of the degree of predictability of the
n 1st letter given the �rst n letters (or the mirror-image measure). This was �rst pro-
posed by Zellig Harris (1955, 1967), and further developed by others, notably by Hafer
and Weiss (1974). The second approach seeks to identify bigrams (and trigrams) that
have a high likelihood of being morpheme internal, a view pursued in work discussed
below by Klenk, Langer, and others. The third approach focuses on the discovery of
patterns (we might say, of rules) of phonological relationships between pairs of related
words. The fourth approach, which includes that used in this paper, is top-down, and
seeks an analysis that is globally most concise. In this section, we shall review some
of the work that has pursued these approaches—brie�y, necessarily.6 While not all
of the approaches discussed here use no prior language-particular knowledge (which
is the goal of the present system), I exclude from discussions those systems that are
based essentially on a prior human-designed analysis of the grammatical morphemes
of a language, aiming at identifying the stem(s) and the correct parsing; such is the

6 Another effort is that attributed to Andreev (1965) and discussed in Altmann and Lehfeldt (1980),
especially p. 195 and following, though their description does not facilitate establishing a comparison
with the present approach.
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case, for example, in Pacak and Pratt (1976), Koch, Küstner, and Rüdiger (1989), and
Wothke and Schmidt (1992). With the exception of Harris’s algorithm, the complex-
ity of the algorithms is such as to make implementation for purposes of comparison
prohibitively time-consuming.

At the heart of the �rst approach, due to Harris, is the desire to place boundaries
between letters (respectively, phonemes) in a word based on conditional entropy, in
the following sense. We construct a device that generates a �nite list of words, our
corpus, letter by letter and with uniform probability, in such a way that at any point
in its generation (having generated the �rst n letters l1l2l3 ln) we can inquire of it
what the entropy is of the set consisting of the next letter of all the continuations it
might make. (In current parlance, we would most naturally think of this as a path
from the root of a trie to one of its terminals, inquiring of each node its associated
one-letter entropy, based on the continuations from that node.) Let us refer to this as
the pre�x conditional entropy; clearly we may be equally interested in constructing
a trie from the right edge of words, which then provides us with a suf�x conditional
entropy, in mirror-image fashion.

Harris himself employed no probabilistic notions, and the inclusion of entropy
in the formulation had to await Hafer and Weiss (1974); but allowing ourselves the
anachronism, we may say that Harris proposed that local peaks of pre�x (and suf�x)
conditional entropy should identify morpheme breaks. The method proposed in Harris
(1955) appealed to what today we would call an oracle for information about the lan-
guage under scrutiny, but in his 1967 article, Harris implemented a similar procedure
on a computer and a �xed corpus, restricting his problem to that of �nding morpheme
boundaries within words. Harris’s method is quite good as a heuristic for �nding a
good set of candidate morphemes, comparable in quality to the mutual information–
based heuristic that I have used, and which I describe below. It has the same problem
that good heuristics frequently have: it has many inaccuracies, and it does not lend
itself to a next step, a qualitatively more reliable approximation of the correct solution.7

Hafer and Weiss (1974) explore in detail various ways of clarifying and improving
on Harris’s algorithm while remaining faithful to the original intent. A brief summary
does not do justice to their fascinating discussion, but for our purposes, their results
con�rm the character of the Harrisian test as heuristic: with Harris’s proposal, a quan-
titative measure is proposed (and Hafer and Weiss develop a range of 15 different
measures, all of them rooted in Harris’s proposal), and best results for morphological
analysis are obtained in some cases by seeking a local maximum of pre�x conditional
entropy, in others by seeking a value above a threshold, and in yet others, good results
are obtained only when this measure is paired with a similar measure constructed in
mirror-image fashion from the end of the word—and then some arbitrary thresholds
are selected which yield the best results. While no single method emerges as the best,
one of the best yields precision of 0.91 and recall of 0.61 on a corpus of approximately
6,200 word types. (Precision here indicates proportion of predicted morpheme breaks
that are correct, and recall denotes the proportion of correct breaks that are predicted.)

The second approach that can be found in the literature is based on the hypothesis
that local information in the string of letters (respectively, phonemes) is suf�cient to
identify morpheme boundaries. This hypothesis would be clearly correct if all mor-
pheme boundaries were between pairs of letters l1–l2 that never occur in that sequence

7 But Harris’s method does lend itself to a generalization to more dif�cult cases of morphological
analysis going beyond the scope of the present paper. In work in progress, we have used minimization
of mutual information between successive candidate morphemes as part of a heuristic for preferring a
morphological analysis in languages with a large number of suf�xes per word.
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morpheme internally, and the hypothesis would be invalidated if conditional proba-
bilities of a letter given the previous letter were independent of the presence of an
intervening boundary. The question is where real languages distribute themselves
along the continuum that stretches between these two extremes.

A series of publications has explored this question, including Janssen (1992), Klenk
(1992), and Flenner (1994, 1995). Any brief description that overlooks the differences
among these publications is certain to do less than full justice to all of them. The
procedure described in Janssen (1992) and Flenner (1994, 1995) begins with a training
corpus with morpheme boundaries inserted by a human, and hence the algorithm is
not in the domain of unsupervised learning. Each bigram (and the algorithm has been
extended in the natural way to treating trigrams as well) is associated with a triple
(whose sum must be less than or equal to 1.0) indicating the frequency in the training
corpus of a morpheme boundary occurring to the left of, between, or to the right
of that bigram. In a test word, each space between letters (respectively, phonemes)
is assigned a score that is the sum of the relevant values derived from the training
session: in the word string, for example, the score for the potential cut between str
and ing is the sum of three values: the probability of a morpheme boundary after tr
(given tr), the probability of a morpheme boundary between r and i (given ri), and
the probability of a morpheme boundary before in (given in).

That these numbers should give some indication of the presence of a morpheme
boundary is certain, for they are the sums of numbers that were explicitly assigned
on the basis of overtly marked morpheme boundaries. But it remains unclear how
one should proceed further with the sum. As Hafer and Weiss discover with Harris’s
measure, it is unclear whether local peaks of this measure should predict morpheme
boundaries, or whether a threshold should be set, above which a morpheme boundary
is predicted. Flenner (1995, 64–65) and proponents of this approach have felt some
freedom on making this choice in an ad hoc fashion. Janssen (1992, 81–82) observes
that the French word linguistique displays three peaks, predicting the analysis lin-
guist-ique, employing a trigram model. The reason for the strong, but spurious, peak
after lin is that lin occurs with high frequency word �nally, just as gui appears with
high frequency word initially. One could respond to this observation in several ways:

word-�nal frequency should not contribute to word-internal, morpheme-�nal status;

or perhaps frequencies of this sort should not be added. Indeed, it is not clear at all why
these numbers should be added; they do not, for example, represent probabilities that
can be added. Janssen notes that the other two trigrams that enter into the picture (ing
and ngu) had a zero frequency of morpheme break in the desired spot, and proposes
that the presence of any zeros in the sum forces the sum to be 0, raising again the
question of what kind of quantity is being modeled; there is no scholarly tradition
according to which the presence of zero in a sum should lead to a total of 0.

I do not have room to discuss the range of greedy af�x-parsing algorithms these
authors explore, but that aspect of their work has less bearing on the comparison with
the present paper, whose focus is on data-driven learning. The major question to carry
away from this approach is this: can the information that is expressed in the division
of a set of words into morphemes be compressed into local information (bigrams,
trigrams)? The answer, I believe, is in general negative. Morphology operates at a
higher level, so to speak, and has only weak statistical links to local sequencing of
phonemes or letters.8

8 On this score, language will surely vary to some degree. English, for example, tends to employ rules of
morphophonology to modify the surface form of morphologically complex words so as to better match
the phonological pattern of unanalyzed words. This is discussed at length in Goldsmith (1990, Chap. 5).
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The third approach focuses on the discovery of patterns explicating the overt
shapes of related forms in a paradigm. Dzeroski and Erjavec (1997) report on work
that they have done on Slovene, a South Slavic language with a complex morphology,
in the context of a similar project. Their goal essentially was to see if an inductive
logic program could infer the principles of Slovene morphology to the point where
it could correctly predict the nominative singular form of a word if it were given an
oblique (nonnominative) form. Their project apparently shares with the present one
the requirement that the automatic learning algorithm be responsible for the decision
as to which letters constitute the stem and which are part of the suf�x(es), though the
details offered by Dzeroski and Erjavec are sketchy as to how this is accomplished.
In any event, they present their learning algorithm with a labeled pair of words—a
base form and an in�ected form. It is not clear from their description whether the
base form that they supply is a surface form from a particular point in the in�ectional
paradigm (the nominative singular), or a more articulated underlying representation
in a generative linguistic sense; the former appears to be their policy.

Dzeroski and Erjavec’s goal is the development of rules couched in traditional
linguistic terms; the categories of analysis are decided upon ahead of time by the
programmer (or, more speci�cally, by the tagger of the corpus), and each individual
word is identi�ed with regard to what morphosyntactic features it bears. The form
bolecina is marked, for example, as a feminine noun singular genitive. In sum, their
project thus gives the system a good deal more information than the present project
does.9

Two recent papers, Jacquemin (1997) and Gaussier (1999), deserve consideration
here.10 Gaussier (1999) approaches a very similar task to that which we consider, and
takes some similar steps. His goal is to acquire derivational rules from an in�ectional
lexicon, thus insuring that his algorithm has access to the lexical category of the words
it deals with (unlike the present study, which is allowed no such access). Using the
terminology of the present paper, Gaussier considers candidate suf�xes if they appear
with at least two stems of length 5. His �rst task is (in our terms) to infer paradigms
from signatures (see Section 9), which is to say, to �nd appropriate clusters of signa-
tures. One example cited is depart, departure, departer. He used a hierarchical agglomera-
tive clustering method, which begins with all signatures forming distinct clusters, and
successively collapses the two most similar clusters, where similarity between stems is
de�ned as the number of suf�xes that two stems share, and similarity between clusters
is de�ned as the similarity between the two least similar stems in the respective clus-
ters. He reports a success rate of 77%, but it is not clear how to evaluate this �gure.11

The task that Gaussier addresses is de�ned from the start to be that of derivational
morphology, and because of that, his analysis does not need to address the problem of
in�ectional morphology, but it is there (front and center, so to speak) that the dif�cult
clustering problem arises, which is how to ensure that the signatures NULL.s.’s (for
nouns in English) and the signature NULL.ed.s (or NULL.ed.ing.s) are not assigned to
single clusters.12 That is, in English both nouns and verbs freely occur with the suf�xes

9 Baroni (2000) reported success using an MDL-based model in the task of discovering English pre�xes. I
have not had access to further details of the operation of the system.

10 I am grateful to a referee for drawing my attention to these papers.
11 The analysis of a word w in cluster C counts as a success if most of the words that in fact are related to

w also appear in the cluster C, and if the cluster “comprised in majority words of the derivational
family of w.” I am not certain how to interpret this latter condition; it means perhaps that more than
half of the words in C contain suf�xes shared by forms related to w.

12 In traditional terms, in�ectional morphology is responsible for marking different forms of the same
lexical item (lemma), while derivational morphology is responsible for the changes in form between
distinct but morphologically related lexical items (lemmas).
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NULL and -s, and while -ed and - s disambiguate the two cases, it is very dif�cult to
�nd a statistical and morphological basis for this knowledge.13

Jacquemin (1997) explores an additional source of evidence regarding clustering of
hypothesized segmentation of words into stems and suf�xes; he notes that the hypoth-
esis that there is a common stem gen in gene and genetic, and a common stem express
in expression and expressed, is supported by the existence of small windows in corpora
containing the word pair genetic expression and the word pair gene expressed (as
indicated, the words need not be adjacent in order to provide evidence for the rela-
tionship). As this example suggests, Jacquemin’s work is situated within the context
of a desire for superior information retrieval.

In terms of the present study, Jacquemin’s algorithm consists of (1) �nding sig-
natures with the longest possible stems and (2) establishing pairs of stems that occur
together in two or more windows of length 5 or less. He tests his results on 100 ran-
dom pairs discovered in this fashion, placing upper bounds on the length of the suf�x
permitted between one and �ve letters, and independently varying the length of the
window in question. He does not vary the minimum size of the stem, a consideration
that turns out to be quite important in Germanic languages, though less so in Ro-
mance languages. He �nds that precision varies from 97% when suf�xes are limited
to a length of one letter, to 64% when suf�xes may be �ve letters long, with both
�gures assuming an adjacency window of two words; precision falls to 15% when a
window of four words is permitted.

Jacquemin also employs the term signature in a sense not entirely dissimilar to
that employed in the present paper, referring to the structured set of four suf�xes
that appear in the two windows (in the case above, the suf�xes are -ion, -ed; NULL,
-tic). He notes that incorrect signatures arise in a large number of cases (e.g., good:

optical control optimal control; adoptive transfer adoptively tranfer, paralleled by bad:

ear disease early disease), and suggests a quality function along the following lines:

Stems are linked in pairs (adopt-transfer, ear-disease); compute then the average length
of the shorter stem in each pair (that is, create a set of the shorter member of each
pair, and �nd the average length of that set). The quality function is de�ned as that
average divided by the length of the largest suf�x in the signature; reject any signature
class for which that ratio is less than 1.0. This formula, and the threshold, is purely
empirical, in the sense that there is no larger perspective that bears on determining
the appropriateness of the formula, or the values of the parameters.

The strength of this approach, clearly, is its use of information that co-occurrence
in a small window provides regarding semantic relatedness. This allows a more ag-
gressive stance toward suf�x identi�cation (e.g., alpha interferon alpha2 interferon).
There can be little question that the type of corpus studied (a large technical medical
corpus, and a list of terms—partially multiword terms) lends itself particularly to this
style of inference, and that similar patterns would be far rarer in unrestricted text such
as Tom Sawyer or the Brown corpus.14

13 Gaussier also offers a discussion of inference of regular morphophonemics, which we do not treat in
the present paper, and a discussion in a �nal section of additional analysis, though without test results.
Gaussier aptly calls our attention to the relevance of minimum edit distance relating two potential
allomorphs, and he proposes a probabilistic model based on patterns established between allomorphs.
In work not discussed in this paper, I have explored the integration of minimum edit distance to an
MDL account of allomorphy as well, and will discuss this material in future work.

14 In a �nal section, Jacquemin considers how his notion of signatures can be extended to identify sets of
related suf�xes (e.g., onic/atic/ic—his example). He uses a greedy clustering algorithm to successively
add nonclustered signatures to clusters, in a fashion similar to that of Gaussier (who Jacquemin thanks
for discussion, and of course Jacquemin’s paper preceded Gaussier’s paper by two years), using a

160



Goldsmith Unsupervised Learning of the Morphology of a Natural Language

laughed laughing laughs

walked walking walks

jumped jumping jumps

(a) Word list with no internal structure

Total letter count: 57 letters

laugh

walk

jump

ed

ing

s

(b) Word list with morphological structure

Total letter count: 19 letters

Figure 1
Naive description length.

The fourth approach to morphology analysis is top-down, and seeks a globally
optimal analysis of the corpus. This general approach is based on the insight that
the number of letters in a list of words is greater than the number of letters in a
list of the stems and af�xes that are present in the original list. This is illustrated in
Figure 1. This simple observation lends hope to the notion that we might be able to
specify a relatively simple �gure of merit independently of how we attempt to �nd
analyses of particular data. This view, appropriately elaborated, is part of the minimum
description length approach that we will discuss in detail in this paper.

Kazakov (1997) presents an analysis in this fourth approach, using a straightfor-
ward measurement of the success of a morphological analysis that we have mentioned,
counting the number of letters in the inventory of stems and suf�xes that have been
hypothesized; the improvement in this count over the number of letters in the origi-
nal word list is a measure of the �tness of the analysis.15 He used a list of 120 French
words in one experiment, and 39 forms of the same verb in another experiment, and
employed what he terms a genetic algorithm to �nd the best cut in each word. He
associated each of the 120 words (respectively, 39) with an integer (between 1 and
the length of the word minus 1) indicating where the morphological split was to be,
and measured the �tness of that grammar in terms of its decrease in number of total
letters. He does not describe the �tness function used, but seems to suggest that the

metric more complex than the familiar minimum edit distance, but no results are offered in support of
the choice of the additional complexity.

15 I am grateful to Scott Meredith for drawing my attention to this paper.
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single top-performing grammar of each generation is preserved, all others are elim-
inated, and the top-performing grammar is then subjected to mutation. That is, in a
case-by-case fashion, the split between stems and suf�xes is modi�ed (in some cases
by a shift of a single letter, in others by an unconstrained shift to another location
within the word) to form a new grammar. In one experiment described by Kazakov,
the population was set to 800, and 2,000 generations were modeled. On a Pentium 90
and a vocabulary of 120 items, the computation took over eight hours.

Work by Michael Brent (1993) and Carl de Marcken (1995) has explored analyses of
the fourth type as well. Researchers have been aware of the utility of the information-
theoretic notion of compression from the earliest days of information theory, and there
have been efforts to discover useful, frequent chunks of letters in text, such as Rad-
hakrishnan (1978), but to my knowledge, Brent’s and de Marcken’s works were the
�rst to explicitly propose the guiding of linguistic hypotheses by such notions. Brent’s
work addresses the question of determining the correct morphological analysis of a
corpus of English words, given their syntactic category, utilizing the notion of minimal
encoding, while de Marcken’s addresses the problem of determining the “breaking” of
an unbroken stream of letters or phonemes into chunks that correspond as well as pos-
sible to our conception of words, implementing a well-articulated algorithm couched
in a minimum description length framework, and exploring its effects on several large
corpora.

Brent (1993) aims at �nding the appropriate set of suf�xes from a corpus, rather
than the more comprehensive goal of �nding the correct analysis for each word, both
stem and suf�x, and I think it would not be unfair to describe it as a test-of-concept
trial on a corpus ranging in size from 500 to 8,000 words; while this is not a small
number of words, our studies below focus on corpora with on the order of 30,000
distinct words. Brent indicates that he places other limitations as well on the hypothesis
space, such as permitting no suf�x which ends in a sequence that is also a suf�x (i.e.,
if s is a suf�x, then less and ness are not suf�xes, and if y is a suf�x, ity is not).
Brent’s observation is very much in line with the spirit of the present analysis: “The
input lexicons contained thousands of non-morphemic endings and mere dozens of
morphemic suf�xes, but the output contained primarily morphemic suf�xes in all cases
but one. Thus, the effects of non-morphemic regularities are minimal” (p. 35). Brent’s
corpora were quite different from those used in the experiments reported below; his
were based on choosing the n most common words in a Wall Street Journal corpus,
while the present study has used large and heterogeneous sources for corpora, which
makes for a considerably more dif�cult task. In addition, Brent scored his algorithm
solely on how well it succeeded in identifying suf�xes (or combinations of suf�xes),
rather than on how well it simultaneously analysed stem and suf�x for each word,
the goal of the present study.16 Brent makes clear the relevance and importance of
information-theoretic notions, but does not provide a synthetic and overall measure
of the length of the morphological grammar.

16 Brent’s description of his algorithm is not detailed enough to satisfy the curiosity of someone like the
present writer, who has encountered problems that Brent’s approach would seem certain to encounter
equally. As we shall see below, the central practical problem to grapple with is the fact that when
considering suf�xes (or candidate suf�xes) consisting of only a single letter (let us say, s, for example),
it is extremely dif�cult to get a good estimate of how many of the potential occurrences (of word-�nal
s) are suf�xal s and how many are not. As we shall suggest towards the end of this paper, the only
accurate way to make an estimate is on the basis of a multinomial estimate once larger suf�x
signatures have been established. Without this, it is dif�cult not to overestimate the frequency of
single-letter suf�xes, a result that may often, in my experience, de�ect the learning algorithm from
discovering a correct two-letter suf�x (e.g., the suf�x -al in French).
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De Marcken (1995) addresses a similar but distinct task, that of determining the
correct breaking of a continuous stream of segments into distinct words. This prob-
lem has been addressed in the context of Asian (Chinese-Japanese-Korean) languages,
where standard orthography does not include white space between words, and it has
been discussed in the context of language acquisition as well. De Marcken describes
an unsupervised learning algorithm for the development of a lexicon using a mini-
mum description length framework. He applies the algorithm to a written corpus of
Chinese, as well as to written and spoken corpora of English (the English text has had
the spaces between words removed), and his effort inspired the work reported here.
De Marcken’s algorithm begins by taking all individual characters to be the baseline
lexicon, and it successively adds items to the lexicon if the items will be useful in
creating a better compression of the corpus in question, or rather, when the improve-
ment in compression yielded by the addition of a new item to the codebook is greater
than the length (or “cost”) associated with the new item in the codebook. In general, a
lexical item of frequency F can be associated with a compressed length of log F, and
de Marcken’s algorithm computes the compressed length of the Viterbi-best parse of
the corpus, where the compressed length of the whole is the sum of the compressed
lengths of the individual words (or hypothesized chunks, we might say) plus that of
the lexicon. In general, the addition of chunks to the lexicon (beginning with such
high-frequency items as th) will improve the compression of the corpus as a whole,
and de Marcken shows that successive iterations add successively larger pieces to the
lexicon. De Marcken’s procedure builds in a bottom-up fashion, looking for larger
and larger chunks that are worth (in an MDL sense) assigning the status of dictionary
entries. Thus, if we look at unbroken orthographic texts in English, the two-letter com-
bination th will become the �rst candidate chosen for lexical status; later, is will achieve
that status too, and soon this will as well. The entry this will not, in effect, point to
its four letters directly, but will rather point to the chunks th and is, which still retain
their status in the lexicon (for their robust integrity is supported by their appearance
throughout the lexicon). The creation of larger constituents will occasionally lead to
the elimination of smaller chunks, but only when the smaller chunk appears almost
always in a single larger unit.

An example of an analysis provided by de Marcken’s algorithm is given in (1),
taken from de Marcken (1995), in which I have indicated the smallest-level constituent
by placing letters immediately next to one another, and then higher structure with
various pair brackets (parentheses, etc.) for orthographic convenience; there is no the-
oretical signi�cance to the difference between “ ” and “()”, etc. De Marcken’s analysis
succeeds quite well at identifying words, but does not make any signi�cant effort at
identifying morphemes as such.

[ t he ] ( [ un it ] ed ) ( [ st at ] es ) of a me ( [ r ic] ) a 1

Applying de Marcken’s algorithm to a “broken” corpus of a language in which
word boundaries are indicated (for example, English) provides interesting results, but
none that provide anything even approaching a linguistic analysis, such as identi�ca-
tion of stems and af�xes. The broken character of the corpus serves essentially as an
upper bound for the chunks that are postulated, while the letters represent the lower
bound.

De Marcken’s MDL-based �gure of merit for the analysis of a substring of the
corpus is the sum of the inverse log frequencies of the components of the string in
question; the best analysis is that which minimizes that number (which is, again, the
optimal compressed length of that substring), plus the compressed length of each
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of the lexical items that have been hypothesized to form the lexicon of the corpus.
It would certainly be natural to try using this �gure of merit on words in English,
along with the constraint that all words should be divided into exactly two pieces.
Applied straightforwardly, however, this gives uninteresting results: words will always
be divided into two pieces, where one of the pieces is the �rst or the last letter of
the word, since individual letters are so much more common than morphemes.17 (I
will refer to this effect as peripheral cutting below.) In addition—and this is less
obvious—the hierarchical character of de Marcken’s model of chunking leaves no
place for a qualitative difference between high-frequency “chunks,” on the one hand,
and true morphemes, on the other: str is a high-frequency chunk in English (as schl
is in German), but it is not at all a morpheme. The possessive marker s, on the other
hand, is of relatively low frequency in English, but is clearly a morpheme.

MDL is nonetheless the key to understanding this problem. In the next section,
I will present a brief description of the algorithm used to bootstrap the problem,
one which avoids the trap mentioned brie�y in note 21. This provides us with a
set of candidate splittings, and the notion of the signature of the stem becomes the
working tool for determining which of these splits is linguistically signi�cant. MDL
is a framework for evaluating proposed analyses, but it does not provide a set of
heuristics that are nonetheless essential for obtaining candidate analyses, which will
be the subject of the next two sections.

3. Minimum Description Length Model

The central idea of minimum description length analysis (Rissanen 1989) is composed
of four parts: �rst, a model of a set of data assigns a probability distribution to the
sample space from which the data is assumed to be drawn; second, the model can then
be used to assign a compressed length to the data, using familiar information-theoretic
notions; third, the model can itself be assigned a length; and fourth, the optimal anal-
ysis of the data is the one for which the sum of the length of the compressed data
and the length of the model is the smallest. That is, we seek a minimally compact
speci�cation of both the model and the data, simultaneously. Accordingly, we use the
conceptual vocabulary of information theory as it becomes relevant to computing the
length, in bits, of various aspects of the morphology and the data representation.

3.1 A First Model
Let us suppose that we know (part of) the correct analysis of a set of words, and we
wish to create a model using that knowledge. In particular, we know which words
have no morphological analysis, and for all the words that do have a morphological
analysis, we know the �nal suf�x of the word. (We return in the next section to how we
might arrive at that knowledge.) An MDL model can most easily be conceptualized if
we encode all such knowledge by means of lists; see Figure 2. In the present case, we
have three lists: a list of stems, of suf�xes, and of signatures. We construct a list of the
stems of the corpus de�ned as the set of the unanalyzed words, plus the material that
precedes the �nal suf�x of each morphologically analyzed word. We also construct
a list of suf�xes that occur with at least one stem. Finally, each stem is empirically
associated with a set of suf�xes (those with which it appears in the corpus); we call
this set the stem’s signature, and we construct a third list, consisting of the signatures
that appear in this corpus. This third list, however, contains no letters (as the other

17 See note 21 below.
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A. Af�xes: 6

1. NULL

2. ed

3. ing

4. s

5. e

6. es

B. Stems: 9

1. cat

2. dog

3. hat

4. John

5. jump

6. laugh

7. sav

8. the

9. walk

C. Signatures: 4

Signature 1:

SimpleStem : ptr(cat)

SimpleStem : ptr(dog)
SimpleStem : ptr(hat)

ComplexStem : ptr(Sig2): ptr(sav) ptr(ing)

ptr(NULL)

ptr(s)

Signature 2:

SimpleStem : ptr(sav)

ptr(e)

ptr(es)

ptr(ing)

Signature 3:

SimpleStem : ptr(jump)

SimpleStem : ptr(laugh)

SimpleStem : ptr(walk)

ptr(NULL)

ptr(ed)

ptr(ing)

ptr(s)

Signature 4:

SimpleStem : ptr(John)

SimpleStem : ptr(the)

Figure 2
A sample morphology. This morphology covers the words: cat, cats, dog, dogs, hat, hats, save,
saves, saving, savings, jump, jumped, jumping, jumps, laugh, laughed, laughing, laughs, walk, walked,
walking, walks, the, John.

lists do), but rather pointers to stems and suf�xes. We do this, in one sense, because
our goal is to construct the smallest morphology, and in general a pointer requires less
information than an explicit set of letters. But in a deeper sense, it is the signatures
whose compactness provides the explicit measurement of the conciseness of the entire
analysis. Note that by construction, each stem is associated with exactly one signature.
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Since stem, suf�x, and signature all begin with s, we opt for using t to represent
a stem, f to represent a suf�x, and to represent a signature, while the uppercase
T, F, represent the sets of stems, suf�xes, and signatures, respectively. The number
of members of such a set will be represented T , F , etc., while the number of
occurrences of a stem, suf�x, etc., will be represented as [t], [f], etc. The set of all
words in the corpus will be represented as W; hence the length of the corpus is [W],
and the size of the vocabulary is W .

Note the structure of the signatures in Figure 2. Logically a signature consists
of two lists of pointers, one a list of pointers to stems, the other a list of pointers to
suf�xes. To specify a list of length N, we must specify at the beginning of the signature
that N items will follow, and this requires just slightly more than log2 N bits to do (see
Rissanen [1989, 33–34] for detailed discussion); I will use the notation (N) to indicate
this function.

A pointer to a stem t, in turn, is of length log prob t , a basic principle of
information theory (Li and VitÂanyi 1997). Hence the length of a signature is the sum
of the (inverse) log probabilities of its stems, plus that of its suf�xes, plus the number
of bits it takes to specify the number of its stems and suf�xes, using the function.
We will return in a moment to how we determine the probabilities of the stems and
suf�xes; looking ahead, it will be the empirical frequency.

Let us consider the length of stem list T. As we have already observed, its length
is T —this is the length of the information specifying how long the list is—plus
the length of each stem speci�cation. In most of our work, we make the assumption
that the length of a stem is the number of letters in it, weighted by the factor log 26
converting to binary bits, in a language with 26 letters.18 The same reasoning holds
for the suf�x list F: its length is X F plus the length of each suf�x, which we may
take to be the total number of letters in the suf�x times log 26.

We return to the question of how long the pointer (found inside a signature) to a
stem or suf�x is. The probability of a stem is its (empirical) frequency, i.e., the total
number of words in the corpus corresponding to the words whose analysis includes
the stem in question; the probability of a suf�x is de�ned in parallel fashion. Using
W to indicate all the words of the corpus, we may say that the length of a pointer to
a stem t is of length

log
W

t
,

a pointer to suf�x f is of length

log
W

f
,

18 This is a reasonable, and convenient, assumption, but it may not be precise enough for all work. A
more re�ned measure would take the length of a letter to be 1 times the binary log of its frequency.
A still more re�ned measure would base the probability of a letter on bigram context; this matters for
English, where stem �nal t is very common. In addition, there is information in the linear order in
which the letters are stored, roughly equal to

n

k 1

log2 k

for a string of length n (compare the information that distinguishes the lexical representation of
anagrams). This is an additional consideration in an MDL analysis of morphology pressing in favor of
breaking words into morphemes when possible.
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and a pointer to a signature is of length

log
W

We have now settled the question of how to determine the length of our initial
model; we next must determine the probability that the model assigns to each word
in the corpus, and armed with that knowledge, we will be able to compute the com-
pressed length of the corpus.

The morphology assigns a probability to each word w as the product of the prob-
ability of w’s signature times w’s stem, given its signature, and w’s suf�x, given its
signature: prob w t f prob prob t prob f , where is the signa-
ture associated with t: sig t . Thus while stems and suf�xes, which are de�ned
relative to a particular morphological model, are assigned their empirical frequency
as their probability, words are assigned a probability based on the model, one which
will always depart from the empirical frequency. The compression to the corpus is
thus worse than would be a compression based on word frequency alone,19 or to put
it another way, the morphological analysis in which all words are unanalyzed is the
analysis in which each word is trivially assigned its own empirical frequency (since
the word equals the stem). But this decrease in compression that comes with morpho-
logical analysis is the price willingly paid for not having to enter every distinct word
in the stem list of the morphology.

Summarizing, the compressed length of the corpus is

w t f

w log prob w log prob t log prob f w ,

where we have summed over the words in the corpus, and w is the signature to
which word w is assigned. The compressed length of the model is the length of the
stem list, the suf�x list, and the signature list. The length in bits of the stem list is

T
t

L t

and the length of the suf�x list is

F
f

L f ,

where L is the measurement of the length of a string of letters in bits, which we
take to be log2 26 times the number of letters (but recall note 18). The length of the
signature list is

L ,

where L is the length of signature . If the set of stems linked to signature is
T and the set of suf�xes linked to signature is F , then

T F
t T

log
W

t
f F

log
words f words

19 Due to the fact that the cross-entropy is always greater than or equal to the entropy.
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(The denominator in the last term consists of the token count of words in a particular
signature with the given suf�x f , and we will refer to this below more simply as
f in .)

It is no doubt easy to get lost in the formalism, so it may be helpful to point out
what the contribution of the additional structure accomplishes. We observed above that
the MDL analysis is an elaboration of the insight that the best morphological analysis
of a corpus is obtained by counting the total number of letters in the list of stems and
suf�xes according to various analyses, and choosing the analysis for which this sum is
the least (cf. Figure 2). This simple insight fails rapidly when we observe in a language
such as English that there are a large number of verb stems that end in t. Verbs appear
with a null suf�x (that is, in bare stem form), with the suf�xes -s, -ed, and -ing. But
once we have 11 stems ending in t, the naive letter-counting approach will judge it a
good idea to create a new set of suf�xes: -t, -ted, -ts, and -ting, because those 10 letters
will allow us to remove 11 or more letters from the list of stems. It is the creation of the
lists, notably the signature list, and an information cost which increases as probability
decreases, that overcomes that problem. Creating a new signature may save some
information associated with the stem list in the morphology, but since the length of
pointers to a signature is log freq , the length of the pointers to the signatures
for all of the words in the corpus associated with the old signature (-Ø, -ed, -s, -ing) or
the new signature (-ts, -ted, -ting, -ts) will be longer than the length of the pointers to a
signature whose token count is the sum of the token count of the two combined, i.e.,

x log
W

x
y log

W

y
x y log

W

x y

3.2 Recursive Morphological Structure
The model presented above is too simple in that it underestimates the gain achieved
by morphological analysis in case the word that is analyzed is also a stem of a larger
word. For example, if a corpus contains the words work and working, then morpholog-
ical analysis will allow us to dispense with the form working; it is modeled by the stem
work and the suf�xes -Ø and -ing. If the corpus also includes workings, the analysis
working-s additionally lowers the cost of the stem working. Clearly we would like stems
to be in turn analyzable as stems suf�xes. Implementing this suggestion involves
the following modi�cations: (i) Each pointer to a stem (and these are found both in the
compressed representation of each individual word in the corpus, and inside the indi-
vidual signatures of the morphological model) must contain a �ag indicating whether
what follows is a pointer to a simple member of the stem list (as in the original model),
or a triple pointer to a signature, stem, and suf�x. In the latter case, which would be
the case for the word [work-ing]-s, the pointer to the stem consists of a triple identical
to the signature for the word work-ing. (ii) The number of words in the corpus has
now changed, in that the word [work-ing]-s now contains two words, not one. We will
need to distinguish between counts of a word w where w is a freestanding word, and
counts where it is part of a larger word; we shall refer to the latter class as secondary
counts. In order to simplify computation and exposition, we have adopted the con-
vention that the total number of words remains �xed, even when nested structure is
posited by the morphology, thus forcing the convention that counts are distributed in
a nonintegral fashion over the two or more nested word structures found in complex
words. We consider the more complex case in the appendix.20

20 In addition, the number of words in a corpus will change if the analysis determines that all
occurrences of (let us say) -ings are to be reanalyzed as complex words, and the stem in question

168



Goldsmith Unsupervised Learning of the Morphology of a Natural Language

We may distinguish between those words, like work or working, whose immediate
analysis involves a stem appearing in the stem list (we may call these WSIMPLE) and
those whose analysis, like workings, involves recursive structure (we may call these
WCOMPLEX). As we have noted, every stem entry in a signature begins with a �ag
indicating which kind of stem it is, and this �ag will be of length

log
W

W

for simple stems, and of length

log
W

W

for complex stems. We also keep track separately of the total number of words in the
corpus (token count) that are morphologically analyzed, and refer to this set as WA;

this consists of all words except those that are analyzed as having no suf�x (see item
(ii) in (2), below).

(2) Compressed length of morphology

(i) T F

(ii) Suf�x list:
f

f log
WA

f

(ii) Suf�x list:
f

log 26 length f log
WA

f

(iii) Stem list:
t T

log 26 length t log
W

t

(iv) Signature component

Stated once for the whole component:

(a) Signature list: log
W

For each signature:

(b) Size of the count of the number of stems plus size of the
count of the number of suf�xes:

stems suf�xes
(c) A pointer to each stem, consisting of a simple/complex �ag,

and a pointer to either a simple or complex stem:

(i) Case of simple stem: �ag of length

log
W

W

(perhaps work-ing) did not appear independently as a freestanding word in the corpus; we will refer to
these inferred words as being “virtual” words with virtual counts.
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plus a pointer to a stem of length

log
W

t
;

or
(ii) Case of complex stem: �ag of length

log
W

W
,

followed by a sequence of two pointers of total
length

log
W

stem t
log

suf�x t in

(d) a pointer to each suf�x, of total length

f

log
f in

(3) Compressed length of corpus

w W

w log
W

w
log

w

stem w
log

w

suf�x w in w

MDL thus provides a �gure of merit that we wish to minimize, and we will seek
heuristics that modify the morphological analysis in such a fashion as to decrease this
�gure of merit in a large proportion of cases. In any given case, we will accept a
modi�cation to our analysis just in case the description length decreases, and we will
suggest that this strategy coincides with traditional linguistic judgment in all clear
cases.

4. Heuristics for Word Segmentation

The MDL model designed in the preceding section will be of use only if we can provide
a practical means of creating one or more plausible morphologies for a given corpus.
That is, we need bootstrapping heuristics that enable us to go from a corpus to such
a morphology. As we shall see, it is not in fact dif�cult to come up with a plausible
initial morphology, but I would like to consider �rst an approach which, though it
might seem like the most natural one to try, fails, and for an interesting reason.

The problem we wish to solve can be thought of as one suited to an expectation-
maximization (EM) approach (Dempster, Laird, and Rubin 1977). Along such a line,
each word w of length N would be initially conceived of as being analyzed in N
different ways, cutting the word into stem suf�x after i letters, 1 i N, with each
of these N analyses being assigned probability mass of

w

N W
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That probability mass is then summed over the resulting set of stems and suf�xes,
and on successive iterations, each of the N cuts into stem suf�x is weighted by its
probability; that is, if the ith cut of word w, of length l, cuts it into a stem t of length i
and suf�x of length l i, then the probability of that cut is de�ned as

stem t w1,i suf�x f wi 1,l

N

k 1

stem t w1,k suf�x f wk 1,l

,

where wj,k refers to the substring of w from the jth to the kth letter. Probability mass
for the stem and the suf�x in each such cut is then augmented by an amount equal
to the frequency of word w times the probability of the cut. After several iterations
(approximately four), estimated probabilities stabilize, and each word is analyzed on
the basis of the cut with the largest probability.

This initially plausible approach fails because it always prefers an analysis in which
either the stem or (more often) the suf�x consists of a single letter. More importantly,
the probability that a sequence of one or more word-�nal letters is a suf�x is very
poorly modeled by the sequence’s frequency.21 To put the point another way, even the
initial heuristic analyzing one particular word must take into account all of the other
analyses in a more articulated way than this particular approach does.

I will turn now to two alternative heuristics that succeed in producing an initial
morphological analysis (and refer to a third in a note). It seems likely that one could
construct a number of additional heuristics of this sort. The point to emphasize is
that the primary responsibility of the overall morphology is not that of the initial
heuristic, but rather of the MDL model described in the previous section. The heuristics
described in this section create an initial morphology that can serve as a starting point
in a search for the shortest overall description of the morphology. We deal with that
process in Section 5.

4.1 First Heuristic
A heuristic that I will call the take-all-splits heuristic, and which considers all cuts of a
word of length l into stem+suf�x w1,i wi 1,l, where 1 i l, much like the EM ap-
proach mentioned immediately above, works much more effectively if the probability
is assigned on the basis of a Boltzmann distribution; see (4) below. The function H(.)
in (4) assigns a value to a split of word w of length l: w1,i wi 1,l. H does not assign a
proper distribution; we use it to assign a probability to the cut of w into w1,i wi 1,l as
in (5). Clearly the effect of this model is to encourage splits containing relatively long
suf�xes and stems.

H w1,i wi 1,l i log freq stem w1,i l i log freq suf�x wi 1,l 4

prob w w1,i wi 1,l
1

Z
e H w1,i wi 1,l 5

21 It is instructive to think about why this should be so. Consider a word such as diplomacy. If we cut the
word into the pieces diplomac y, its probability is freq diplomac freq y , and constrast that value
with the corresponding values of two other analyses: freq diploma freq cy , and
freq diplom freq acy . Now, the ratio of the frequency of words that begin with diploma and those
that begin with diplomac is less than 3, while the ratio of the frequency of words that end in y and
those that end in cy is much greater. In graphical terms, we might note that tries (the data structure)
based on forward spelling have by far the greatest branching structure early in the word, while tries
based on backward spelling have the greatest branching structure close to the root node, which is to
say at the end of the word.
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where

Z

n 1

i 1

H w1,i wi 1,l

For each word, we note what the best parse is, that is, which parse has the highest
rating by virtue of the H-function. We iterate until no word changes its optimal parse,
which empirically is typically less than �ve iterations on the entire lexicon.22 We now
have an initial split of all words into stem plus suf�x. Even for words like this and
stomach we have such an initial split.

4.2 Second Heuristic
The second approach that we have employed provides a much more rapid conver-
gence on the suf�xes of a language. Since our goal presently is to identify word-�nal
suf�xes, we assume by convention that all words end with an end-of-word symbol
(traditionally “#”), and we then tally the counts of all n-grams of length between two
and six letters that appear word �nally. Thus, for example, the word elephant# contains
one occurrence of the word-�nal bigram t#, one occurrence of the word-�nal trigram
nt#, and so forth; we stop at 6-grams, on the grounds that no grammatical morphemes
require more than �ve letters in the languages we are dealing with. We also require
that the n-gram in question be a proper substring of its word.

We employ as a rough indicator of likelihood that such an n-gram n1n2 nk is a
grammatical morpheme the measure:

n1n2 nk

Total count of k-grams
log

n1n2 nk

n1 n2 nk
,

which we may refer to as the weighted mutual information. We choose the top 100
n-grams on the basis of this measure as our set of candidate suf�xes.

We should bear in mind that this ranking will be guaranteed to give incorrect
results as well as correct ones; for example, while ing is very highly ranked in an
English corpus, ting and ng will also be highly ranked, the former because so many
stems end in t, the latter because all ings end in ng, but of the three, only ing is a
morpheme in English.

We then parse all words into stem plus suf�x if such a parse is possible using a
suf�x from this candidate set. A considerable number of words will have more than
one such parse under those conditions, and we utilize the �gure of merit described in
the preceding section to choose among those potential parses.

4.3 Evaluating the Results of Initial Word Splitting
Regardless of which of the two approaches we have taken, our task now is to decide
which splits are worth keeping, which ones need to be dropped, and which ones need
to be modi�ed.23 In addition, if we follow the take-all-splits approach, we have many

22 Experimenting with other functions suggests empirically that the details of our choices for a �gure of
merit, and the distribution reported in the text, are relatively unimportant. As long as the measurement
is capable of ensuring that the cuts are not strongly pushed towards the periphery, the results we get
are robust.

23 Various versions of Harris’s method of morpheme identi�cation can be used as well. Harris’s approach
has the interesting characteristic (unlike the heuristics discussed in the text) that it is possible to impose
restrictions that improve its precision while at the same time worsening its recall to unacceptably low
levels. In work in progress, we are exploring the consequences of using such an initial heuristic with
signi�cantly higher precision, while depending on MDL considerations to extend the recall of the
entire morphology.
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splits which (from our external vantage point) are splits between pre�x and stem:

words beginning with de (defense, demand, delete, etc.) will at this point all be split after
the initial de. So there is work to be done, and for this we return to the central notion
of the signature.

5. Signatures

Each word now has been assigned an optimal split into stem and suf�x by the initial
heuristic chosen, and we consider henceforth only the best parse for that word, and we
retain only those stems and suf�xes that were optimal for at least one word. For each
stem, we make a list of those suf�xes that appear with it, and we call an alphabetized
list of such suf�xes (separated by an arbitrary symbol, such as period) the stem’s
signature; we may think of it as a miniparadigm. For example, in one English corpus,
the stems despair, pity, appeal, and insult appear with the suf�xes ing and ingly. However,
they also appear as freestanding words, and so we use the word NULL, to indicate
a zero suf�x. Thus their signature is NULL.ing.ingly. Similarly, the stems assist and
ignor are assigned the signature ance.ant.ed.ing in a certain corpus. Because each stem
is associated with exactly one signature, we will also use the term signature to refer to
the set of af�xes along with the associated set of stems when no ambiguity arises.

We establish a data structure of all signatures, keeping track for each signature of
which stems are associated with that signature. As an initial heuristic, subject to cor-
rection below, we discard all signatures that are associated with only one stem (these
latter form the overwhelming majority, well over 90%) and all signatures with only
one suf�x. The remaining signatures we shall call regular signatures, and we will call
all of the suf�xes that we �nd in them the regular suf�xes. As we shall see, the regular
suf�xes are not quite the suf�xes we would like to establish for the language, but they
are a very good approximation, and constitute a good initial analysis. The nonregu-
lar signatures produced by the take-all-splits approach are typically of no interest, as
examples such as ch.e.erial.erials.rimony.rons.uring and el.ezed.nce.reupon.ther illustrate.
The reader may identify the single English pseudostem that occurs with each of these
signatures.

The regular signatures are thus those that specify exactly the entire set of suf�xes
used by at least two stems in the corpus. The presence of a signature rests upon the
existence of a structure as in (6), where there are at least two members present in each
column, and all combinations indicated in this structure are present in the corpus,
and, in addition, each stem is found with no other suf�x. (This last condition does
not hold for the suf�xes; a suf�x may well appear in other signatures, and this is the
difference between stems and af�xes.)24

stem1

stem2

stem3

suf�x1
suf�x2

6

If we have a morphological pattern of �ve suf�xes, let us say, and there is a large
set of stems that appear with all �ve suf�xes, then that set will give rise to a reg-
ular signature with �ve suf�xal members. This simple pattern would be perturbed
by the (for our purpose) extraneous fact that a stem appearing with these suf�xes

24 Langer 1991 discusses some of the historical origins of this criterion, known in the literature as a
Greenburg square (Greenberg 1957). As Langer points out, important antecedents in the literature
include Bloom�eld’s brief discussion (1933, 161) as well as Nida (1948, 1949).
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should also appear with some other suf�x; and if all stems that associate with these
�ve suf�xes appear with idiosyncratic suf�xes (i.e., each different from the others),
then the signature of those �ve suf�xes would never emerge. In general, however, in
a given corpus, a good proportion of stems appears with a complete set of what a
grammarian would take to be the paradigmatic set of suf�xes for its class: this will
be neither the stems with the highest nor the stems with the lowest frequency, but
those in between. In addition, there will be a large range of words with no accept-
able morphological analysis, which is just as it should be: John, stomach, the, and so
forth.

To get a sense of what are identi�ed as regular signatures in a language such as
English, let us look at the results of a preliminary analysis in Table 2 of the 86,976 words
of The Adventures of Tom Sawyer, by Mark Twain. The signatures in Table 2 are ordered
by the breadth of a signature, de�ned as follows. A signature has both a stem count
(the number of stems associated with it) and an af�x count (the number of af�xes
it contains), and we use log (stem count) log (af�x count) as a rough guide to the
centrality of a signature in the corpus. The suf�xes identi�ed are given in Table 3 for
the �nal analysis of this text.

In this corpus of some 87,000 words, there are 202 regular signatures identi�ed
through the procedure we have outlined so far (that is, preceding the re�ning opera-
tions described in the next section), and 803 signatures composed entirely of regular
suf�xes (the 601 additional signatures either have only one suf�x, or pertain to only
a single stem).

The top �ve signatures are: NULL.ed.ing, e.ed.ing, NULL.s, NULL.ed.s, and
NULL.ed.ing.s; the third is primarily composed of noun stems (though it includes
a few words from other categories—hundred, bleed, new), while the others are verb
stems. Number 7, NULL.ly, identi�es 105 words, of which all are adjectives (appre-
hensive, sumptuous, gay, ) except for Sal, name, love, shape, and perhaps earth. The
results in English are typical of the results in the other European languages that I
have studied.

These results, then, are derived by the application of the heuristics described above.
The overall sketch of the morphology of the language is quite reasonable already in
its outlines. Nevertheless, the results, when studied up close, show that there remain
a good number of errors that must be uncovered using additional heuristics and
evaluated using the MDL measure. These errors may be organized in the following
ways:

1. The collapsing of two suf�xes into one: for example, we �nd the suf�x
ings here; in most corpora, the equally spurious suf�x ments is found.

2. The systematic inclusion of stem-�nal material into a set of (spurious)
suf�xes. In English, for example, the high frequency of stem-�nal ts can
lead the system to analyze a set of suf�xes as in the spurious signature
ted.ting.ts, or ted.tion.

3. The inclusion of spurious signatures, largely derived from short stems
and short suf�xes, and the related question of the extent of the inclusion
of signatures based on real suf�xes but overapplied. For example, s is a
real suf�x of English, but not every word ending in s should be analyzed
as containing that suf�x. On the other hand, every word ending in ness
should be analyzed as containing that suf�x (in this corpus, this reveals
the stems: sel�sh, uneasi, wretched, loveli, unkind, cheeri, wakeful, drowsi,
cleanli, outrageous, and loneli). In the initial analysis of Tom Sawyer, the
stem ca is posited with the signature n.n’t.p.red.st.t.
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Table 2
Top 81 signatures from Tom Sawyer.

Number Number
Rank Signature Stems Rank Signature Stems

1 NULL.ed.ing 69 42 ’s.NULL.ly.s 3
2 e.ed.ing 35 43 NULL.ed.s.y 3
3 NULL.s 253 44 t.tion 8
4 NULL.ed.s 30 45 NULL.less 8
5 NULL.ed.ing.s 14 46 e.er 8
6 ’s.NULL.s 23 47 NULL.ment 8
7 NULL.ly 105 48 le.ly 8
8 NULL.ing.s 18 49 NULL.ted 7
9 NULL.ed 89 50 NULL.tion 7

10 NULL.ing 77 51 l.t 7
11 ed.ing 74 52 ence.ent 6
12 ’s.NULL 65 53 NULL.ity 6
13 e.ed 44 54 NULL.est.ly 3
14 e.es 42 55 ed.er.ing 3
15 NULL.er.est.ly 5 56 NULL.ed.ive 3
16 e.es.ing 7 57 NULL.led.s 3
17 NULL.ly.ness 7 58 NULL.er.ly 3
18 NULL.ness 20 59 NULL.ily.y 3
19 e.ing 18 60 NULL.n.s 3
20 NULL.ly.s 6 61 NULL.ed.ings 3
21 NULL.y 17 62 NULL.ed.es 3
22 NULL.er 16 63 e.en.ing 3
23 e.ed.es.ing 4 64 NULL.ly.st 3
24 NULL.ed.er.ing 4 65 NULL.s.ter 3
25 NULL.es 16 66 NULL.ed.ing.ings. s 2
26 NULL.ful 13 67 NULL.i.ii.v.x 2
27 NULL.e 13 68 NULL.ed.ful.ing.s 2
28 ed.s 13 69 ious.y 5
29 e.ed.es 5 70 NULL.en 5
30 ed.es.ing 5 71 ation.ed 5
31 NULL.ed.ly 5 72 NULL.able 5
32 NULL.n’t 10 73 ed.er 5
33 NULL.t 10 74 nce.nt 5
34 ’ll.’s.NULL 4 75 NULL.an 4
35 ed.ing.ings 4 76 NUL.ed.ing.y 2
36 NULL.s.y 4 77 NULL.en.ing.s 2
37 NULL.ed.er 4 78 NULL.ed.ful.ing 2
38 NULL.ed.ment 4 79 NULL.st 4
39 NULL.ful.s 4 80 e.ion 4
40 NULL.ed.ing.ings 3 81 NULL.al.ed.s 2
41 ted.tion 9

4. The failure to break all words actually containing the same stem in a
consistent fashion: for example, the stem abbreviate with the signature
NULL.d.s is not related to abbreviat with the signature ing.

5. Stems may be related in a language without being identical. The stem
win may be identi�ed as appearing with the signature NULL.s and the
stem winn may be identi�ed with the signature er.ing, but these stems
should be related in the morphology.

In the next section, we discuss some of the approaches we have taken to resolving
these problems.
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Table 3
Suf�xes from Tom Sawyer.

Suf�x Remarks Suf�x Remarks
s ted chat-ted, �t-ted, submit-ted, etc.
ed est
ing ity
er ous
e ard drunk-ard
ly able
’s ious
d less
y ment
n id id.or for stems horr-, splend-, liqu-
on Spurious (bent-on, rivers-on):

triage issue
ure

es ive
t ty novel, uncertain, six, proper
st Signature NULL.ly.st, for stems

such as safe-
ence

en behold, deaf, weak, sunk, etc. ily
le Error: analyzed le.ly for e.y (stems

such as feeb-, audib-, simp-).
ward

al ation
n’t led triage problem
nce Signature nce.nt, for stems fragr-,

dista-, indiffere-
’d

ent Spurious: triage problem (pot-ent) ry error: stems such as glo- with sig-
nature rious.ry

tion rious error: stems such as glo- with sig-
nature rious.ry

r rs error: r should be in stem
ter triage problem ned awake-ned, white-ned, thin-ned
k triage problem ning begin-ning, run-ning
ful age
ion h triage problem
’ll te should be -ate (e.g., punctua-te)
an triage problem ant triumph-ant, expect-ant
ness r’s error
nt see above ance

6. Optimizing Description Length Using Heuristics and MDL

We can use the description length of the grammar formulated in (2) and (3) to evaluate
any proposed revision, as we have already observed: note the description length of the
grammar and the compressed corpus, perform a modi�cation of the grammar, recom-
pute the two lengths, and see if the modi�cation improved the resulting description
length.25

25 This computation is rather lengthy, and in actual practice it may be preferable to replace it with far
faster approaches to testing a change. One way to speed up the task is to compute the differential of
the MDL function, so that we can directly compute the change in description length given some prior
changes in the variables that de�ne the morphology that are modi�ed in the hypothetical change being
evaluated (see the Appendix). The second way to speed up the task is, again, to use heuristics to
identify clear cases for which full description length computation is not necessary, and to identify a
smaller number of cases where �ne description length is appropriate. For example, in the case
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Following the morphological analysis of words described in the previous section,
suf�xes are checked to determine if they are spurious amalgams of independently mo-
tivated suf�xes: ments is typically, but wrongly, analyzed as a suf�x. Upon identi�ca-
tion of such suf�xes as spurious, the vocabulary containing these words is reanalyzed.
For example, in Tom Sawyer, the suf�x ings is split into ing and s, and thus the word
beings is split into being plus s; the word being is, of course, already in the lexicon.
The word breathings is similarly reanalyzed as breathing plus s, but the word breathing
is not found in the lexicon; it is entered, with the morphological analysis breath+ing.
Words that already existed include cha�ng, dripping, evening, feeling, and �ogging, while
new “virtual” words include belonging, bustling, cha�ng, and fastening. The only new
word that arises that is worthy of notice is jing, derived from the word jings found
in Twain’s expression by jings! In a larger corpus of 500,000 words, 64 suf�xes are
tested for splitting, and 31 are split, including tions, ists, ians, ened, lines, ents, and ively.
Note that what it means to say that “suf�xes are checked to see if they are spurious
amalgams” is that each suf�x is checked to see if it is the concatenation of two inde-
pendently existing suf�xes, and then if that is the case, the entire description length
of the corpus is recomputed under the alternative analysis; the reanalysis is adopted
if and only if the description length decreases. The same holds for the other heuristics
discussed immediately below.26

Following this stage, the signatures are studied to determine if there is a consistent
pattern in which all suf�xes from the signature begin with the same letter or sequence
of letters, as in te.ting.ts.27 Such signatures are evaluated to determine if the description
length improves when such a signature is modi�ed to become e.ing.s, etc. It is necessary
to precede this analysis by one in which all signatures are removed which consist of a
single suf�x composed of a single letter. This set of signatures includes, for example,
the singleton signature e, which is a perfectly valid suf�x in English; however, if we
permit all words ending in e, but having no other related forms, to be analyzed as
containing the suf�x e, then the e will be inappropriately highly valued in the analysis.
(We return to this question in Section 11, where we address the question of how many
occurrences of a stem with a single suf�x we would expect to �nd in a corpus.)

In the next stage of analysis, triage, signatures containing a small number of stems
or a single suf�x are explored in greater detail. The challenge of triage is to determine
when the data is rich and strong enough to support the existence of a linguistically
real signature. A special case of this is the question of how many stems must ex-
ist to motivate the existence of a signature (and hence, a morphological analysis for
the words in question) when the stems only appear with a single suf�x. For exam-
ple, if a set of words appear in English ending with hood, should the morphological
analysis split the words in that fashion, even if the stems thereby created appear
with no other suf�xes? And, at the other extreme, what about a corpus which con-
tains the words look, book, loot, and boot? Does that data motivate the signature l.k,
for the stems boo and loo? The matter is rendered more complex by a number of fac-
tors. The length of the stems and suf�xes in question clearly plays a role: suf�xes
of one letter are, all other things being equal, suspicious; the pair of stems loo and
boo, appearing with the signature k.t, does not provide an example of a convincing

mentioned in the text, that of determining whether a suf�x such as ments should always be split into
two independently motivated suf�xes ment and s, we can compute the fraction of words ending in
ments that correspond to freestanding words ending in ment. Empirical observation suggests that ratios
over 0.5 should always be split into two suf�xes, ratios under 0.3 should not be split, and those in
between must be studied with more care.

26 This is accomplished by the command am4 in Linguistica.
27 This is accomplished by the command am5 in Linguistica.
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linguistic pattern. On the other hand, if the suf�x is long enough, even one stem
may be enough to motivate a signature, especially if the suf�x in question is oth-
erwise quite frequent in the language. A single stem occurring with a single pair
of suf�xes may be a very convincing signature for other reasons as well. In Ital-
ian, for example, even in a relatively small corpus we are likely to �nd a signa-
ture such as a.ando.ano.are.ata.ate.ati.ato.azione.ò with several stems in it; once we are
sure that the 10-suf�x signature is correct, then the discovery of a subsignature along
with a stem is perfectly natural, and we would not expect to �nd multiple stems
associated with each of the occurring combinations. (A similar example in English
from Tom Sawyer is NULL.ed.ful.ing.ive.less for the single stem rest.) And a signature
may be “contaminated,” so to speak, by a spurious intruder. A corpus containing
rag, rage, raged, raging, and rags gave rise to a signature: NULL.e.ed.ing.s for the stem
rag. It seems clear that we need to use information that we have obtained regard-
ing the larger, robust patterns of suf�x combinations in the language to in�uence
our decisions regarding smaller combinations. We return to the matter of triage be-
low.

We are currently experimenting with methods to improve the identi�cation of re-
lated stems. Current efforts yield interesting but inconclusive results. We compare all
pairs of stems to determine whether they can be related by a simple substitution pro-
cess (one letter for none, one letter for one letter, one letter for two letters), ignoring
those pairs that are related by virtue of one being the stem of the other already within
the analysis. We collect all such rules, and compare by frequency. In a 500,000-word
English corpus, the top two such pairs of 1:1 relationships are (1) 46 stems related by
a �nal d s alternation, including intrud/intrus, apprendend/apprenhens, provid/provis, sus-
pend/suspens, and elud/elus, and (2) 43 stems related by a �nal i y alternation, includ-
ing reli/rely, ordinari/ordinary, decri/decry, suppli/supply, and accompani/accompany . This
approach can quickly locate patterns of allomorphy that are well known in the Eu-
ropean languages (e.g., alternation between a and ä in German, between o and ue in
Spanish, between c and ç in French). However, we do not currently have a satisfactory
means of segregating meaningful cases, such as these, from the (typically less frequent
and) spurious cases of stems whose forms are parallel but ultimately not related.

7. Results

On the whole, the inclusion of the strategies described in the preceding sections leads
to very good, but by no means perfect, results. In this section we shall review some
of these results qualitatively, some quantitatively, and discuss brie�y the origin of the
incorrect parses.

We obtain the most striking result by looking at the top list of signatures in a
language, if we have some familiarity with the language: it is almost as if the textbook
patterns have been ripped out and placed in a chart. As these examples suggest,
the large morphological patterns identi�ed tend to be quite accurately depicted. To
illustrate the results on European languages, we include signatures found from a
500,000-word corpus of English (Table 4), a 350,000-word corpus of French (Table 5),
Don Quijote, which contains 124,716 words of Spanish (Table 6), a 125,000-word corpus
of Latin (Table 7), and 100,000 words and 1,000,000 words of Italian (Tables 8 and 9).
The 500,000-word (token-count) corpus of English (the �rst part of the Brown Corpus)
contains slightly more than 30,000 distinct words.

To illustrate the difference of scale that is observed depending on the size of
the corpus, compare the signatures obtained in Italian on a corpus of 100,000 words
(Table 8) and a corpus of 1,000,000 words (Table 9). When one sees the rich in�ectional
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Table 4
Top 10 signatures, 500,000-word English corpus.

1. NULL.ed.ing.s 4. NULL.s 7. NULL.ed.ing

accent abberation applaud
add abolitionist arrest
administer abortion astound
afford absence blast
alert abstractionist bless
amount abutment bloom
appeal accolade boast
assault accommodation bolster
attempt accomodation broaden

cater
2. ’s.NULL.s 5. e.ed.es.ing
adolescent achiev 8. NULL.er.ing.s
afternoon assum blow
airline brac bomb
ambassador chang broadcast
amendment charg deal
announcer compris draw
architect conced drink
assessor conclud dwell
association decid farm

describ feed
3. NULL.ed.er.ing.s feel
attack 6. e.ed.er.es.ing
back advertis 9. NULL.d.s
bath announc abbreviate
boil bak accommodate
borrow challeng aggravate
charm consum apprentice
condition enforc arcade
demand gaz balance
down glaz barbecue
�ow invad bruise

liv catalogue
pac costume

10. NULL.ed.s
acclaim
beckon
bene�t
blend
blister
bogey
bother
breakfast
buffet
burden

179



Computational Linguistics Volume 27, Number 2

Table 5
Top 10 signatures, 350,000-word French corpus.

1. NULL.e.es.s 4. NULL.e.es 7. NULL.e
abondant acquis accueillant
abstrait aÂeropostal acharnÂe
adjacent afghan admis
appropriÂe albanais adsorbant
atteint allongÂe albigeois
bantou anglais alicant
bleu appelÂe aliÂenant
brillant arrondi allÂechant
byzantin bavarois amarant

carthaginois ambiant
2. NULL.s
abandonn Âee 5. NULL.e.s 8. NULL.es.s
abbaye adhÂerent antioxydant
abdication adolescent bassin
abdominale af�liÂe civil
ab Âelienne aõ̂nÂe craint
aberration assign Âe cristallin
abolitionniste assistant cutanÂe
abordÂee bovin descendant
abrasif cinglant dotÂe
abrÂeviation colorant emulsi�ant

ennemi
3. NULL.ment.s 6. NULL.ne.s
administrative abÂelien 9. a.aient.ait.ant.e.ent.er.es.èrent.Âe.Âee. Âes
agressive acheulÂeen contrôl
anatomique alsacien jou
ancienne am Âerindien laiss
annuelle ancien rest
automatique anglo-saxon
biologique aram Âeen 10. NULL.es
chimique aristot Âelicien adoptÂe
classique ath Âenien âgÂe

alli Âe
annulÂe
apparent Âe
apprÂeciÂe
armÂe
assi Âeg Âe
associ Âe
attachÂe

pattern emerging, as with the example of the 10 suf�xes on �rst-conjugation stems
(a.ando.ano.are.ata.ate.ati.ato.azione.ò), one cannot but be struck by the grammatical detail
that is emerging from the study of a larger corpus.28

28 Signature 1 is formed from adjectival stems in the fem.sg., fem.pl., masc.pl, and masc.sg. forms;

Signature 2 is entirely parallel, based on stems ending with the morpheme -ic/-ich, where ich is used
before i and e. Signature 4 is an extension of Signature 2, including nominalized (sg. and pl.) forms.
Signature 5 is the large regular verb in�ection pattern (seven such verb stems are identi�ed). Signature
3 is a subset of Signature 1, composed of stems accidentally not found in the feminine plural form.
Signatures 6 and 8 are primarily masculine nouns, sg., and pl., Signature 10 is feminine nouns, sg., and
pl., and the remaining Signatures 7 and 9 are again subsets of the regular adjective pattern of
Signature 1.
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Table 6
Top 10 signatures, 130,000-word Spanish corpus.

1. a.as.o.os 4. NULL.n 7. NULL.a.as.o.os
abiert abrÂõa algun
a�cionad abrirÂõa buen
ajen acabase es
amig acabe mÂõ

antigu acaece primer
compuest acertaba un
cortesan acometÂõa
cubiert acompañaba 8. NULL.es
cuy acordaba Âangel
delicad aguardaba animal

Âarbol
2. NULL.s 5. NULL.n.s azul
aborrecido caballero bachiller
abrasado cante belianis
abundante debÂõa bien
acaecimiento dice buey
accidente dijere calidad
achaque duerme cardenal
acompañado entiende
acontecimiento fuerza 9. da.do.r
acosado hubiera amanceba
acostumbrado miente ata
3. a.o.os 6. a.as.o averigua
a�igid agradezc colga
Âanim anch emplea
asalt at Âonit feri
caballeriz confus �ngi
desagradecid conozc heri
descubiert decill pedi
despiert di�cultos persegui
dorad estrech
enemig extrañ 10. NULL.le
�ac fresc abraz Âo

acomodar
aconsej Âo
a�igi Âose
agradeci Âo
aguardar
alegr Âo
arroj Âo
atraer
besÂo

Turning to French, we may brie�y inspect the top 10 signatures that we �nd in a
350,000-word corpus in Table 5. It is instructive to consider the signature a.aient.ait.ant.e.
ent.er.es.èrent.Âe.Âee.Âes, which is ranked ninth among signatures. It contains a large part
of the suf�xal pattern from the most common regular conjugation, the �rst conjuga-
tion.

Within the scope of the effort covered by this project, the large-scale generaliza-
tions extracted about these languages appear to be quite accurate (leaving for further
discussion below the questions of how to link related signatures and related stems). It
is equally important to take a �ner-grained look at the results and quantify them. To
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Table 7
Top 10 signatures, 125,000-word Latin corpus.

1. NULL.que 4. NULL.m 7. NULL.e.m
abierunt abdia angustia
acceperunt abia baptista
accepit abira barachia
accinctus abra bethania
accipient adonira blasphemia
addidit adsistente causa
adiuvit adulescente conscientia
adoravit adulescentia corona
adplicabis adustione ignorantia
adprehendens aetate lorica

2. NULL.m.s 5. i.is.o.orum.os.um.us 8. a.ae.am.as.i.is.o.orum.os.um.us
acie angel ann
aquaeductu cubit magn
byssina discipul mult
civitate iust univers
coetu ocul
die popul 9. NULL.e.m.s
ezechia azaria
facultate 6. e.em.es.i.ibus.is.um banaia
�de fratr esaia
�mbria greg iosia

homin iuda
3. a.ae.am.as.is reg lucusta
ancill vic massa
aqu voc matthathia
lucern pluvia
parabol sagitta
plag
puell 10. i.o.um
stell brachi
synagog carmel
tabul cenacul
tunic damn

evangeli
hysop
lectul
liban
of�ci
ole

do this, we have selected from the English and the French analyses a set of 1,000 con-
secutive words in the alphabetical list of words from the corpus and divided them into
distinct sets regarding the analysis provided by the present algorithm. See Tables 10
and 11.

The �rst category of analyses, labeled Good, is self-explanatory in the case of most
words (e.g., proceed, proceeded, proceeding, proceeds), and many of the errors are equally
easy to identify by eye (abide with no analysis, next to abid-e and abid-ing, or Abn-er).
Quite honestly, I was surprised how many words there were in which it was dif�cult
to say what the correct analysis was. For example, consider the pair aboli-tion and abol-
ish. The words are clearly related, and abolition clearly has a suf�x; but does it have the
suf�x -ion, -tion, or -ition, and does abolish have the suf�x -ish, or -sh? It is hard to say.
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Table 8
Top 10 signatures, 100,000-word Italian corpus.

Rank Signature Number of Stems Participating in this Signature
1 a.e.i.o 55
2 ica.iche.ici.ico 17
3 a.i.o 33
4 e.i 221
5 i.o 164
6 e.i.o 24
7 a.e.o 23
8 a.e.i 23
9 a.e 131

10 NULL.o 71
11 e.i.ità 14

Table 9
Top 10 signatures, 1,000,000-word Italian corpus.

Rank Signature Number of Stems Participating
in this Signature

1 .a.e.i.o. 136
2 .ica.iche.ici.ico. 43
3 .a.i.o. 114
4 .ia.ica.iche.ici.ico.ie. 13
5 .a.ando.ano.are.ata.ate 7

.ati.ato.azione. Âo.
6 .e.i. 583
7 .a.e.i. 47
8 .i.o. 383
9 .a.e.o. 32

10 .a.e. 236

Table 10
Results (English).

Category Count Percent
Good 829 82.9%
Wrong analysis 52 5.2%
Failed to analyze 36 3.6%
Spurious analysis 83 8.3%

Table 11
Results (French).

Category Count Percent
Good 833 83.3%
Wrong analysis 61 6.1%
Failed to analyze 42 4.2%
Spurious analysis 64 6.4%

In a case of this sort, my policy for assigning success or failure has been in�uenced by
two criteria. The �rst is that analyses are better insofar as they explicitly relate words
that are appropriately parallel in semantics, as in the abolish/abolition case; thus I would

183



Computational Linguistics Volume 27, Number 2

give credit to either the analysis aboli-tion/aboli-sh or the analysis abol-ition/abol-ish . The
second criterion is a bit more subtle. Consider the pair of words alumnus and alumni.
Should these be morphologically analyzed in a corpus of English, or rather, should
failure to analyze them be penalized for this morphology algorithm? (Compare in like
manner alibi or allegretti; do these English words contain suf�xes?). My principle has
been that if I would have given the system additional credit by virtue of discovering
that relationship, I have penalized it if it did not discover it; that is a relatively harsh
criterion to apply, to be sure. Should proper names be morphologically analyzed?
The answer is often unclear. In the 500,000 word English corpus, we encounter Alex
and Alexis, and the latter is analyzed as alex-is. I have scored this as correct, much
as I have scored as correct the analyses of Alexand-er and Alexand-re. On the other
hand, the failure to analyze Alexeyeva despite the presence of Alex and Alexei does
not seem to me to be an error, while the analysis Anab-el has been scored as an
error, but John-son (and a bit less obviously Wat-son) have not been treated as errors.29

Dif�cult to classify, too, is the treatment of words such as abet/abetted/abetting . The
present algorithm selects the uniform stem abet in that case, assigning the signature
NULL.ted.ting. Ultimately what we would like to have is a means of indicating that
the doubled t is predictable, and that the correct signature is NULL.ed.ing. At present
this is not implemented, and I have chosen to mark this as correct, on the grounds
that it is more important to identify words with the same stem than to identify the
(in some sense) correct signature. Still, unclear cases remain: for example, consider the
words accompani-ed/accompani-ment/accompani-st . The word accompany does not appear
as such, but the stem accompany is identi�ed in the word accompany-ing . The analysis
accompani-st fails to identify the suf�x -ist, but it will successfully identify the stem as
being the same as the one found in accompanied and accompaniment , which it would
not have done if it had associated the i with the suf�x. I have, in any event, marked
this analysis as wrong, but without much conviction behind the decision. Similarly,
the analysis of French putative stem embelli with suf�xes e/rent/t passes the low test
of treating related words with the same stem, but I have counted it as in error, on the
grounds that the analysis is unquestionably one letter off from the correct, traditional
analysis of second-conjugation verbs. This points to a more general issue regarding
French morphology, which is more complex than that of English. The in�nitive Âecrire
‘to write’ would ideally be analyzed as a stem Âecr plus a derivational suf�x i followed
by an in�nitival suf�x re. Since the derivational suf�x i occurs in all its in�ected forms,
it is not unreasonable to �nd an analysis in which the i is integrated into the stem
itself. This is what the algorithm does, employing the stem Âecri for the words Âecri-re and

Âecri-t. ÂEcrit in turn is the stem for Âecrite, Âecrite, Âecrites, Âecrits, and Âecriture. An alternate
stem form Âecriv is used for past tense forms (and the nominalization Âecrivain) with
the suf�xes aient, ait, ant, irent, it. The algorithm does not make explicit the connection
between these two stems, as it ideally would.

Thus in the tables, Good indicates the categories of words where the analysis was
clearly right, while the incorrect analyses have been broken into several categories.
Wrong Analysis is for bimorphemic words that are analyzed, but incorrectly analyzed,
by the algorithm. Failed to Analyze are the cases of words that are bimorphemic but

29 My inability to determine the correct morphological analysis in a wide range of words that I know
perfectly well seems to me to be essentially the same response as has often been observed in the case
of speakers of Japanese, Chinese, and Korean when forced to place word boundaries in e-mail
romanizations of their language. Ultimately the quality of a morphological analysis must be measured
by how well the algorithm handles the clear cases, how well it displays the relationships between
words perceived to be related, and how well it serves as the language model for a stochastic
morphology of the language in question.
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for which no analysis was provided by the algorithm, and Spurious Analysis are the
cases of words that are not morphologically complex but were analyzed as containing
a suf�x.

For both English and French, correct performance is found in 83% of the words;
details are presented in Tables 10 and 11. For English, these �gures correspond to
precision of 829 829 52 83 85 9%, and recall of 829 829 52 36 90 4%.

8. Triage

As noted above, the goal of triage is to determine how many stems must occur in
order for the data to be strong enough to support the existence of a linguistically real
signature. MDL provides a simple but not altogether satisfactory method of achieving
this end.

Using MDL for this task amounts to determining whether the total description
length decreases when a signature is eliminated by taking all of its words and elim-
inating their morphological structure, and reanalyzing the words as morphologically
simple (i.e., as having no morphological structure). This is how we have implemented
it, in any event; one could well imagine a variant under which some or all subparts
of the signature that comprised other signatures were made part of those other sig-
natures. For example, the signature NULL.ine.ly is motivated just for the stem just.
Under the former triage criterion, justine and justly would be treated as unanalyzed
words, whereas under the latter, just and justly would be made members of the (large)
NULL.ly signature, and just and justine might additionally be treated as comprising
parts of the signature NULL.ine along with bernard, gerald, eng, capitol, elephant, def, and
sup (although that would involve permitting a single stem to participate in two distinct
signatures).

Our MDL-based measure tests the goodness of a signature by testing each sig-
nature to see if the analysis is better when that signature is deleted. This deletion
entails treating the signature’s words as members of the signature of unanalyzed words
(which is the largest signature, and hence such signature pointers are relatively short).
Each word member of the signature, however, now becomes a separate stem, with all
of the increase in pointer length that that entails, as well as increase in letter content
for the stem component.

One may draw the following conclusions, I believe, from the straightforward ap-
plication of such a measure. On the whole, the effects are quite good, but by no means
as close as one would like to a human’s decisions in a certain number of cases. In
addition, the effects are signi�cantly in�uenced by two decisions that we have al-
ready discussed: (i) the information associated with each letter, and (ii) the decision
as to whether to model suf�x frequency based solely on signature-internal frequences,
or based on frequency across the entire morphology. The greater the information as-
sociated with each letter, the more worthwhile morphology is (because maintaining
multiple copies of nearly similar stems becomes increasingly costly and burdensome).
When suf�x frequencies (which are used to compute the compressed length of any
analyzed word) are based on the frequency of the suf�xes in the entire lexicon, rather
than conditionally within the signature in question, the loss of a signature entails a hit
on the compression of all other words in the lexicon that employed that suf�x; hence
triage is less dramatic under that modeling assumption.

Consider the effect of this computation on the signatures produced from a 500,000-
word corpus of English. After the modi�cations discussed to this point, but before
triage, there were 603 signatures with two or more stems and two or more suf�xes,
and there were 1,490 signatures altogether. Application of triage leads to the loss
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of only 240 signatures. The single-suf�x signatures that were eliminated were: ide,
it, rs, he, ton, o, and ie, all of which are spurious. However, a number of signatures
that should not have been lost were eliminated, most strikingly: NULL.ness, with 51
good analyses, NULL.ful, with 18 good analyses, and NULL.ish with only 8 analyses.
Most of the cases eliminated, however, were indeed spurious. Counting only those
signatures that involves suf�xes (rather than compounds) and that were in fact correct,
the percentage of the words whose analysis was incorrectly eliminated by triage was
21.9% (236 out of 1,077 changes). Interestingly, in light of the discussion on results
above, one of the signatures that was lost was i.us for the Latin plural (based in this
particular case on genii/genius). Also eliminated (and this is most regrettable) was
NULL.n’t (could/had/does/were/would /did).

Because maximizing correct results is as important as testing the MDL model
proposed here, I have also utilized a triage algorithm that departs from the MDL-
based optimization in certain cases, which I shall identify in a moment. I believe that
when the improvements identi�ed in Section 10 below are made, the purely MDL-
based algorithm will be more accurate; that prediction remains to be tested, to be
sure. On this account, we discard any signature for which the total number of stem
letters is less than �ve, and any signature consisting of a single, one-letter suf�x; we
keep, then, only signatures for which the savings in letter counts is greater than 15
(where savings in letter counts is simply the difference between the sum of the length
of words spelled out as a monomorphemic word and the sum of the lengths of the
stems and the suf�xes); 15 is chosen empirically.

9. Paradigms

As we noted brie�y above, the existence of a regular pattern of suf�xation with n
distinct suf�xes will generally give rise to a large set of stems displaying all n suf�xes,
but it will also give rise in general to stems displaying most possible combinations
of subsets of these suf�xes. Thus, if there is a regular paradigm in English consisting
of the suf�xes NULL, -s, -ing, and -ed, we expect to �nd stems appearing with most
possible combinations of these suf�xes as well. As this case clearly shows, not all such
predicted subpatterns are merely partially �lled paradigms. Of stems appearing with
the signature NULL.s, some are verbs (such as occur/occurs), but the overwhelming
majority, of course, are nouns.

In the present version of the algorithm, no effort is made to directly relate signa-
tures to one another, and this has a signi�cant and negative impact on performance,
because analyses in which stems are af�liated with high-frequency signatures are more
highly valued than those in which they are af�liated with low-frequency signatures; it
is thus of capital importance not to underestimate the total frequency of a signature.30

When two signatures as we have de�ned them here are collapsed, there are two major
effects on the description length: pointers to the merged signature are shorter—leading
to a shorter total description length—but, in general, predicted frequencies of the com-

30 As long as we keep the total number of words �xed, the global task of minimizing description length
can generally be obtained by the local strategy of �nding the largest cohort for a group of forms to
associate with: if the same data can be analyzed in two ways, with the data forming groups of sizes

a1
i

in one case, and a2
i

in the other, maximal compression is obtained by choosing the case k 1, 2
for which

i

log ak
i

is the greatest.
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posite words are worse than they were, leading to a poorer description (via increased
cross-entropy, we might say). In practice, the collapsing of signatures is rejected by
the MDL measure that we have implemented here.

In work in progress, we treat groups of signatures (as de�ned here) as parts of
larger groups, called paradigms. A paradigm consisting of the suf�xes NULL.ed.ing.s,
for example, includes all 15 possible combinations of these suf�xes. We can in general
estimate the number of stems we would expect to appear with zero counts for one or
more of the suf�xes, given a frequency distribution, such as a multinomial distribution,
for the suf�xes.31 In this way, we can establish some reasonable frequencies for the case
of stems appearing in a corpus with only a single suf�x. It appears at this time that the
unavailability of this information is the single most signi�cant cause of inaccuracies
in the present algorithm. It is thus of considerable importance to get a handle on such
estimates.32

10. Remaining Issues

A number of practical questions remain at this point. The most important are the
following:

1. Identifying related stems (allomorphs). Languages typically have
principles at work relating pairs of stems, as in English many stems (like
win) are related to another stem with a doubled consonant (winn, as in
winn-ing). We have been reasonably successful in identifying such
semiregular morphology, and will report this in a future publication.
There is a soft line between the discovery of related stems, on the one
hand, and the parsing of a word into several suf�xes. For example, in
the case mentioned brie�y above for French, it is not unreasonable to
propose two stems for ‘to write’ Âecri and Âecriv, each used in distinct
forms. It would also be reasonable, in this case, to analyze the latter stem
Âecriv as composed of Âecri plus a suf�x -v, although in this case, there are
no additional bene�ts to be gained from the more �ne-grained analysis.

31 In particular, consider a paradigm with a set fi of suf�xes. We may represent a subsignature of that
signature as a string of 0s and 1s (a Boolean string b, of the form 0, 1 , abbreviated bk) indicating
whether (or not) the ith suf�x is contained in the subsignature. If a stem t occurs [t] times, then the

probability that it occurs without a particular suf�x fi is 1 prob fi
t ; the probability that it occurs

without all of the suf�xes missing from the particular subsignature b bk is

k

1 bk 1 prob fi
t

;

and the probability that the particular subsignature b will arise at all is the sum of those values over
all of the stems in the signature:

tn stems k

1 bk 1 prob fi
tn

Thus all that is necessary is to estimate the hidden parameters of the frequencies of the individual
suf�xes in the entire paradigm. See the following note as well.

32 There may appear to be a contradiction between this observation about paradigms and the statement
in the preceding paragraph that MDL rejects signature mergers—but there is no contradiction. The
rejection of signature mergers is performed (so to speak) by the model which posits that frequencies of
suf�xes inside a signature are based only on suf�x frequencies of the stems that appear with exactly
the same set of suf�xes in the corpus. It is that modeling assumption that needs to be dropped, and
replaced by a multinomial-based frequency prediction based on counts over the 2n 1 signatures
belonging to each paradigm of length n.
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2. Identifying paradigms from signatures. We would like to automatically
identify NULL.ed.ing as a subcase of the more general NULL.ed.ing.s. This
is a dif�cult task to accomplish well, as English illustrates, for we would
like to be able to determine that NULL.s is primarily a subcase of
’s.NULL.s, and not of (e.g.) NULL.ed.s.33

3. Determining the relationship between pre�xation and suf�xation. The
system currently assumes that pre�xes are to be stripped off the stem
that has already been identi�ed by suf�x stripping. In future work, we
would like to see alternative hypotheses regarding the relationship of
pre�xation and suf�xation tested by the MDL criterion.

4. Identifying compounds. In work reported in Goldsmith and Reutter
(1998), we have explored the usefulness of the present system for
determining the linking elements used in German compounds, but more
work remains to be done to identify compounds in general. Here we run
straight into the problem of assigning very short strings a lower
likelihood of being words than longer strings. That is, it is dif�cult to
avoid positing a certain number of very short stems, as in English m and
an, the �rst because of pairs such as me and my, the second because of
pairs such as an and any, but these facts should not be taken as strong
evidence that man is a compound.

5. As noted at the outset, the present algorithm is limited in its ability to
discover the morphology of a language in which there are not a
suf�cient number of words with only one suf�x in the corpus. In work
in progress, we are developing a related algorithm that deals with the

33 We noted in the preceding section that we can estimate the likelihood of a subsignature assuming a
multinomial distribution. We can in fact do better than was indicated there, in the sense that for a
given observed signature , whose suf�xes constitute a subset of a larger signature , we can
compute the likelihood that is responsible for the generation of , where i are the frequencies
(summing to 1.0) associating with each of the suf�xes in , and ci are the counts of the
corresponding suf�xes in the observed signature :

t
c1 , c2 , , cn

n

i 1

i ci
t !

c1 ! c2 ! cn !

n

i 1

ci
i

The log likelihood is then

log t !

n

i 1

ci log i log ci !,

or approximately

t log t ci log
ci

i

from Stirling’s approximation. If we normalize the cis to form a distribution (by dividing by [t]) and
denote these by di, then this can be simply expressed in terms of the Kullback-Leibler distance
D :

t log t ci log
ci

i

t log t t di log
t di

i

t log t t D t di log t

t log t t D t log t

t D
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more general case. In the more general case, it is even more important to
develop a model that deals with the layered relationship among suf�xes
in a language. The present system does not explicitly deal with these
relationships: for example, while it does break up ments into ment and s,
it does not explicitly determine which suf�xes s may attach to, etc. This
must be done in a more adequate version.

6. In work in progress, we have added to the capability of the algorithm
the ability to posit suf�xes that are in part subtractive morphemes. That
is, in English, we would like to establish a single signature that combines
NULL.ed.ing.s and e.ed.es.ing (for jump and love, respectively). We posit an
operator x which deletes a preceding character x, and with the
mechanism, we can establish a single signature NULL. e ed. e ing.s,
composed of familiar suf�xes NULL and s, plus two suf�xes e ed and
e ing, which delete a preceding (stem-�nal) e if one is present.

11. Conclusion

Linguists face at the present time the question of whether, and to what extent,
information-theoretic notions will play a signi�cant role in our understanding of lin-
guistic theory over the years to come, and the present system perhaps casts a small
ray of light in this area. As we have already noted, MDL analysis makes clear what the
two areas are in which an analysis can be judged: it can be judged in its ability to deal
with the data, as measured by its ability to compress the data, and it can be judged on
its complexity as a theory. While the former view is undoubtedly controversial when
viewed from the light of mainstream linguistics, it is the prospect of being able to say
something about the complexity of a theory that is potentially the most exciting. Even
more importantly, to the extent that we can make these notions explicit, we stand a
chance of being able to develop an explicit model of language acquisition employing
these ideas.

A natural question to ask is whether the algorithm presented here is intended
to be understood as a hypothesis regarding the way in which human beings acquire
morphology. I have not employed, in the design of this algorithm, a great deal of innate
knowledge regarding morphology, but that is for the simple reason that knowledge of
how words divide into subpieces is an area of knowledge which no one would take
to be innate in any direct fashion: if sanity is parsed as san ity in one language, it
may perfectly well be parsed as sa nity in another language.

That is, while passion may �ame disagreements between partisans of Universal
Grammar and partisans of statistically grounded empiricism regarding the task of
syntax acquisition, the task which we have studied here is a considerably more humble
one, which must in some fashion or other be �gured out by grunt work by the language
learner. It thus allows us a much sharper image of how powerful the tools are likely
to be that the language acquirer brings to the task. And does the human child perform
computations at all like the ones proposed here?

From most practical points of view, nothing hinges on our answer to this question,
but it is a question that ultimately we cannot avoid facing. Reformulated a bit, one
might pose the question, does the young language learner—who has access not only
to the spoken language, but perhaps also to the rudiments of the syntax and to the
intended meaning of the words and sentences—does the young learner have access
to additional information that simpli�es the task of morpheme identi�cation? It is
the belief that the answer to this question is yes that drives the intuition (if one has
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this intuition) that an MDL-based analysis of the present sort is an unlikely model of
human language acquisition.

But I think that such a belief is very likely mistaken. Knowledge of semantics and
even grammar is unlikely to make the problem of morphology discovery signi�cantly
easier. In surveying the various approaches to the problem that I have explored (only
the best of which have been described here), I do not know of any problem (of those
which the present algorithm deals with successfully) that would have been solved
by having direct access to either syntax or semantics. To the contrary: I have tried to
�nd the simplest algorithm capable of dealing with the facts as we know them. The
problem of determining whether two distinct signatures derive from a single larger
paradigm would be simpli�ed with such knowledge, but that is the exception and not
the rule.

So in the end, I think that the hypothesis that the child uses an MDL-like analysis
has a good deal going for it. In any event, it is far from clear to me how one could
use information, either grammatical or contextual, to elucidate the problem of the
discovery of morphemes without recourse to notions along the lines of those used in
the present algorithm.

Of course, in all likelihood, the task of the present algorithm is not the same
as the language learner’s task; it seems unlikely that the child �rst determines what
the words are in the language (at least, the words as they are de�ned in traditional
orthographic terms) and then infers the morphemes. The more general problem of
language acquisition is one that includes the problems of identifying morphemes,
of identifying words both morphologically analyzed and nonanalyzed, of identifying
syntactic categories of the words in question, and of inferring the rules guiding the
distribution of such syntactic categories. It seems to me that the only manageable
kind of approach to dealing with such a complex task is to view it as an optimization
problem, of which MDL is one particular style.

Chomsky’s early conception of generative grammar (Chomsky 1975 [1955]; hence-
forth LSLT) was developed along these lines as well; his notion of an evaluation metric
for grammars was equivalent in its essential purpose to the description length of the
morphology utilized in the present paper. The primary difference between the LSLT
approach and the MDL approach is this: the LSLT approach conjectured that the gram-
mar of a language could be factored into two parts, one universal and one language-
particular; and when we look for the simplest grammatical description of a given
corpus (the child’s input) it is only the language-particular part of the description that
contributes to complexity—that is what the theory stipulates. By contrast, the MDL
approach makes minimal universal assumptions, and so the complexity of everything
comprising the description of the corpus must be counted in determining the complex-
ity of the description. The difference between these hypotheses vanishes asymptotically
(as Janos Simon has pointed out to me) as the size of the language increases, or to put it
another way, strong Chomskian rationalism is indistinguishable from pure empiricism
as the information content of the (empiricist) MDL-induced grammar increases in size
relative to the information content of UG. Rephrasing that slightly, the signi�cance
of Chomskian-style rationalism is greater, the simpler language-particular grammars
are, and it is less signi�cant as language-particular grammars grow larger, and in the
limit, as the size of grammars grows asymptotically, traditional generative grammar
is indistinguishable from MDL-style rationalism. We return to this point below.

There is a striking point that has so far remained tacit regarding the treatment
of this problem in contemporary linguistic theory. That point is this: the problem ad-
dressed in this paper is not mentioned, not de�ned, and not addressed. The problem
of dividing up words into morphemes is generally taken as one that is so trivial and
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devoid of interest that morphologists, or linguists more generally, simply do not feel
obliged to think about the problem.34 In a very uninteresting sense, the challenge pre-
sented by the present paper to current morphological theory is no challenge at all,
because morphological theory makes no claims to knowing how to discover morpho-
logical analysis; it claims only to know what to do once the morphemes have been
identi�ed.

The early generative grammar view, as explored in LSLT, posits a grammar of
possible grammars, that is, a format in which the rules of the morphology and syntax
must be written, and it establishes the semantics of these rules, which is to say, how
they function. This grammar of grammars is called variously Universal Grammar, or
Linguistic Theory, and it is generally assumed to be accessible to humans on the basis
of an innate endowment, though one need not buy into that assumption to accept
the rest of the theory. In Syntactic Structures (Chomsky 1957, 51ff.), Chomsky famously
argued that the goal of a linguistic theory that produces a grammar automatically,
given a corpus as input, is far too demanding a goal. His own theory cannot do that,
and he suggests that no one else has any idea how to accomplish the task. He suggests
furthermore that the next weaker position—that of developing a linguistic theory that
could determine, given the data and the account (grammar), whether this was the best
grammar—was still signi�cantly past our theoretical reach, and he suggests �nally that
the next weaker position is a not unreasonable one to expect of linguistic theory: that
it be able to pass judgment on which of two grammars is superior with respect to a
given corpus.

That position is, of course, exactly the position taken by the MDL framework,
which offers no help in coming up with analyses, but which is excellent at judging the
relative merits of two analyses of a single corpus of data. In this paper, we have seen
this point throughout, for we have carefully distinguished between heuristics, which
propose possible analyses and modi�cations of analyses, on the one hand, and the
MDL measurement, which makes the �nal judgment call, deciding whether to accept
a modi�cation proposed by the heuristics, on the other.

On so much, the early generative grammar of LSLT and MDL agree. But they
disagree with regard to two points, and on these points, MDL makes clearer, more
explicit claims, and both claims appear to be strongly supported by the present study.
The two points are these: the generative view is that there is inevitably an idiosyn-
cratic character to Universal Grammar that amounts to a substantive innate capacity,
on the grounds (in part) that the task of discovering the correct grammar of a human
language, given only the corpus available to the child, is insurmountable, because this
corpus is not suf�cient to home in on the correct grammar. The research strategy asso-
ciated with this position is to hypothesize certain compression techniques (generally
called “rule formalisms” in generative grammar) that lead to signi�cant reduction in
the size of the grammars of a number of natural languages, compared to what would
have been possible without them. Sequential rule ordering is one such suggestion
discussed at length in LSLT.

To reformulate this in a fashion that allows us to make a clearer comparison with
MDL, we may formulate early generative grammar in the following way: To select
the correct Universal Grammar out of a set of proposed Universal Grammars UGi ,
given corpora for a range of human languages, select that UG for which the sum of the
sizes of the grammars for all of the corpora is the smallest. It does not follow—it need not
be the case—that the grammar of English (or German, etc.) selected by the winning

34 Though see Dobrin (1999) for a sophisticated look at this problem.
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UG is the shortest one of all the candidate English grammars, but the winning UG is
all-round the supplier of the shortest grammars around the world.35

MDL could be formulated in those terms, undoubtedly, but it also can be formu-
lated in a language-particular fashion, which is how it has been used in this paper.
Generative grammar is inherently universalist; it has no language-particular format,
other than to say that the best grammar for a given language is the shortest grammar.

But we know that such a position is untenable, and it is precisely out of that
knowledge that MDL was born. The position is untenable because we can always
make an arbitrarily small compression of a given set of data, if we are allowed to
make the grammar arbitrarily complex, to match and, potentially, to over�t the data,
and it is untenable because generative grammar offers no explicit notion of how well
a grammar must match the training data. MDL’s insight is that it is possible to make
explicit the trade-off between complexity of the analysis and snugness of �t to the
data-corpus in question.

The �rst tool in that computational trade-off is the use of a probabilistic model
to compress the data, using stock tools of classical information theory. These notions
were rejected as irrelevant by early workers in early generative grammar (Goldsmith
2001). Notions of probabilistic grammar due to Solomonoff (1995) were not integrated
into that framework, and the possibility of using them to quantify the goodness of �t
of a grammar to a corpus was not exploited.

It seems to me that it is in this context that we can best understand the way
in which traditional generative grammar and contemporary probabilistic grammar
formalism can be understood as complementing each other. I, at least, take it in that
way, and this paper is offered in that spirit.

Appendix

Since what we are really interested in computing is not the minimum description
length as such, but rather the difference between the description length of one model
and that of a variant, it is convenient to consider the general form of the difference
between two MDL computations. In general, let us say we will compare two analyses
S1 and S2 for the same corpus, where S2 typically contains some item(s) that S1 does
not (or they may differ by where they break a string into factors). Let us write out the
difference in length between these two analyses, as in (7)–(11), calculating the length
of S1 minus the length of S2. The general formulas derived in (7)–(11) are not of direct
computational interest; they serve rather as a template that can be �lled in to compute
the change in description length occasioned by a particular structural change in the
morphology proposed by a particular heuristic. This template is rather complex in
its most general form, but it simpli�es considerably in any speci�c application. The
heuristic determines which of the terms in these formulas take on nonzero values,
and what their values are; the overall formula determines whether the change in
question improves the description length. In addition, we may regard the formulas in

35 As the discussion in the text may suggest, I am skeptical of the generative position, and I would like to
identify what empirical result would con�rm the generative position and dissolve my skepticism. The
result would be the discovery of two grammars of English, G1 and G2, with the following properties:

G1 is inherently simpler than G2, using some appropriate notion of Turing machine program
complexity, and yet G2 is the correct grammar of English, based on some of the complexity of G2 being
the responsibility of linguistic theory, hence “free” in the complexity competition between G1 and G2.
That is, the proponent of the generative view must be willing to acknowledge that overall complexity
of the grammar of a language may be greater than logically necessary due to evolution’s investment in
one particular style of programming language.
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(7)–(11) as offering us an exact and explicit statement of how a morphology can be
improved.

The notation can be considerably simpli�ed if we take some care in advance.
Note �rst that in (7) and below, several items are subscripted to indicate whether they
should be counted as in S1 or S2. Much of the simpli�cation comes from observing,
�rst, that

log
M1

x
log

M2

y
log

M1

M2
log

x

y
;

second, that this difference is generally computed inside a summation over a set of
morphemes, and hence the �rst term simpli�es to a constant times the type count of
the morphemes in the set in question. Indeed, so prevalent in these calculations is the
formula

log
x 1

x 2

that the introduction of a new abbreviation considerably simpli�es the notation. We
use x to denote

log
x 1

x 2
,

where the numerator is a count in S1, and the denominator a count of the same variable
in S2; if no confusion would result, we write x.36

Let us review the terms listed in (7)–(11). W is a measure of the change in the
number of total words due to the proposed modi�cation (the difference between the S1

and S2 analyses); an increase in the total number of words results in a slightly negative
value. In the text above, I indicated that we could, by judicious choice of word count
distribution, keep W1 = W2; I have included the more general case in (7)–(11) where
the two may be different. WS and WC are similar measures in the change of words
that have morphologically simple, and morphologically complex, stems, respectively.
They measure the global effects of the typically small changes brought about by a
hypothetical change in morphological model. In the derivation of each formula, we
consider �rst the case of those morphemes that are found in both S1 and S2 (indicated
(S1, S2)), followed by those found only in S1 (S1, S2), and then those only found in
S2 ( S1, S2). Recall that angle brackets are used to indicate the type count of a set, the
number of typographically distinct members of a set.

In (8), we derive a formula for the change in length of the suf�x component of
the morphology. Observe the �nal formulation, in which the �rst two terms involve
suf�xes present in both S1 and S2, while the third term involves suf�xes present only
in S1 and the fourth term involves suf�xes present only in S2. This format will appear
in all of the components of this computation. Recall that the function Ltypo speci�es
the length of a string in bits, which we may take here to be simply log 26 times the
number of characters in the string.

In (9), we derive the corresponding formula for the stem component.
The general form of the computation of the change to the signature component

(10) is more complicated, and this complexity motivates a little bit more notation to
simplify it. First, we can compute the change in the pointers to the signatures, and the
information that each signature contains regarding the count of its stems and suf�xes

36 We beg the reader’s indulgence in recognizing that we prepend the operator immediately to the left
of the name of a set to indicate the change in the size of the counts of the set, which is to say, “ W” is
shorthand for “ ([W])”, and “ W ” for “ W ”.
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as in (10a). But the heart of the matter is the treatment of the stems and suf�xes within
the signatures, given in (10b)–(10d).

Bear in mind, �rst of all, that each signature consists of a list of pointers to stems,
and a list of pointers to suf�xes. The treatment of suf�xes is given in (10d), and is
relatively straightforward, but the treatment of stems (10c) is a bit more complex.
Recall that all items on the stem list will be pointed to by exactly one stem pointer,
located in some particular signature. All stem pointers in a signature that point to
stems on the suf�x list are directly described a “simple” word, a notion we have
already encountered: a word whose stem is not further analyzable. But other words
may be complex, that is, may contain a stem whose pointer is to an analyzable word,
and hence the stem’s representation consists of a pointer triple: a pointer to a signature,
a stem within the signature, and a suf�x within the signature. And each stem pointer
is preceded by a �ag indicating which type of stem it is.

We thus have three things whose difference in the two states, S1 and S2, we wish
to compute. The difference of the lengths of the �ag is given in (10c.i). In (10c.ii), we
need change in the total length of the pointers to the stems, and this has actually
already been computed, during the computation of (9).37 Finally in (10c.iii), the set of
pointers from certain stem positions to words consists of pointers to all of the words
that we have already labeled as being in WC, and we can compute the length of these
pointers by adding counts to these words; the length of the pointers to these words
needs to be computed anyway in determining the compressed length of the corpus.
This completes the computations needed to compare two states of the morphology.

In addition, we must compute the difference in the compressed length of the
corpus in the two states, and this is given in (11).

(7) Differences in description length due to organizational information:

Suf�xes Stems Signatures

(8) Difference in description length for suf�x component of the morphology:

W Suf�xes 1,2

f 1,2

f
f 1, 2

log
W 1

f
L f

f 1,2

log
W 2

f
L f

(9) Difference in description length for stem component of the morphology:

W 1,2

t 1,2

t
t 1, 2

log
W 1

t
L t

t 1,2

log
W 2

t
L t

37 The equivalence between the number computed in (9) and the number needed here is not exactly
fortuitous, but it is not an error either. The �gure computed in (9) describes an aspect of the complexity
of the morphology as a whole, whereas the computation described here in the text is what it is because
we have made the assumption that each stem occurs in exactly one signature. That assumption is not,
strictly speaking, correct in natural language; we could well imagine an analysis that permitted the
same stem to appear in several distinction signatures, and in that case, the computation here would not
reduce to (9). But the assumption made in the text is entirely reasonable, and simpli�es the
construction for us.
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(10) Difference in description length for the signature component of the morphology:

(a) + (b) + (c) + (d)

(a) Change in size of list of pointers to the signatures,

W 1,2

1,2

1, 2

log
W 1

1,2

log
W 2

(b) Change in counts of stems and suf�xes within each signature, summed
over all signatures:

1,2

stems suf�xes

1, 2

log stems log suf�xes

1,2

log stems log suf�xes

(c) Change in the lengths of the stem pointers within the signatures (c.i)
(c.ii) (c.iii), as follows:

(c.i) Change in total length of �ags for each stem indicating whether
simple or complex:

W 1,2 ( W W )

W 1,2 ( W W )

W 1, 2 log
W 1

W 1

W 1,2 log
W 2

W 2

W 1, 2 log
W 1

W 1

W 1,2 log
W 2

W 2

(c.ii) Set of simple stems, change of pointers to stems:

W Stems 1,2

t 1,2

t
t 1, 2

log
W 1

t
t 1,2

log
W 2

t

(c.iii) Change in length of pointers to complex stems from within
signatures:

W W 1,2

w W 1,2

stem w
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w W
1, 2

log
W 1

stem w 1
w W

1,2

log
W 2

stem w 2

w W

w suff w in w

w W
1, 2

log
w

suff w in w

w W
1,2

log
w

suff w in w

(d) Change in size of suf�x information in signatures:

1,2 f

f

1, 2 f

log
f in

1,2 f

log
f in

(11) Change in compressed length of corpus

W W
w WA 1,2

w stem w suf�x w w w

w WUN 1,2

w w

w WA 1, 2

w log
stem w 1 suf�x w 1 w 1

w 1 w 2

w WA 1,2

w log
stem w 2 suf�x w 2 w 2

w 2 w 1
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