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Abstract. We propose a novel unsupervised learning approach to build
features suitable for object detection and classification. The features are
pre-trained on a large dataset without human annotation and later trans-
ferred via fine-tuning on a different, smaller and labeled dataset. The
pre-training consists of solving jigsaw puzzles of natural images. To facil-
itate the transfer of features to other tasks, we introduce the context-free

network (CFN), a siamese-ennead convolutional neural network. The fea-
tures correspond to the columns of the CFN and they process image tiles
independently (i.e., free of context). The later layers of the CFN then use
the features to identify their geometric arrangement. Our experimental
evaluations show that the learned features capture semantically relevant
content. We pre-train the CFN on the training set of the ILSVRC2012
dataset and transfer the features on the combined training and validation
set of Pascal VOC 2007 for object detection (via fast RCNN) and clas-
sification. These features outperform all current unsupervised features
with 51.8 % for detection and 68.6 % for classification, and reduce the
gap with supervised learning (56.5 % and 78.2 % respectively).

Keywords: Unsupervised learning · Image representation learning ·
Self-supervised learning · Feature transfer

1 Introduction

Visual tasks, such as object classification and detection, have been successfully
approached through the supervised learning paradigm [1,10,23,33], where one
uses labeled data to train a parametric model. However, as manually labeled
data can be costly, unsupervised learning methods are gaining momentum.

Recently, Doersch et al. [9], Wang and Gupta [36] and Agrawal et al. [2]
have explored a novel paradigm for unsupervised learning called self-supervised
learning. The main idea is to exploit different labelings that are freely available
besides or within visual data, and to use them as intrinsic reward signals to learn
general-purpose features. [9] uses the relative spatial co-location of patches in
images as a label. [36] uses object correspondence obtained through tracking in
videos, and [2] uses ego-motion information obtained by a mobile agent such as
the Google car [7]. The features obtained with these approaches have been suc-
cessfully transferred to classification and detections tasks, and their performance
is very encouraging when compared to features trained in a supervised manner.
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(a) (b) (c)

Fig. 1. Learning image representations by solving jigsaw puzzles. (a) The image from
which the tiles (marked with green lines) are extracted. (b) A puzzle obtained by
shuffling the tiles. Some tiles might be directly identifiable as object parts, but others
are ambiguous (e.g., have similar patterns or belong to the background) and their
localization is much more reliable when all tiles are jointly evaluated. In contrast, with
reference to (c), determining the relative position between the central tile and the top
two tiles from the left can be very challenging [9]. (Color figure online)

A fundamental difference between [9] and [2,36] is that the former method
uses single images as the training set and the other two methods exploit mul-
tiple images related either through a temporal or a viewpoint transformation.
While it is true that biological agents typically make use of multiple images
and also integrate additional sensory information, such as ego-motion, it is also
true that single snapshots may carry more information than we have been able
to extract so far. This work shows that this is indeed the case. We introduce
a novel self-supervised task, the jigsaw puzzle reassembly problem (see Fig. 1),
which builds features that yield high performance when transferred to detection
and classification tasks.

We argue that solving jigsaw puzzles can be used to teach a system that an
object is made of parts and what these parts are. The association of each sepa-
rate puzze tile to a precise object part might be ambiguous. However, when all
the tiles are observed, the ambiguities might be eliminated more easily because
the tile placement is mutually exclusive. This argument is supported by our
experimental validation. Training a jigsaw puzzle solver takes about 2.5 days
compared to 4 weeks of [9]. Also, there is no need to handle chromatic aber-
ration or to build robustness to pixelation. Moreover, the features are highly
transferrable to detection and classification and yield the highest performance
to date for an unsupervised method. In object classification these features lead
to the best accuracy (38.1%) when compared to other existing features trained
via self-supervised learning on the ILSVRC2012 dataset [8]. Moreover, these fea-
tures used as pre-training in the Fast R-CNN pipeline [14] achieve 51.8% mAP
for detection and 68.6% for classification on PASCAL VOC 2007. This perfor-
mance is close to that obtained in the supervised case by AlexNet [23] (56.5%
mAP for detection and 78.2% in classification).
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2 Related Work

This work falls in the area of representation/feature learning, which is an unsu-
pervised learning problem [3]. Representation learning is concerned with building
intermediate representations of data useful to solve machine learning tasks. It
also involves transfer learning [37], as one repurposes features that have been
learned by solving the jigsaw puzzle to other tasks such as object classification
and detection. In our experiments we do so via the pre-training + fine-tuning
scheme, as in prior work [2]. Pre-training corresponds to the feature learning that
we obtain with our jigsaw puzzle solver. Fine-tuning is instead the process of
updating the weights obtained during pre-training to solve another task (object
classification or detection).

Unsupervised Learning. There is a rich literature in unsupervised learning
of visual representations [5]. Most techniques build representations by exploit-
ing general-purpose priors such as smoothness, sharing of factors, factors orga-
nized hierarchically, belonging to a low-dimension manifold, temporal and spatial
coherence, and sparsity. In this work we represent objects as a collection of parts
(tiles) and design features to separate two factors: appearance and arrangement
(geometry) of the parts.

Because of the relevance to contemporary research and to this work, we
discuss mainly methods in deep learning. In general one can group unsuper-
vised learning methods into: probabilistic, direct mapping (autoencoders), and
manifold learning ones. Probabilistic methods divide variables of a network into
observed and latent ones. Learning is then associated with determining model
parameters that maximize the likelihood of the latent variables given the obser-
vations. A family of popular probabilistic models is the Restricted Boltzmann
Machine (RBM) [16,34], which makes training tractable by imposing a bipar-
tite graph between latent and observed variables. Unfortunately, these models
become intractable when multiple layers are present and are not designed to pro-
duce features in an efficient manner. The direct mapping approach focuses on
the latter aspect and is typically built via autoencoders [6,17,26]. Autoencoders
specify explicitly the feature extraction function (encoder) in a parametric form
as well as the mapping from the feature back to the input (decoder). These
direct mappings are trained by minimizing the reconstruction error between the
input and the output produced by the autoencoder (obtained by applying the
encoder and decoder sequentially). A remarkable example of a very large scale
autoencoder is the work of Le et al. [24]. Their results showed that robust human
and cat faces as well as human body detectors could be built without human
labeling.

If the data structure suggests that data points might concentrate around a
manifold, then manifold learning techniques can be employed [4,31]. This rep-
resentation allows to map directly smooth variations of the factors to smooth
variations of the observations. Some of the issues with manifold learning tech-
niques are that they might require computing nearest neighbors (which scales
quadratically with the number of samples) and that they need a sufficiently
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high density of samples around the manifold (and this becomes more difficult to
achieve with high-dimensional manifolds).

Self-supervised Learning. This learning strategy is a recent variation on the
unsupervised learning theme that exploits labeling that comes for “free” with
the data [2,9,36]. We make a distinction between labels that are easily accessible
and are associated with a non-visual signal (for example, ego-motion [2], but also
one could consider audio, text and so on), and labels that are obtained from the
structure of the data [9,36]. Our work relates to the latter case as we simply
re-use the input images and exploit the pixel arrangement as a label.

Doersch et al. [9] train a convolutional network to classify the relative position
between two image patches. One tile is kept in the middle of a 3 × 3 grid and
the other tile can be placed in any of the other 8 available locations (up to some
small random shift). In Fig. 1(c) we show an example where the relative location
between the central tile and the top-left and top-middle tiles is ambiguous. In
contrast, the jigsaw puzzle problem is solved by observing all the tiles at the
same time. This allows the trained network to intersect all ambiguity sets and
possibly reduce them to a singleton.

The method of Wang and Gupta [36] builds a metric to define similar-
ity between patches. Three patches are used as input, where two patches are
matched via tracking in a video and the third one is arbitrarily chosen. The
main advantage of this method is that labeling requires just using a tracking
method (they use SURF interest points to detect initial bounding boxes and
then tracking via the KCF method [15]). The matched patches will have some
intraclass variability due to changes in illumination, occlusion, viewpoint, pose,
occlusions, and clutter factors. However, the choice of the third frame is crucial
to learn non trivial features. If the third frame is too easily distinguishable (e.g.,
the color histogram is different) then the features might learn a simple shortcut.

The method proposed by Agrawal et al. [2] exploits labeling (egomotion)
provided by other sensors. The advantage is that this labeling is freely avail-
able in most cases or is quite easy to obtain. They show that egomotion is a
useful supervisory signal when learning features. They train a siamese network
to estimate egomotion from two image frames and compare it to the egomotion
measured with odometry sensors. The trained features will build an invariance
similar to that of Wang and Gupta [36]. However, because the task is to deter-
mine egomotion, the learned features may need to exploit correspondence across
the two input frames and thus may focus on their similarities (such as color and
texture), which might not generalize well to a category. In contrast, the jigsaw
puzzle approach ignores similarities between tiles (such as color and texture), as
they do not help their localization, and focuses instead on their differences. In
Fig. 2 we illustrate this concept with two examples: Two cars that have different
colors and two dogs with different fur patterns. The features learned to solve
puzzles in one (car/dog) image will apply also to the other (car/dog) image as
they will be invariant to patterns shared across parts. The ability of the jigsaw
puzzle solver to cluster together object parts can be seen in the top 16 activations
shown in Fig. 4 and in the image retrieval samples in Fig. 5.
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Fig. 2. Most of the shape of these 2 pairs of images is the same (two separate instances
within the same categories). However, some low-level statistics are different (color and
texture). The jigsaw puzzle solver learns to ignore such statistics when they do not
help the localization of parts. (Color figure online)

Jigsaw Puzzles. Jigsaw puzzles have been associated with learning since their
inception. They were introduced in 1760 by John Spilsbury as a pretext to help
children learn geography. The first puzzle was a map attached to a wooden
board, which was then sawed in pieces corresponding to countries [35]. Studies
in Psychonomic show that jigsaw puzzles can be used to assess visuospatial
processing in humans [30]. Indeed, the Hooper Visual Organization Test [18] is
routinely used to measure an individual’s ability to organize visual stimuli. This
test uses puzzles with line drawings of simple objects and requires the patient
to recognize the object without moving the tiles. Instead of using jigsaw puzzles
to assess someone’s visuospatial processing ability, in this paper we propose to
use jigsaw puzzles to develop a visuospatial representation of objects.

There is also a sizeable literature on solving jigsaw puzzles computationally
(see, for example, [12,28,29]). However, these methods rely on the shape of the
tiles or on texture especially in the proximity of the borders of the tiles. These
are cues that we avoid when training the jigsaw puzzle solver, as they do not
carry information that can generalize well to a part detector.

Recently, a new data initialization technique for training convolutional neural
networks by Krähenbühl et al. [22] has been applied to [2,9,36] with a remark-
able increase in performance for object detection on PASCAL VOC 2007. The
performance of the method of Doersch et al. [9] gains considerably with this data
initialization method, and goes from 46.6% mAP to 51.1% mAP, which however
is still below our 51.8% mAP performance. Moreover, our training time is quite
low: [9] takes 4 weeks while our method takes only 2.5 days (for completeness,
[36] takes 1 week and [2] takes 10 h).

3 Solving Jigsaw Puzzles

In the following sections we describe how we cast the jigsaw puzzle task so that
features suitable for object detection and classification are implicitly learned.

3.1 The Jigsaw Puzzle Task

In the jigsaw task, the input data is a collection of identical square tiles from
an image and the labels are permutations of these tiles taken from a predefined
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Algorithm 1. Generation of the maximal Hamming distance permutation set

Output: P

1: P̄ ← all permutations [P̄1, . . . , P̄9!] \\ P̄ is a 9 × 9! matrix

2: P ← ∅
3: j ∼ U [1, 9!] \\ uniform sample out of 9! permutations

4: i ← 1
5: repeat

6: P ← [P P̄j ] \\ add permutation P̄j to P

7: P̄ ← [P̄1, . . . , P̄j−1, P̄j+1, . . . ] \\ remove P̄j from P̄

8: D ← Hamming(P, P̄ ) \\ D is an i × (9! − i) matrix

9: D̄ ← 1T D \\ D̄ is a 1 × (9! − i) row vector

10: j ← arg maxk D̄k \\ D̄k denotes the k-th entry of D̄

11: i ← i + 1
12: until i ≤ 100

set S. For example, an image is divided in a 3 × 3 grid, where each tile corre-
sponds to a number from 1 to 9 (see Fig. 3). A permutation is an ordering of the
tiles, e.g., (9, 4, 6, 8, 3, 2, 5, 1, 7). We generate the set S via the greedy algorithm
shown in Algorithm 1 and never change it during or after training. A factor that
was found important to learn transferrable features is the Hamming distance
between the permutations (i.e., the number of different tile locations between 2
permutations S1, S2 ∈ S divided by 9). From our experimental validation, the
average Hamming distance seems to control the difficulty of the jigsaw puzzle
reassembly task, and to also correlate with the object detection performance. In
Table 4 we compare 3 choices for the Hamming distance: minimal, middle and
maximal. For the minimal and middle case, the arg maxk function at line 10 is
replaced by arg mink and uniform sampling respectively. From those tests we
can see that large Hamming distances are desirable.

Although there are 9! = 362,880 possible permutations with 9 tiles, it turns
out that it is not necessary to consider the whole space of permutations. We have
found out experimentally that increasing the cardinality of S beyond 100 does
not improve any performance. Indeed, by setting |S| = 1000 the CFN-9(middle)
(3 × 3 grid with middle case for the Hamming distance) can solve puzzles with
an accuracy of 85%, achieves the classification performance of 38% on ILSRVC
2012 [8] with all layers locked (see Table 2), and takes 2.5 days to train (notice
that only the last layer changes with the size of S and the training dataset size
does not change). Thus, in all the experiments below we fix |S| = 100.

3.2 The Context-Free Architecture

Jigsaw puzzles can be solved by matching low-level statistics (e.g., structural
patterns or texture) close to the boundaries of adjacent tiles, that is, by ignoring
the inner contents of the tiles. While these are cues that humans often use to solve
jigsaw puzzles, they do not lead to a complete representation of the global object,
which is necessary for object classification. Thus, here we present a network that
delays the computation of statistics across different tiles (see Fig. 3). The network
first computes features based only on the pixels within each tile (one row on the
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Fig. 3. Context Free Network. The figure illustrates how a puzzle is generated and
solved. We randomly crop a 225×225 pixel window from image (red dashed box), divide
it into a 3 × 3 grid, and randomly pick a 64 × 64 pixel tiles from each 75 × 75 pixel
cell. These 9 tiles are reordered via a randomly chosen permutation from a predefined
permutation set and are then fed to the CFN. The task is to predict the index of the
chosen permutation (technically, we define as output a probability vector with 1 at the
64-th location and 0 elsewhere). CFN is a siamese-ennead CNN. For simplicity, we do
not indicate the max-pooling and ReLU layers. These shared layers are implemented
exactly as in AlexNet [23]. The only difference is that we set the stride of the first layer
to 2 instead of 4. (Color figure online)

right-hand side of Fig. 3). Then, it finds the parts arrangement just by using
these features (fc7 and fc8 in Fig. 3). The objective is to force the network to
learn features that are as representative and discriminative as possible of each
object part for the purpose of determining their relative location.

Towards this goal we build a siamese-ennead convolutional network (see
Fig. 3) where each row up to the first fully connected layer (fc6 ) uses the AlexNet
architecture [23] with shared weights. Similar schemes were used in prior work
[2,9,36]. The outputs of all fc6 layers are concatenated and given as input to
fc7. All the layers in the rows share the same weights up to and including fc6.

We call this architecture the context-free network (CFN) because the data
flow of each patch is explicitly separated until the fully connected layer and con-
text is handled only in the last fully connected layers. We verify that this archi-
tecture performs as well as AlexNet in the classification task on the ILSVRC2012
dataset [8]. In this test we resize the input images to 225×225 pixels, split them
into a 3× 3 grid and then feed the full 75× 75 tiles to the network. We find that
the CFN achieves 57.1% top-1 accuracy while AlexNet achieves 57.4% top-1
accuracy (see Table 2). Thus, limiting the receptive field of fc6 to a tile does not
significantly affect the performance in classification.

3.3 Training the CFN

The output of the CFN can be seen as the conditional probability density func-
tion (pdf) of the spatial arrangement of object parts (or scene parts) in a part-
based model, i.e.,
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p(S|A1, A2, . . . , A9) = p(S|F1, F2, . . . , F9)
9∏

i=1

p(Fi|Ai) (1)

where S ∈ S is the configuration of the tiles, {Ai}i=1,...,9 form the appearance
of an object, and {Fi}i=1,...,9 form the intermediate feature representation. In
our CFN (see Fig. 3), Ai corresponds to the RGB tile fed to the i-th row, Fi

corresponds to the output of fc6 in the i-th row, and p(S|F1, F2, . . . , F9) is the
output of the softmax layer. Our objective is to train the CFN so that the features
Fi have semantic attributes that can identify the relative position between parts.

Given the limited amount of data that we can use to build an approximation
of this very high-dimensional pdf, close attention must be paid to the training
strategy. One problem is when the CFN learns to associate each appearance Ai

to an absolute position. In this case, the features Fi would carry no semantic
meaning, but just information about an arbitrary 2D position. This problem
could happen if we generate just 1 jigsaw puzzle per image. Then, the CFN
could learn to cluster patches only based on their absolute position in the puzzle,
and not on their textural/structural content. If we write the configuration S as
a list of tile positions S = (L1, . . . , L9) then in this case the conditional pdf
p(S|F1, F2, . . . , F9) would factorize into independent terms

p(L1, . . . , L9|F1, F2, . . . , F9) =
9∏

i=1

p(Li|Fi) (2)

where each tile location Li is fully determined by the corresponding feature Fi.
The CFN would not have learned the correlation between different tiles.

To avoid these issues we feed multiple jigsaw puzzles of the same image to the
CFN (an average of 69 out of 100 possible puzzle configurations) and make sure
that the tiles are shuffled as much as possible by choosing configurations with
sufficiently large average Hamming distance. In this way the same tile would have
to be assigned to multiple positions (possibly all 9) thus making the mapping of
features Fi to any absolute position equally likely.

As mentioned earlier on, we also leave a random gap between the tiles to
discourage the CFN from learning low-level statistics. This was also done in
[9]. During training we resize each input image until either the height or the
width matches 256 pixels and preserve the original aspect ratio. Then, we crop
a random region from the resized image of size 225 × 225 and split it into a
3 × 3 grid of 75 × 75 pixels tiles. We then extract a 64 × 64 region from each tile
by introducing random shifts and feed them to the network. Thus, we have an
average gap of 11 pixels between the tiles. However, the gaps may range from a
minimum of 0 pixels to a maximum of 22 pixels.

No color dropping or filling image channels with noise was needed. We used
Caffe [21] and modified the code to choose random image patches and permuta-
tions during the training time. This allowed us to keep the dataset small (1.3 M
images from ImageNet) and the training efficient, while the CFN could see an
average of 69 different puzzles per image (that is about 90 M different jigsaw
puzzles).
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3.4 Implementation Details

We use stochastic gradient descent without batch normalization [19] on one
Titan X GPU. The training uses 1.3M color images of 256 × 256 pixels and
mini-batches with a batch size of 256 images. We preserve the aspect ratio of
the original images by resizing them until the smallest between their height and
width matches 256 pixels. Then, the other dimension is cropped to 256 pixels.
The training converges after 350K iterations with a basic learning rate of 0.01
and takes 59.5 h in total (∼2.5 days). If we take 122% = 3072cores@1000 Mhz

2880cores@875 Mhz =
6,144GFLOPS
5,040GFLOPS as the best possible performance ratio between the Titan X and

the Tesla K40 (used for [9]) we can predict that the CFN would have taken
∼72.5 h (∼3 days) on a Tesla K40. We compute that on average each image is
used 350K × 256/1.3M ≃ 69 times.

3.5 CFN Filter Activations

Some recent work has devoted efforts towards the visualization of CNNs to better
understand how they work and how we can exploit them [20,25,32,38]. Some of
these works and also Google Inceptionism1 aim at obtaining the input image that
best represents a category according to a given neural network. This has shown
that CNNs retain important information about the categories. Here instead we
analyze the CFN by considering the units at each layer as object part detectors as
in [13]. We extract 1M patches from the ImageNet validation set (20 randomly
sampled 64 × 64 patches) and feed them as input to the CFN. At each layer
(conv1, conv2, conv3, conv4, conv5) we consider the outputs of one channel
and compute their ℓ1 norm. We then rank the patches based on the ℓ1 norm
and select the top 16 ones that belong to different images. Since each layer has
several channels, we hand-pick the 6 most significant ones. In Fig. 4 we show
the top-16 activation patches for only 6 channels per layer. These activations
show that the CFN features correspond to patterns sharing similar shapes and
that there is a good correspondence based on object parts (in particular see the
conv4 activations for dog parts). Some channels seem to be good face detectors
(see conv3, but the same detectors can be seen in other channels, not shown,
in conv4 and conv5) and others seem to be good texture detectors (e.g., grass,
water, fur). In Fig. 4(f) we also show the filters of the conv1 layer of the CFN.
Because of the green-magenta bias, our conv1 filters seem to be also sensitive to
chromatic aberration [9]. However, it appears as though this bias does not affect
the performance when features are transferred to detection and classification
tasks (see next section).

1 See http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-
neural.html.

http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html
http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html
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(a) conv1 activations (b) conv2 activations

(c) conv3 activations (d) conv4 activations

(e) conv5 activations (f) conv1 filters

Fig. 4. Visualization of the top 16 activations for 6 units of the conv1, conv2, conv3,
conv4, conv5 layers in our CFN. (f) we show the filters of conv1, which show a green-
magenta bias. The selection of the top activations is identical to the visualization
method of Girshick et al. [13], except that we compute the average response rather
than the maximum. We show some of the most significant units. We can see that in
the first (a) and second (b) layers the filters specialize on different types of textures. On
the third layer (c) the filters become more specialized and we have a first face detector
(later layers will also have face detectors in some units) and some part detectors (e.g.,
the bottom corner of the butterflies wing). On the fourth layer (d) we have already
quite a number of part detectors. We purposefully choose all the dog part detectors:
head top, head center, neck, back legs, and front legs. Notice the intraclass variation
of the parts. Lastly, the fifth convolutional layer (e) has some other part detectors and
some scene part detectors. (Color figure online)

4 Experiments

We evaluate our learned features by using transfer learning [37] on the object
classification task on ImageNet and as pre-trained weights for classification and
detection tasks on PASCAL VOC 2007 [11]. We also perform a novel experiment
to understand whether semantic classification is useful to solve jigsaw puzzles,
and thus to see how much object classification and jigsaw puzzle reassembly
tasks are related. We take the pre-trained AlexNet and transfer its features to
solve 3 × 3 jigsaw puzzles with permutations generated with the middle case
Hamming distance (which is used by the CFN-9(middle) in later sections). We
also use the same locking scheme as in [37] to see the transferability of features at
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Table 1. Transfer learning of AlexNet from a classification task to the jigsaw puzzle
reassembly problem. The j-th column indicates that all layers from conv1 to conv-j

were locked and all subsequent layers were randomly initialized and retrained. Notice
how the first 4 layers provide very good features for solving puzzles. This shows that
object classification and the jigsaw puzzle problems are related.

conv1 conv2 conv3 conv4 conv5

AlexNet [23] 88 87 86 83 74

Table 2. Comparison of classification results on validation set of ImageNet 2012.

conv1 conv2 conv3 conv4 conv5

CFN 57.1 56.0 52.4 48.3 38.1

Doersch et al. [9] 53.1 47.6 48.7 45.6 30.4
Wang and Gupta [36] 51.8 46.9 42.8 38.8 29.8
Random 48.5 41.0 34.8 27.1 12.0

different layers. The performance is shown in Table 1. Compared to the maximum
accuracy of the CFN-9(middle) (88%) we can see that semantic training is quite
helpful towards recognizing object parts. Indeed, the performance is very high
up to conv4. Finally, we also compare the CFN features with those of [9,36]
both qualitatively and quantitatively on image retrieval.

4.1 ImageNet Classification

Yosinski et al. [37] have shown that the last layers of AlexNet are specific to
the task and dataset used for training, while the first layers are general-purpose.
In the context of transfer learning, this transition from general-purpose to task-
specific determines where in the network one should extract the features. In this
section we try to understand where this transition occurs in the CFN. We repur-
pose the CFN, [9,36] to the classification task on the ImageNet 2012 dataset [8]
and Table 2 summarizes the results on the validation set. The analysis consists
of training each network with the labeled data from ImageNet 2012 by locking
a subset of the layers and by initializing the unlocked layers with random val-
ues. If we train AlexNet we obtain the reference maximum accuracy of 57.4%.
Our method achieves 38.1% when only fully connected layers are trained, which
is 7.0% higher than the next best performing algorithm [9]. There is a signifi-
cant improvement (from 38.1% to 48.3%) when the conv5 layer is also trained.
This shows that the conv5 layer starts to be specialized in the jigsaw puzzle
reassembly task.

4.2 Pascal VOC 2007 Classification and Detection

We use the CFN features for object detection, with Fast R-CNN [14], and clas-
sification tasks on PASCAL VOC 2007. For both tasks we use the same baseline
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Table 3. Results on PASCAL VOC 2007 Detection and Classification. The results of
the other methods are taken from Pathak et al. [27].

Method Pretraining time Supervision Classification Detection

Krizhevskyet al. [23] 3 days 1000 class labels 78.2 % 56.8 %

Wang and Gupta [36] 1 week motion 58.4 % 44.0 %

Doersch et al. [9] 4 weeks context 55.3 % 46.6 %

Pathak et al. [27] 14 h context 56.5 % 44.5 %

CFN-9(max) 2.5 days context 68.6 % 51.8 %

Table 4. Object detection results on Pascal VOC 2007 for different configurations of
the CFN. We compare the 2 × 2 grid (trained on all 24 permutations) and 3 × 3 grid
with different average Hamming distances. We can see that the 3 × 3 grid achieves
better results. Moreover, the average Hamming distance between permutations has a
direct impact on the performance of the learned features.

CFN-4 CFN-9(min) CFN-9(middle) CFN-9(max) CFN-sup

49.8 % 51.0 % 51.2 % 51.8 % 56.3 %

used by Krähenbühl et al. [22]. Because our fully connected layers are different
from those used in Fast R-CNN, we select one row of the CFN (up to conv5),
copy only the weights of the convolutional layers, and fill the fully connected lay-
ers with Gaussian random weights with mean 0.1 and standard deviation 0.001.
The results are summarized in Table 3.

We evaluate the impact of different configurations on the detection task in
Table 4. We consider two cases for the CFN pre-trained with the jigsaw puzzle
task: one based on a 2 × 2 grid (denoted CFN-4) and one based on a 3 × 3 grid
(denoted CFN-9). The average performance shows that CFN-9 learns better fea-
tures. We also analyze the impact of the average Hamming distance between
permutations on the detection task. We generate 3 cases for the average Ham-
ming distance: .45 (CFN-9(min)), .67 (CFN-9(middle)), and .88 (CFN-9(max)).
As shown in Table 4 the feature map extracted from CFN-9(max) is the best
performing one. We also use as a reference the CFN pre-trained on ImageNet
with labels and call it CFN-Sup in Table 4. This test is done only to show the full
potential of the network when trained in a supervised manner for classification.
Indeed, we get 56.3% mAP for detection which is almost the same as that of
AlexNet (56.5% mAP). CFN-9(max) features achieve 51.8% mAP in detection,
and 68.6% in classification, thus outperforming all other methods and reducing
the gap with features obtained with supervision.

4.3 Image Retrieval

We also evaluate the features qualitatively (see Fig. 5) and quantitatively (see
Fig. 6) for image retrieval with a simple image ranking.
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(a) (b) (c) (d) (e) (f)

Fig. 5. Image retrieval (qualitative evaluation). (a) query images; (b) top-4 matches
with AlexNet; (c) top-4 matches with the CFN; (d) top-4 matches with Doersch et al.

[9]; (e) top-4 matches with Wang and Gupta [36]; (f) top-4 matches with AlexNet with
random weights.
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Fig. 6. Image retrieval (quantitative evaluation). We compare the precision-recall for
image retrieval on the PASCAL VOC 2007. The ranking of the retrieved images is
based on the inner products between normalized features extracted from a pre-trained
AlexNet, the CFN, Doersch et al. [9], Wang and Gupta [36] and from AlexNet with
random weights. The performance of CFN and [9] are very similar when using this
simple ranking metric. When the metric is instead learned with two fully connected
layers, then we see that CFN features yield a clearly higher performance than all other
features from self-supervised learning methods (see Table 2).
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We find the nearest neighbors (NN) of pool5 features using the bounding
boxes of the PASCAL VOC 2007 test set as query and bounding boxes of the
trainval set as the retrieval entries. We discard bounding boxes with fewer than
10K pixels inside. In Fig. 5 we show some examples of image retrievals (top-4)
obtained by ranking the images based on the inner product between normalized
features of a query image and normalized features of the retrieval set. We can see
that the features of the CFN are very sensitive to objects with similar shape and
often these are within the same category. In Fig. 6 we compare CFN with the pre-
trained AlexNet, [9,36] and AlexNet with random weights. The precision-recall
plots show that [9] and CFN features perform equally well. However, the real
potential of CFN features is demonstrated when the feature metric is learned.
In Table 2 we can see how CFN features surpass other features trained in an
unsupervised way by a good margin. In that test the dataset (ImageNet) is
more challenging because there are more categories and the bounding box is not
used.

5 Conclusions

We have introduced the context-free network (CFN), a CNN whose features can
be easily transferred between detection/classification and jigsaw puzzle reassem-
bly tasks. The network is trained in an unsupervised manner by using the jigsaw
puzzle as a pretext task. We have built a training scheme that generates, on
average, 69 puzzles for 1.3 M images and converges in only 2.5 days. The key
idea is that by solving jigsaw puzzles the CFN learns to identify each tile as an
object part and how parts are assembled in an object. The learned features are
evaluated on both classification and detection and the experiments show that
we outperform the previous state of the art. More importantly, the performance
of these features is closing the gap with those learned in a supervised manner.
We believe that there is a lot of untapped potential in self-supervised learning
and in the future it will provide a valid help to costly human annotation. One
possible extension to this work is the use of a hierarchical-framework where each
tile can also provide a puzzle and thus represent not only parts within objects,
but also subparts within parts and placement of objects within a scene. The
puzzle solver could learn to solve all these cases at once.

Acknowledgements. We thank Philipp Krähenbühl for his assistance with the exper-
iments on Pascal VOC 2007 and for kindly evaluating our CFN weights on his config-
uration for classification with Pascal VOC 2007.
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