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ABSTRACT
Various data mining applications involve data objects of
multiple types that are related to each other, which can
be naturally formulated as a k-partite graph. However, the
research on mining the hidden structures from a k-partite
graph is still limited and preliminary. In this paper, we
propose a general model, the relation summary network, to
find the hidden structures (the local cluster structures and
the global community structures) from a k-partite graph.
The model provides a principal framework for unsupervised
learning on k-partite graphs of various structures. Under
this model, we derive a novel algorithm to identify the hid-
den structures of a k-partite graph by constructing a rela-
tion summary network to approximate the original k-partite
graph under a broad range of distortion measures. Experi-
ments on both synthetic and real data sets demonstrate the
promise and effectiveness of the proposed model and algo-
rithm. We also establish the connections between existing
clustering approaches and the proposed model to provide a
unified view to the clustering approaches.

Categories and Subject Descriptions: E.4 [Coding
and Information Theory]:Data compaction and compres-
sion; H.3.3[Information search and Retrieval]:Clustering;
I.5.3[Pattern Recognition]:Clustering.

General Terms: Algorithms.

Keywords: K-partite graph, Unsupervised learning, Clus-
tering, Relation summary network, Bregman divergence.

1. INTRODUCTION
Unsupervised learning approaches have traditionally fo-

cused on the homogeneous data objects, which can be rep-
resented either as a set of feature vectors or a homogeneous
graph with nodes of a single type. However, many examples
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of real-world data involve objects of multiple types that are
related to each other, which naturally form k-partite graphs
of heterogeneous types of nodes. For example, documents
and words in a corpus, customers and items in collabora-
tive filtering, transactions and items in market basket, as
well as genes and conditions in micro-array data all form a
bi-partite graph; documents, words, and categories in taxon-
omy mining, as well as Web pages, search queries, and Web
users in a Web search system all form a tri-partite graph;
papers, key words, authors, and publication venues in a sci-
entific publication archive form a quart-partite graph. In
such scenarios, using traditional approaches to cluster each
type of objects (nodes) individually may not work well due
to the following reasons.

First, to apply traditional clustering approaches to each
type of data objects individually, the relation information
needs to be transformed into feature vectors for each type
of objects. In general, this transformation results in high di-
mensional and sparse feature vectors, since after the trans-
formation the number of features for a type of objects is
equal to the number of all the objects which are possibly
related to this type of objects. For example, if we transform
the links between Web pages and Web users as well as search
queries into the features for the Web pages, this leads to a
huge number of features with sparse values for each Web
page. Second, traditional clustering approaches are unable
to tackle the interactions among the cluster structures of
different types of objects, since they cluster data of a single
type based on static features. Note that the interactions
could pass along the relations, i.e., there exists influence
propagation in a k-partite graph. Third, in some data min-
ing applications, users are not only interested in the local
cluster structure for each type of objects, but also the global
community structures involving multi-types of objects. For
example, in document clustering, in addition to document
clusters and word clusters, the relationship between docu-
ment clusters and word clusters is also useful information.
It is difficult to discover such global structures by clustering
each type of objects individually.

An intuitive attempt to mine the hidden structures from
k-partite graphs is applying existing graph partitioning ap-
proaches to k-partite graphs. This idea may work in some
special and simple situations. However, in general, it is in-
feasible. First, the graph partitioning theory focuses on find-
ing the best cuts of a graph under a certain criterion and it is



very difficult to cut different type of relations (links) simul-
taneously to identify different hidden structures for different
types of nodes. Second, by partitioning the whole k-partite
graph into m subgraphs, one actually assumes that all dif-
ferent types of nodes have the same number of clusters m,
which in general is not true. Third, by simply partitioning
the whole graph into disjoint subgraphs, the resulting hidden
structures are rough. For example, the clusters of different
types of nodes are restricted to one-to-one associations.

Therefore, mining hidden structures from k-partite graphs
has presented a great challenge to traditional unsupervised
learning approaches. In this study, first we propose a general
model, the relation summary network, to find the hidden
structures (the local cluster structures and the global com-
munity structures) from a k-partite graph. The basic idea is
to construct a new k-partite graph with hidden nodes, which
”summarize” the link information in the original k-partite
graph and make the hidden structures explicit, to approx-
imate the original graph. The model provides a principal
framework for unsupervised learning on k-partite graphs of
various structures. Second, under this model, based on the
matrix representation of a k-partite graph we reformulate
the graph approximation as an optimization problem of ma-
trix approximation and derive an iterative algorithm to find
the hidden structures from a k-partite graph under a broad
range of distortion measures. By iteratively updating the
cluster structures for each type of nodes, the algorithm takes
advantage of the interactions among the cluster structures of
different types of nodes and performs implicit adaptive fea-
ture reduction for each type of nodes. Experiments on both
synthetic and real data sets demonstrate the promise and
effectiveness of the proposed model and algorithm. Third,
we also establish the connections between existing cluster-
ing approaches and the proposed model to provide a unified
view to the clustering approaches.

2. RELATED WORK
Graph partitioning on homogeneous graphs has been stud-

ied for decades and a number of different approaches, such
as spectral approaches [6, 26, 11] and multilevel approaches
[5, 15, 19], have been proposed. However, the research on
mining cluster structures from k-partite graphs of heteroge-
neous types of nodes is limited. Several noticeable efforts
include [8, 18] and [13]. [8, 18] extends the spectral parti-
tioning based on normalized cut to a bi-partite graph. After
the deduction, spectral partitioning on the bi-partite graph
is converted to a singular value decomposition (SVD). [13]
partitions a star-structured k-partite graph based on semi-
definite programming. In addition to the restriction that
they are only applicable to the special cases of k-partite
graphs, all these algorithms have the restriction that the
numbers of clusters for different types of nodes must be
equal and the clusters for different types of objects must
have one-to-one associations.

The research on clustering multi-type interrelated objects
is also related to this study. Clustering on bi-type interre-
lated data objects, such as word-document data, is called co-
clustering or bi-clustering. Recently, co-clustering has been
addressed based on matrix factorization. Both [23] and [21]
model the co-clustering as an optimization problem involv-
ing a triple matrix factorization. [23] proposes an EM-like
algorithm based on multiplicative updating rules and [21]
proposes a hard clustering algorithm for binary data. [10]
extends the non-negative matrix factorization to symmet-
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Figure 1: A bi-partite graph (a) and its relation
summary network (b).

ric matrices and shows that it is equivalent to the Kernel
K-means and the Laplacian-based spectral clustering.

Some efforts on latent variable discovery are also related
to co-clustering. PLSA [16] is a method based on a mixture
decomposition derived from a latent class model. A two-
sided clustering model is proposed for collaborative filtering
by [17]. Information-theory based co-clustering has also at-
tracted attention in the literature. [12] extends the infor-
mation bottleneck (IB) framework [28] to repeatedly cluster
documents and then words. [9] proposes a co-clustering al-
gorithm to maximize the mutual information between the
clustered random variables subject to the constraints on the
number of row and column clusters. A more generalized co-
clustering framework is presented by [3] wherein any Breg-
man divergence can be used in the objective function.

Comparing with co-clustering, clustering on the data con-
sisting of more than two types of data objects has not been
well studied in the literature. Several noticeable efforts are
discussed as follows. [30] proposes a framework for cluster-
ing heterogeneous web objects, under which a layered struc-
ture with link information is used to iteratively project and
propagate the cluster results between layers. Similarly, [29]
presents an approach named ReCom to improve the cluster
quality of interrelated data objects through an iterative re-
inforcement clustering process. However, there is no sound
objective function and theoretical proof on the effectiveness
of these algorithms. [22] formulates multi-type relational
data clustering as collective factorization on related matri-
ces and derives a spectral algorithm to cluster multi-type
interrelated data objects simultaneously. The algorithm it-
eratively embeds each type of data objects into low dimen-
sional spaces and benefits from the interactions among the
hidden structures of different types of data objects.

To summarize, unsupervised learning on k-partite graphs
has been touched from different perspectives due to its high
impact in various important applications. Yet, systematic
research is still limited. This paper attempts to derive a
theoretically sound general model and algorithm for unsu-
pervised learning on k-partite graphs of various structures.

3. MODEL FORMULATION
In this section, we derive a general model based on graph

approximation to mine the hidden structures from a k-partite
graph.

Let us start with an illustrative example. Figure 1(a)
shows a bi-partite graph G = (V1, V2, E) where V1 = {v11,
. . . , v16} and V2 = {v21, . . . , v24} denote two types of nodes
and E denotes the edges in G. Even though this graph is
simple, it is non-trivial to discover its hidden structures. In
Figure 1(b), we redraw the original graph by adding two
sets of new nodes (called hidden nodes), S1 = {s11, s12, s13}
and S2 = {s21, s22}. Based on the new graph, the cluster
structures for each type of nodes are straightforward: V1



has three clusters, {v11, v12}, {v13, a14}, and {v15, v16}, and
V2 has two clusters, {v21, v22} and {v23, b24}. If we look at
the subgraph consisting of only the hidden nodes in Figure
1(b), we see that it provides a clear skeleton for the global
structure of the whole graph, from which it is clear how
the clusters of different types of nodes are related to each
other; for example, cluster s11 is associated with cluster s21

and cluster s12 is associated with both clusters s21 and s22.
In other words, by introducing the hidden nodes into the
original k-partite graph, both the local cluster structures
and the global community structures become explicit. Note
that if we apply a graph partitioning approach to the bi-
partite graph in Figure 1(a) to find its hidden structures, no
matter how we cut the edges, it is impossible to identify all
the cluster structures correctly.

Based on the above observations, we propose a model,
the Relation Summary Network (RSN), to mine the hidden
structures from a k-partite graph. The key idea of RSN is to
add a small number of hidden nodes to the original k-partite
graph to make the hidden structures of the graph explicit.
However, given a k-partite graph, we are not interested in an
arbitrary relation network. To ensure a relation summary
network to discover the desirable hidden structures of the
original graph, we must make RSN as ”close” as possible to
the original graph. In other words, we aim at an optimal
relation summary network, from which we can re-construct
the original graph as precisely as possible. Formally, we
define an RSN as follows.

Definition 1. Given a distance function D, a k-partite
graph G = (V1, . . . , Vm, E), and m positive integers, k1, . . . , km,
the relation summary network of G is a k-partite graph
Gs = (V1, ..., Vm, S1, ..., Sm, Es), which satisfies the follow-
ing conditions:

1. each instance node in Vi is adjacent to one and only
one hidden node from Si for 1 ≤ i ≤ m with unit
weight;

2. Si ∼ Sj in Gs if and only if Vi ∼ Vj in G for i 6= j and
1 ≤ i, j ≤ m;

3. Gs = arg minF D(G, F ),

where Si denotes a set of hidden nodes for Vi and |Si| = ki

for 1 ≤ i ≤ m; Si ∼ Sj denotes that there exist edges
between Si and Sj , and similarly Vi ∼ Vj ; F denotes any
k-partite graph (V1, ..., Vm, S1, ..., Sm, Ef ) satisfying Condi-
tion 1 and 2.

In Definition 1, the first condition implies that in an RSN,
the instance nodes (the nodes in Vi) are related to each other
only through the hidden nodes. Hence, a small number
of hidden nodes actually summarize the complex relations
(edges) in the original graph to make the hidden structures
explicit. Since in this study, our focus is to find disjoint clus-
ters for each type of nodes, the first condition restricts one
instance node to be adjacent to only one hidden node with
unit weight; however, it is easy to modify this restriction to
extend the model to other cases of unsupervised learning on
k-partite graphs. The second condition implies that if two
types of instance nodes Vi and Vj are (or are not) related
to each other in the original graph, then the corresponding
two types of hidden nodes Si and Sj in the RSN are (or are
not) related to each other. For example, Figure 2 shows a
tri-partite graph and its RSN. In the original graph Figure
2(a), V1 ∼ V2 and V1 ∼ V3, and hence S1 ∼ S2 and S1 ∼ S3
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Figure 2: A tri-partite graph (a) and its RSN (b)

in its RSN. The third condition states that the RSN is an
optimal approximation to the original graph under a certain
distortion measure.

Next, we need to define the distance between a k-partite
graph G and its RSN Gs. Without loss of generality, if
Vi ∼ Vj in G, we assume that edges between Vi and Vj

are complete (if there is no edge between vih and vjl, we
can assume an edge with weight of zero or other special
value). Similarly for Si ∼ Sj in Gs. Let e(vih, vjl) denote the
weight of the edge (vih, vjl) in G. Similarly let es(sip, sjq)
be the weight of the edge (sip, sjq) in Gs. In the RSN, a
pair of instance nodes vih and vjl are connected through a
unique path (vih, sip, sjq, vjl), in which es(vih, sip) = 1 and
es(sjq, vjl) = 1 according to Definition 1. The edge between
two hidden nodes (sip, sjq) can be considered as the ”sum-
mary relation” between two sets of instance nodes, i.e., the
instance nodes connecting with sip and the instance nodes
connecting with sjq. Hence, how good Gs approximates G
depends on how good es(sip, sjq) approximates e(vih, vjl) for
vih and vjl which satisfy es(vih, sip) = 1 and es(sjq, vjl) = 1,
respectively. Therefore, we define the distance between a k-
partite graph G and its RSN Gs as follows:

D(G, Gs) =
X
i,j

X
Vi∼Vj ,

vih∈Vi,vjl∈Vj ,

es(vih,sip)=1,

es(sjq,vjl)=1.

D(e(vih, vjl), e
s(sip, sjq)),

(1)
where 1 ≤ i, j ≤ m, 1 ≤ h ≤ |Vi|, 1 ≤ l ≤ |Vj |, 1 ≤ p ≤ |Si|,
and 1 ≤ q ≤ |Sj |.

Let us have an illustrative example. Assume that the
edges of the k-partite graph in Figure 1(a) have unit weights.
If there is no edge between vih and vjl, we let e(vih, vjl) = 0.
Similarly for its RSN in Figure 1(b). Assume that D is
the Euclidean distance function. Hence, based on Eq. (1),
D(G, Gs) = 0, i.e., from the RSN in Figure 1(b), we can
reconstruct the original graph in Figure 1(a) without any
error. For example, the path (v13, s12, s21, v22) in the RSN
implies that there is an edge between v13 and v22 in the
original graph such that e(v13, v22) = es(s12, s21). Follow-
ing this procedure, the original graph can be reconstructed
completely.

Note that different definitions of the distances between
two graphs lead to different algorithms. In this study, we fo-
cus on the definition given in Eq.(1). One of the advantages
of this definition is that it leads to a nice matrix representa-
tion for the distance between two graphs, which facilitates
to derive the algorithm.

Definition 1 and Eq. (1) provide a general model, the
RSN model, to mine the cluster structures for each type of
nodes in a k-partite graph and the global structures for the
whole graph. Compared with the traditional clustering ap-
proaches, the RSN model is capable of making use of the in-
teractions (direct or indirect) among the hidden structures
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Figure 3: The cluster structures of V2 and V3 affect
the similarity between v11 and v12 through the hid-
den nodes.

of different types of nodes, and through the hidden nodes
performing implicit and adaptive feature reduction to over-
come the typical high dimensionality and sparsity. Figure 3
shows an illustrative example of how the cluster structures
of two types of instance nodes affect the similarity between
two instance nodes of another type. Suppose that we are to
cluster nodes in V1 (only two nodes in V1 are shown in Fig-
ure 3(a)). Traditional clustering approaches determine the
similarity between v11 and v12 based on their link features,
[1, 0, 1, 0] and [0, 1, 0, 1], respectively, and hence, their sim-
ilarity is inappropriately considered as zero (lowest level).
This is a typical situation in a large graph with sparse links.
Now suppose that we have derived hidden nodes for V2 and
V3 as in Figure 3(b); through the hidden nodes the cluster
structures of V2 change the similarity between v11 and v12 to
1 (highest level), since the reduced link features for both v11

and v12 are [1, 1], which is a more reasonable result, since in
a sparse k-partite graph we expect that two nodes are sim-
ilar when they are connected to similar nodes even though
they are not connected to the same nodes. If we continue
this example, next, v11 and v12 are connected with the same
hidden nodes in S1 (not shown in the figure); then after the
hidden nodes for V1 are derived, the cluster structures of V2

and V3 may be affected in return. In fact, this is the idea of
the iterative algorithm to construct an RSN for a k-partite
graph, which we discuss in the next section.

4. ALGORITHM DERIVATION
In this section, we derive an iterative algorithm to find

the RSN (local optima) for a k-partite graph. It can be
shown that the RSN problem is NP-hard (the proof is omit-
ted here); hence it is not realistic to expect an efficient al-
gorithm to find the global optima.

First we reformulate the RSN problem based on the ma-
trix representation of a k-partite graph. Given a k-partite
G = (V1, . . . , Vm, E), the weights of edges between Vi and

Vj can be represented as a matrix A(ij) ∈ Rni×nj , where

ni = |Vi|, nj = |Vj |, and A
(ij)
hl denotes the weight of the

edge (vih, vjl), i.e., e(vih, vjl). Similarly in an RSN Gs =

(V1, . . . , Vm, S1, . . . , Sm, Es), B(ij) ∈ Rki×kj denotes the weights

of edges between Si and Sj , i.e., B
(ij)
pq denotes es(sip, sjq);

C(i) ∈ {0, 1}ni×ki denotes the weights of edges between

Vi and Si, i.e., C(i) is an indicator matrix such that if

es(vih, sip) = 1, then C
(i)
hp = 1. Hence, we represent a k-

partite as a set of matrices. Note that under the RSN model,
we do not use one graph affinity matrix to represent the
whole graph as in the graph partitioning approaches, which
may cause very expensive computation on a huge matrix.

Based on the above matrix representation, the distance
between two graphs in Eq. (1) can be formulated as the dis-
tances between a set of matrices and a set of matrix prod-

ucts. For example, for the two graphs shown in Figure 1,
D(G, Gs) = D(A(12), C(1)B(12)(C(2))T ); for the two graphs

shown in Figure 2, D(G, Gs) = D(A(12), C(1)B(12)(C(2))T )+

D(A(13), C(1)B(13)(C(3))T ). Hence, finding the RSN defined
in Definition 1 is equivalent to the following optimization
problem of matrix approximation (for convenience, we as-

sume that there exists A(ij) for 1 ≤ i < j ≤ m, i.e., every
pair of Vi and Vj are related to each other in G).

Definition 2. Given a distance function D , a set of matri-
ces {A(ij) ∈ Rni×nj}1≤i<j≤m representing a k-partite graph
G, and m positive integers, k1, . . . , km, the RSN Gs repre-
sented by {C(i) ∈ {0, 1}ni×ki}1≤i≤m and

{B(ij) ∈ Rki×kj}1≤i<j≤m is given by the minimization of

L =
X

1≤i<j≤m

D(A(ij), C(i)B(ij)(C(j))T ), (2)

subject to
Pki

k=1 C
(i)
hk = 1 for 1 ≤ h ≤ ni.

In the above definition, the constraint on C(i) is to re-
strict C(i) to be an indicator matrix, in which each row is
an indicator vector. In the definition, the distance between
two matrices D(X, Y ) denotes the sum of the distances of
each pair of elements, i.e., D(X, Y ) =

P
h,l D(Xhl, Yhl).

For the optimization problem in Definition 1 or Definition
2, there are many choices of distance functions, which im-
ply the different assumptions about the distribution of the
weights of the edges in the given k-partite graph. For ex-
ample, by using Euclidean distance function, we implicitly
assume the normal distribution for the weights of the edges.
Presumably for a specific distance function used in Defini-
tion 2, we need to derive a specific algorithm. However, a
large number of useful distance functions, such as Euclidean
distance, generalized I-divergence, and KL divergence, can
be generalized as the Bregman divergences [25, 4]. Based
on the properties of Bregman divergences, we derive a gen-
eral algorithm to minimize the objective function in Eq.(2)
under all the Bregman divergences. Table 1 shows a list
of Bregman divergences and their corresponding Bregman
convex functions. Note that Bregman divergences are non-
negative. The definition of a Bregman divergence is given
as follows.

Definition 3. Given a strictly convex function, φ : S 7→
R, defined on a convex set S ⊆ Rd and differentiable on
the interior of S, int(S), the Bregman divergence Dφ : S ×
int(S) 7→ [0,∞) is defined as

Dφ(x, y) = φ(x)− φ(y)− (x− y)T∇φ(y), (3)

where ∇φ is the gradient of φ.

We prove the following theorem which is the basis of our
algorithm.

Theorem 1. Assume that D in Definition 2 is a Breg-
man Divergence Dφ. If {C(i)}1≤i≤m and {B(ij)}1≤i<j≤m

are the optimal solution to the minimization in Definition
2, then

(C(i))T (C(i)B(ij)(C(j))T −A(ij))C(j) = 0 (4)

for 1 ≤ i < j ≤ m.

Proof. For convenience we use Y to denote C(i)B(ij)(C(j))T ,
ζ(x) to denote ∇φ(x), ξ(x) to denote ∇2φ(x).



Name Dφ(x, y) φ(x) Domain

Euclidean distance ||x− y||2 ||x||2 Rd

Generalized I-divergence
Pd

i=1 xi log(xi
yi

)−Pd
i=1(xi − yi)

Pd
i=1 xi log(xi) Rd

+

Logistic loss x log(x
y
) + (1− x) log( 1−x

1−y
) x log(x) + (1− x) log(1− x) {0, 1}

Itakura-Saito distance x
y
− log xy − 1 − log x (0,∞)

Hinge loss max{0,−2sign(−y)x} |x| R \ {0}
KL-divergence

Pd
i=1 xi log(xi

yi
)

Pd
i=1 xi log(xi) d-Simplex

Mahalanobis distance (x− y)T A(x− y) xT Ax Rd

Table 1: A list of Bregman divergences and the corresponding convex functions.

We compute the gradient ∇B(ij)L, where 1 ≤ i < j ≤ m
and L denotes the objective function in Eq.(2). Using the

fact that ∂Yhl/∂B
(ij)
pq = C

(i)
hp C

(j)
lq , we see that ∂L/∂B

(ij)
pq is

given by

∂

∂B
(ij)
pq

{
X
h,l

φ(A
(ij)
hl )− φ(Yhl)− (A

(ij)
hl − Yhl)ζ(Yhl)}

=
X
h,l

−ζ(Yhl)C
(i)
hp C

(j)
lq −A

(ij)
hl ξ(Yhl)C

(i)
hp C

(j)
lq +

+C
(i)
hp C

(j)
lq ζ(Yhl) + Yhlξ(Yhl)C

(i)
hp C

(j)
lq

=
X
h,l

ξ(Yhl)(YhlC
(i)
hp C

(j)
lq −A

(ij)
hl C

(i)
hp C

(j)
lq ) (5)

= [(C(i))T (ξ(Y )¯ (Y −A(ij)))C(j)]pq (6)

where ¯ denotes the Hadamard product or entrywise prod-
uct of two matrices. By Eq.(6), we have

∇B(ij)L = (C(i))T (ξ(Y )¯ (Y −A(ij)))C(j) (7)

According to the KKT conditions, an optimal solution to
Definition 2 satisfies ∇B(ij)L = 0, which leads to

(C(i))T (ξ(Y )¯ (Y −A(ij)))C(j) = 0 (8)

According to Definition 3, φ is strictly convex, hence, [ξ(Y )]pq >
0 for 1 ≤ p ≤ ki and 1 ≤ q ≤ kj . Therefore, ξ(Y ) can be
canceled from Eq.(8) to obtain

(C(i))T (Y −A(ij))C(j) = 0 (9)

This completes the proof of the theorem.

The most interesting observation about Theorem 1 is that
Eq.(4) does not involve the distance function Dφ.

We propose an iterative algorithm to find a local optimal
RSN represented by {C(i)}1≤i≤m and {B(ij)}1≤i<j≤m for a
given k-partite graph. At each iterative step, we update one
of {C(i)}1≤i≤m or one of {B(ij)}1≤i<j≤m by fixing all the
others.

Since C(i) is an indicator matrix, we adopt the reassign-
ment procedure such as in the k-means algorithm to update
C(i). To determine which element of the hth row of C(i) is
equal to 1, for l = 1, . . . , ki, we let C

(i)
hl = 1 and compute the

objective function L in Eq.(2) for each l, which is denoted
as Ll, then

C
(i)
hl∗ = 1 for l∗ = arg min

l
Ll (10)

The updating rule in Eq.(10) is equivalent to updating
the edges between Vi and Si in Gs by connecting vih to
each hidden nodes in Si to find which hidden node gives the
smallest values for Dφ(G, Gs), i.e.,

es(vih, sil∗) = 1 for l∗ = arg min
l

Dφ(G, Gs
l ). (11)

Algorithm 1 Relation Summary Network with Bregman
Divergences

Input: A k-partite graph G = (V1, . . . , Vm, E), a Bregman
divergence function Dφ, and m positive integers, k1, . . . , km.
Output: An RSN Gs = (V1, . . . , Vm, S1, . . . , Sm, Es).
Method:

1: Initialize Gs.
2: repeat
3: for i = 1 to m do
4: Update the edges between Vi and Si according to

Eq.(11).
5: end for
6: for each pair of Si ∼ Sj where 1 ≤ i < j ≤ m do
7: Update the edges between Si and Sj according to

Eq.(13).
8: end for
9: until convergence

where Gs
l denotes the RSN with sil connecting to vih. Note

that the computation for this updating involves only edges
between vih and the related nodes, not all the edges.

Based on Eq.(4) in Theorem 1, after a little algebraic
manipulation, we have the following updating rule for each
B(ij),

B(ij) = ((C(i))T C(i))−1(C(i))T A(ij)C(j)((C(j))T C(j))−1

(12)
This updating rule does not really involve computing in-
verse matrices, since (C(i))T C(i) is a special diagonal ma-

trix such that [(C(i))T C(i)]pp =
Pni

h=1 C
(i)
hp , i.e., the number

of instance nodes associated with the hidden node sip, and

similarly for (C(j))T C(j). The updating rule in Eq.(12) is
equivalent to updating the edges between Si and Sj in Gs

by re-computing the weight of the edge between a pair of
hidden nodes sip ∈ Si and sjq ∈ Sj as follows,

es(sip, sjq) =
1

|U| ∗ |Z|
X

vih∈U,vjl∈Z
e(vih, vjl), (13)

where U = {vih : es(vih, sip) = 1}, i.e., the instance nodes
associated with sip; Z = {vjl : es(vjl, sjq) = 1}, i.e., the
instance nodes associated with sjq, 1 ≤ p ≤ ki, 1 ≤ q ≤
kj , 1 ≤ h ≤ ni, and 1 ≤ l ≤ nj . This updating rule is
consistent with our intuition about the edge between two
hidden nodes; i.e., it is the ”summary relation” for two sets
of instance nodes. It is, however, a surprising observation
that the updating does not involve the distance function, i.e.,
this simple updating rule holds for all Bregman divergences.

The algorithm, Relation Summary Network with Breg-
man Divergences (RSN-BD), is summarized in Algorithm 1.
RSN-BD iteratively updates the cluster structures for differ-
ent types of instance nodes and summary relations among



the hidden nodes. Through the hidden nodes, the cluster
structures of different types of instance nodes interact with
each other directly or indirectly. The interactions lead to the
implicit adaptive feature reduction for each type of instance
nodes which overcomes the typical high dimensionality and
sparsity. RSN-BD is applicable to a wide range of problems,
since it does not have restrictions on the structures of the in-
put k-partite graph. Furthermore, the graphs from different
applications may have different probabilistic distributions
on their edges; it is easy for RSN-BD to adapt to this situ-
ation by simply using different Bregman divergences, since
Bregman divergences correspond to a large family of expo-
nential distributions including most common distributions,
such as Normal, Multinomial and Poisson distributions [7].

Note that to avoid clutter, we do not consider weighting
different types of edges during the derivation. Nevertheless,
it is easy to extend the proposed model and algorithm to
the weighted versions.

If we assume that the number of pairs of Vi ∼ Vj is Θ(m)
which is typical in real applications, and let n = Θ(ni)
and k = Θ(ki), the computational complexity of RSN-BD
can be shown to be O(tmn2k) for t iterations. If we apply
the k-means algorithm to each type of nodes individually
by transforming the relations into features for each type of
nodes, the total computational complexity is also O(tmn2k).
Hence, RSN-BD is as efficient as k-means. If the edges in
the graph are very sparse, the computational complexity of
RSN-BD can be reduced to O(tmrk) where we assume that
the number of edges between each pair of Vi and Vj is Θ(r).

Eq.(4) in Theorem 1 is an necessary condition for an op-
timal solution, but not sufficient for the correctness of the
RSN-BD algorithm. The following theorems guarantee the
convergence of RSN-BD.

Lemma 1. Given a Bregman divergence Dφ : S×int(S) 7→
[0,∞), A ∈ Rn1×n2 and two indicator matrices, C(1) ∈
{0, 1}n1×k1 and C(2) ∈ {0, 1}n2×k2 , let

B∗ = ((C(1))T C(1))−1(C(1))T AC(2)((C(2))T C(2))−1 (14)

then for any B ∈ Rk1×k2 ,

Dφ(A, C(1)B(C(2))T )−Dφ(A, C(1)B∗(C(2))T ) ≥ 0. (15)

Proof. For convenience we use Y to denote C(1)B(C(2))T ,

Y ∗ to denote C(1)B∗(C(2))T , ζ(x) to denote ∇φ(x). Let J
denote the lefthand side of Eq.(15).

J =
X
h,l

Dφ(Ahl, Yhl)−
X
h,l

Dφ(Ahl, Y
∗

hl)

=
X
h,l

{φ(Y ∗
hl)− φ(Yhl)− (Ahl − Yhl)ζ(Yhl)

+(Ahl − Y ∗
hl)ζ(Y ∗

hl)}
=

X
h,l

{φ(Y ∗
hl)− φ(Yhl)− [A¯ ζ(Y )]hl + [Y ¯ ζ(Y )]hl

+[A¯ ζ(Y ∗)]hl − [Y ∗ ¯ ζ(Y ∗)]hl}
=

X
h,l

{φ(Y ∗
hl)− φ(Yhl)− [Y ∗ ¯ ζ(Y )]hl + [Y ¯ ζ(Y )]hl}

= Dφ(Y ∗, Y )

≥ 0

During the above deduction, the second and fifth equalities
follow the definition of the Bregman divergences; the fourth

equality follows the fact that
P

h,l[A¯ζ(Y ∗)]hl =
P

h,l[Y
∗¯

ζ(Y ∗)]hl and
P

h,l[A¯ ζ(Y )]hl =
P

h,l[Y
∗ ¯ ζ(Y )]hl result-

ing from the special structure of the indicator matrix; the
last inequality follows the non-negativity of Bregman diver-
gences.

Theorem 2. The RSN-BD algorithm (Algorithm 1)
monotonically decreases the objective function in Eq.(1).

Proof. Proving the theorem is equivalent to proving that
the updating rules in Eq.(10) and Eq.(12) monotonically
decrease the objective function in Eq.(2). Let L(t) denote
the objective value after the tth iteration.

L(t) =
X

1≤i<j≤m

Dφ(A(ij), C
(i)

(t)B
(ij)

(t) (C
(j)

(t) )T )

≥
X

1≤i<j≤m

Dφ(A(ij), C
(i)

(t+1)B
(ij)

(t) (C
(j)

(t+1))
T )

≥
X

1≤i<j≤m

Dφ(A(ij), C
(i)

(t+1)B
(ij)

(t+1)(C
(j)

(t+1))
T )

= L(t+1)

where the first inequality follows trivially the criteria used
for reassignment in Eq.(10), and the second inequality fol-
lows Eq.(12) and Lemman 1.

Base on Theorem 2 and the fact that the objective function
in Eq.(2) has the lower bound 0 for a Bregman divergence,
the convergence of RSN-BD is proved.

5. A UNIFIED VIEW TO CLUSTERING
APPROACHES

In this section we discuss the connections between existing
clustering approaches and the RSN model. By considering
them as special cases or variations of the RSN model, we
show that RSN provides a unified view to the existing clus-
tering approaches.

5.1 Bipartite Spectral Graph Partitioning
Bipartite Spectral Graph Partitioning (BSGP) [8, 18] uses

the spectral approach to partitioning a bi-partite graph to
find cluster structures for two types of interrelated data ob-
jects, such as words and documents. The objective func-
tion of BSGP is the normalized cut on the bi-partite graph,

whose affinity matrix is
h

0 A

AT 0

i
. After the deduction, the

spectral partitioning on the bipartite graph is converted to
a singular value decomposition (SVD) [8, 18].

As a graph partitioning approach, BSGP has the restric-
tion that the clusters of different types of nodes have one-
to-one associations. Under the RSN model, this restriction
is equivalent to letting a hidden node connect with one and
only one hidden node. Hence, the affinity matrix represent-
ing the edges between two sets of hidden nodes is restricted
to a diagonal matrix. The objective function in Eq.(2) can
be formulated as

L = ||A(12) − C(1)B(12)(C(2))T ||2 (16)

where || · || denotes Frobenius norm, i.e., the Euclidean dis-
tance function is adopted, and A may be normalized as de-
scribed in [8]. Based on this objective function, if we relax

C(1) and C(2) to any othornormal matrices as in [8, 18],
it immediately follows the standard result of linear algebra
[14] that the minimization of L in Eq.(16) with the diagonal



constraint on B is equivalent to partial SVD. Therefore, the
RSN model based on Euclidean distance function provides
a simple way to understand BSGP. Comparing with BSGP,
RSN-BD is more flexible to exploit the cluster structures
from a bi-partite graph, since it does not have one-to-one
association as a constraint and is capable of adopting differ-
ent distance functions.

5.2 Binary Data Clustering with Feature
Reduction

In [21], a model is proposed to cluster binary data by clus-
tering data points and features simultaneously, i.e., cluster-
ing with feature reduction. If we consider data points and
features as two different types of nodes in a bi-partite graph
and the binary elements of the data matrix denote whether
there exists a link between a pair of nodes, then this model
is equivalent to the RSN model on a bi-partite graph with
unit weight edges. The objective function of this model is
given in [21] as

O(A, X, B) = ||W −AXBT ||2, (17)

where W denotes the data matrix, A and B denote cluster
memberships for data points and features, respectively, and
X represents the associations between the data clusters and
the feature clusters. We can see that this objective function
is exactly the same as the objective function in Eq.(2) on
bi-partite graph with Euclidean distance.

The immediate benefit of establishing the connection be-
tween the model proposed in [21] and the RSN model is
the new solution to binary data clustering with feature re-
duction. In [21], the model is based on Euclidean distance.
Euclidean distance function has very wide applicability, since
it implies the normal distribution and most data with a large
sample size tend to have a normal distribution. However,
since Bernoulli distribution is a more intuitive choice for the
binary data, RSN-BD directly provides a new algorithm for
clustering binary data with feature reduction by using lo-
gistic distance function (see Table 1), which corresponds to
Bernoulli distribution.

5.3 Information-Theoretic Co-clustering
[9] proposes a novel theoretic formulation to view the

contingency table as an empirical joint probability distribu-
tion of two discrete random variables and developes the co-
clustering algorithm, Information-Theoretic Co-Clustering
(ITCC), to maximize the mutual information between the
clustered random variables subject to the constraints on
the number of row and column clusters. Let X and Y
be discrete random variables that take values in the sets
{x1, . . . , xn1} and {y1, . . . , yn2}, respectively, and X̂ and Ŷ
be the cluster random variables that take values in the sets
{x̂1, . . . , x̂k1} and {ŷ1, . . . , ŷk2}, respectively; then the ob-
jective function of ITCC is the loss in mutual information,

I(X; Y )− I(X̂, Ŷ ).
The joint distribution of X and Y can be formulated as

a bi-partite graph by assigning the probability p(xh, yl) to
the weight of the edge between v1h ∈ V1 and v2l ∈ V2. If we
modify the Condition 1 in Definition 1 such that an instance
node vih is connected to one and only one hidden node sip

with weight 1
#sip

where #sip is the number of the instance

nodes connected to sip, then in the RSN of aforementioned
bi-partite graph, es(v1h, s1p) and es(v2l, s2q) can be consid-
ered as p(xh|x̂p) and p(xl|x̂q), respectively, es(s1p, s2q) can
be considered as p(x̂p, x̂q). Based on this formulation, it is
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Figure 4: An RSN equivalent to k-means

easy to verify that the objective function of RSN with KL-

divergence is equivalent to I(X; Y ) − I(X̂, Ŷ ). This con-
nection between the ITCC and a variation of RSN model
implies that the ITCC algorithm may be extended to more
general cases of more than two random variables and with
other loss functions.

5.4 K-means Clustering
Due to its simplicity, efficiency, and broad applicability, k-

means algorithm has become one of the most popular clus-
tering algorithms. Figure 4 explains the relation between
the RSN model and k-means. If we consider data points and
features as two different types of nodes, V2 and V1, in a bi-
partite graph, and restrict feature nodes to have one-to-one
associations of their hidden nodes with unit weight, then
the objective function in Eq.(2) is given as L = ||A(12) −
C(1)B(12)(C(2))T ||2 where C(2) is restricted to an identity
matrix. Hence, the objective function is reduced to L =
||A(12) −C(1)B(12)||2, which is exactly the matrix represen-
tation for the objective function of the k-means algorithm
[31]. From Figure 4, we also see that since the number of
feature nodes is equal to the number of their hidden nodes,
k-means does not do feature reduction. Finally, we may con-
sider RSN-BD as a generalization of k-means on k-partite
graphs with various Bregman divergences and expect that
it inherits the simplicity and efficiency of k-means and has
much broader applicability.

There are more clustering approaches in the literature
that may be considered as the special cases or variations
of the RSN model. For example, the subspace clustering [1],
which clusters the data points in a high dimensional space
around a different subset of the dimensions, can be consid-
ered as an extension of Figure 4 such that s21 or s22 only
connects to a subset of S1. Spectral relational clustering [22]
can be considered as using the spectral approach to solve the
RSN model under Euclidean distance.

By examining the connections between existing cluster-
ing approaches and the RSN model, we conclude that the
RSN model provides a unified view to the existing cluster-
ing approaches. Moreover, the idea of RSN is more gen-
eral than the proposed model based on Definition 1 and
Eq.(1). For example, if we change the definition of distance
between graphs in Eq.(1), we may find totally different ways
to mine hidden structures from a k-partite graph, and as a
result, we may obtain new variations for existing clustering
approaches.

6. EXPERIMENTAL RESULTS
This section provides empirical evidence to show the effec-

tiveness of the RSN model and algorithm. In particular, we
apply RSN-BD to two basic types of k-partite graphs, the bi-
partite graph and the sandwich structure tri-partite graph
(such as Figure 2(a)), which arise frequently in various appli-
cations. Note that the application of RSN-BD is not limited
to these two types of graphs and it is applicable to various k-
partite graphs. Four types of RSN-BD are evaluated in the



Data set S Distribution

BP-b1

�
0.1 0.9
0.9 0.1

�
Bernoulli

BP-b2

�
0.4 0.7
0.5 0.6

�
Bernoulli

BP-p

�
0.5 0.6
0.6 0.8

�
Poisson

BP-e

�
0.4 0.5
0.5 0.7

�
Exponential

Table 2: Parameters and distributions for synthetic
bi-partite graphs

experiments: RSN with Euclidean Distance (RSN-ED) as-
sumes the normal distribution of the data; RSN with Logis-
tic Loss (RSN-LL) assumes the Bernoulli distribution of the
data; RSN with Generalized I-divergence (RSN-GI) assumes
the Poisson distribution of the data; RSN with Itakura-Saito
distance (RSN-IS) assumes the exponential distribution of
the data. Two graph partitioning approaches, BSGP [8] and
Consistent Bipartite Graph Co-partitioning (CBGC) [13]
(we thank the authors for providing the executable code of
CBGC) , are used as the comparison on bi-partite graph and
sandwich tri-partite graph, respectively. Four traditional
feature-based algorithms, which cluster a type of nodes in
a k-partite graph by transforming all the links into fea-
tures, are also used as comparisons. They are K-Means with
Euclidean Distance (KM-ED), K-Means with Logistic Loss
(KM-LL), K-Means with Generalized I-divergence (KM-GI)
and K-Means with Itakura-Saito (KM-IS).

6.1 Data Sets and Parameter Setting
The data sets used in the experiments include synthetic

data sets with various distributions and real data sets based
on the 20-Newsgroup data [20].

The synthetic bi-partite graphs are generated such as that
both V1 and V2 have two clusters (to be fair for BSGP, we
use equal number of clusters); each cluster has 100 nodes,
hence, both V1 and V2 have 200 nodes. The distributions
and parameters (the true means of the distributions) used
to generate the links in the graphs are documented in Ta-
ble 2. In the table, distribution parameters for a graph is
represented as a matrix S such that Spq denotes the mean
parameter of the distribution to generate the links between
the pth cluster of V1 and the qth cluster of V2.

The real bi-partite graphs are constructed based on var-
ious subsets of the 20-Newsgroup data [20] which contains
about 20, 000 articles from 20 newsgroups. We pre-process
the data by removing stop words and selecting the top 2000
words by the mutual information. The document-word ma-
trix is based on tf.idf weighting scheme and each docu-
ment vector is normalized to a unit L2 norm vector. Spe-
cific details of data sets used to construct bi-partite graphs
are listed in Table 3. For example, to construct a BP-
NG3 graph, we randomly and evenly sample 200 documents
from the corresponding newsgroups; then we formulate a bi-
partite graph consisting of 1600 document nodes and 2000
word nodes.

The synthetic tri-partite graphs are generated similarly
to the bi-partite graphs. The distributions and parameters
are documented in Table 4. Let V1 denote the central type
nodes. In Table 4, S(12) denotes the true means of distri-
butions for generating the links between V1 and V2, and
similarly for S(13). The numbers of clusters for each type of
nodes are given by dimensions of S(12) and S(13) and each

Data set S(12) S(13) Distribution

TP-b1

�
0.4 0.7
0.5 0.6

� �
0.7 0.5
0.6 0.6

�
Bernoulli

TP-b2

"
0.5 0.6
0.5 0.6
0.7 0.7

# "
0.6 0.6 0.6
0.7 0.7 0.5
0.7 0.7 0.5

#
Bernoulli

BP-p

�
0.3 0.6
0.2 0.7

� �
0.4 0.4
0.5 0.3

�
Poisson

TP-large Z20×20 Z20×18 Poisson

TP-e

�
0.3 0.6
0.3 0.7

� �
0.4 0.7
0.5 0.6

�
Exponential

Table 4: Parameters and distributions for synthetic
tri-partite graphs

Data set Taxonomy structure
TP-TM1 {rec.sport.baseball, rec.sport.hockey},

{talk.politics.guns, talk.politics.mideast,
talk.politics.misc}

TP-TM2 {comp.graphics, comp.os.ms-windows.misc},
{rec.autos, rec.motorcycles},
{sci.crypt, sci.electronics}

Table 5: Taxonomy structures of two data sets for
constructing tri-partite graphs

cluster has 100 nodes. In Table 4, TP-large is a large graph
with 20 clusters of V1, 20 clusters of V2, and 18 clusters of V3

(due to the space limit, the details of parameters are omit-
ted). Each BP-large graph contains 5800 nodes and on an
average about 3.25 million links.

The real tri-partite graphs are built based on the 20-
newsgroups data for hierarchical taxonomy mining. In the
field of text categorization, hierarchical taxonomy classifica-
tion is widely used to obtain a better trade-off between ef-
fectiveness and efficiency than flat taxonomy classification.
To take advantage of hierarchical classification, one must
mine a hierarchical taxonomy from the data set. We see
that words, documents, and categories formulate a sandwich
structure tri-partite graph, in which documents are central
type nodes. The links between documents and categories
are constructed such that if a document belongs to k cate-
gories, the weights of links between this document and these
k category nodes are 1/k (please refer [13] for details).

The true taxonomy structures for two data sets, TP-TM1
and TP-TM2, are documented in Table 5. For example,
TP-TM1 data set is sampled from five categories (200 doc-
uments for each category), in which two categories belong to
the high level category res.sports and other three categories
belong to the high level category talk.politics.

For all the algorithms on all the graphs, we fix the number
of iterations to 20 (this also holds true for BSGP and CBGC,
since they use classic k-means to do postprocessing) and use
the same initialization, random initialization for synthetic
data and classic k-means initialization for real data. The
final performance score is the average of the twenty runs.
At each test run, a graph is constructed by sampling from
the corresponding distributions or newsgroups of the 20-
newsgroup data. Hence, the variation of a final performance
score includes the variance of sampling.

For the number of clusters, we use the true number of clus-
ters for the synthetic graphs. For real data graphs, we use
the true number of clusters for documents and categories;
however, we do not know the true number of word clusters.
How to determine the optimal number of word clusters is
beyond the scope of this paper. We simply adopt 40 for all
the RSN algorithms. For BSGP and CBGC, the number of



Dataset Newsgroups Included # Documents Total #
Name per Group Documents
BP-NG1 rec.sport.baseball, rec.sport.hockey 200 400
BP-NG2 comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles,

sci.crypt, sci.space 200 1000
BP-NG3 comp.os.ms-windows.misc, comp.windows.x, misc.forsale,

rec.motorcycles,rec.motorcycles,sci.crypt, sci.space,
talk.politics.mideast, talk.religion.misc 200 1600

Table 3: Subsets of Newsgroup Data for constructing bi-partite graphs.

Algorithm BP-b1 BP-b2 BP-p BP-e BP-NG1 BP-NG2 BP-NG3

RSN-ED 1± 0 0.618± 0.079 0.549± 0.057 0.821± 0.064 0.402± 0.239 0.599± 0.055 0.573± 0.037
KM-ED 1± 0 0.069± 0.089 0.042± 0.049 0.632± 0.095 0.375± 0.236 0.616± 0.070 0.601± 0.042
RSN-LL 1± 0 0.620± 0.069 0.519± 0.075 0.819± 0.062 0.638± 0.164 0.747± 0.068 0.698± 0.037
KM-LL 1± 0 0.060± 0.084 0.224± 0.099 0.567± 0.079 0.443± 0.229 0.655± 0.070 0.641± 0.038
RSN-GI 1± 0 0.604± 0.062 0.562± 0.060 0.849± 0.058 0.619± 0.180 0.746± 0.066 0.697± 0.038
KM-GI 1± 0 0.053± 0.056 0.025± 0.023 0.656± 0.188 0.444± 0.229 0.655± 0.069 0.641± 0.038
RSN-IS 1± 0 0.549± 0.074 0.553± 0.064 0.857± 0.063 0.411± 0.207 0.414± 0.084 0.335± 0.056
KM-IS 1± 0 0.050± 0.059 0.025± 0.037 0.635± 0.207 0.383± 0.242 0.618± 0.063 0.596± 0.043
BSGP 1± 0 0.379± 0.079 0.005± 0.007 0.004± 0.089 0.430± 0.252 0.638± 0.033 0.501± 0.047

Table 6: NMI scores of the algorithms on bi-partite graphs

word clusters must equal the number of document clusters.
By the authors’ suggestion, the parameter setting for CBGC
is β = 0.5, θ1 = 1 and θ2 = 1 [13].

The performance comparison is based on the quality of
the clusters of one type of nodes in each graph. In synthetic
bi-partite graphs, it is based on V1 whose clusters corre-
spond to the rows of S in Table 2; in synthetic tri-partite
graphs, it is based on the central type nodes V1; in bi-partite
graphs of documents and words, it is based on documents;
in tri-partite graphs for taxonomy mining, it is based on
categories whose clusters provide the taxonomy structures.
For performance measure, we elect to use the Normalized
Mutual Information (NMI) [27], which is a standard way to
measure the cluster quality.

6.2 Results and Discussion
Table 6 shows the NMI scores of the nine algorithms on

the bi-partite graphs. For the BP-b1 graph, all the algo-
rithms provide perfect NMI score, since the graphs are gen-
erated with very clear structures, which can be seen from
the parameter matrix in Table 2. For other synthetic bi-
partite graphs, the cluster structures are subtle, especially
for the nodes V1, whose cluster structures are our objec-
tive. For these graphs, the RSN algorithms perform much
better than k-means algorithms, especially for the BP-b2
and BP-p graph, in which the distributions for clusters of
V1 are very close to each other and the links are relatively
sparse. This comparison implies that benefiting from the in-
teractions among the cluster structures of different types of
nodes, the RSN algorithms are able to identify very subtle
cluster structures even when the traditional clustering ap-
proaches totally fail. Compared with the RSN algorithms,
BSGP performs poorly for all the synthetic bi-partite graphs
except BP-b1. The possible explanation is that it assumes
one-to-one associations between clusters of different types of
nodes, which does not hold true for the synthetic bi-partite
graphs except BP-b1. We also observe that the RSN algo-
rithm with the distance function matching the distribution
to generate the graph provides the best NMI score for that
graph.

For the real bi-partite graphs consisting of document and
word nodes, RSN-LL always provides the best NMI score.
For the difficult BP-NG1 graph based on two ”close” news-
groups, RSN-LL shows about 44% improvement in compar-

ison with KM-LL, which is, along with KM-GI, the best
among the non-RSN algorithms. Note that since the docu-
ment vector is L2-normalized, the KM-ED is actually based
on von Mises-Fisher distribution [24], which proved efficient
for document clustering [2]. We also observe that for these
graphs, in general the algorithms based on logistic loss pro-
vide better performance. The possible reason is that logis-
tic loss corresponds to Bernoulli distribution which provides
a good approximation to the distribution of the data con-
sisting of a large mount of zeros, such as the sparse links
between documents and words. In the meantime, it is also
reasonable to assume the Poisson distribution for the fre-
quencies such as the frequency in that a word appears in
a document. That is why RSN-GI also shows the perfor-
mance very close to RSN-LL. The above comparison verifies
the assumption that under an appropriate distribution as-
sumption, through the hidden nodes the RSN algorithms
perform implicit adaptive feature reduction to overcome the
typical high dimensionality and sparseness.

Table 7 shows the NMI scores of the nine algorithms on
the tri-partite graphs. As similarly in the synthetic bi-
partite graphs, the RSN algorithms perform much better
than the k-means algorithms. Except for RSN-ED on the
TP-p graph, the RSN algorithms perform significantly bet-
ter than CBGC. The NMI scores of CBGC for some graphs
are not available because the CBGC code provided by the
authors only works for the case of two clusters and small size
graphs. For the large dense TP-large graph, the RSN algo-
rithms perform consistently better than the KM algorithms,
and this demonstrates the good scalability of the RSN al-
gorithms; the RSN-ED performs best on TP-large, and this
demonstrates the advantage of the normal distribution for
the very large sample size of dense links.

For the real tri-partite graphs for taxonomy mining, the
k-means algorithms perform poorly since they cluster cat-
egories only based on links between categories and docu-
ments. From Table 7, we observe that both RSN-ED and
RSN-IS provide the best NMI score for TP-TM1. To have
an intuition about this score, we check the details of the
20 test runs, which show that in 16 out of the 20 runs the
algorithms provide the perfect taxonomy structures and in
the other 4 runs one category is clustered incorrectly. We
believe that if we assign different weights to different types
of links, the RSN algorithms could perform more efficiently



Algorithm TP-b1 TP-b2 TP-p TP-large TP-e TP-TM1 TP-TM2

RSN-ED 0.835± 0.061 0.847± 0.087 0.573± 0.073 0.715± 0.0433 0.612± 0.067 0.887± 0.233 0.623± 0.178
KM-ED 0.196± 0.217 0.258± 0.147 0.012± 0.016 0.165± 0.153 0.017± 0.023 0.257± 0.211 0.439± 0.117
RSN-LL 0.848± 0.061 0.860± 0.036 0.622± 0.079 0.335± 0.145 0.606± 0.063 0.858± 0.252 0.645± 0.175
KM-LL 0.219± 0.214 0.255± 0.137 0.025± 0.036 0.174± 0.153 0.016± 0.021 0.218± 0.246 0.456± 0.127
RSN-GI 0.829± 0.062 0.854± 0.043 0.656± 0.066 0.658± 0.083 0.662± 0.071 0.858± 0.252 0.637± 0.174
KM-GI 0.194± 0.197 0.289± 0.127 0.014± 0.026 0.174± 0.153 0.019± 0.025 0.245± 0.246 0.482± 0.173
RSN-IS 0.801± 0.064 0.811± 0.086 0.616± 0.084 0.512± 0.183 0.677± 0.063 0.887± 0.233 0.681± 0.150
KM-IS 0.152± 0.170 0.310± 0.110 0.019± 0.030 0.250± 0.116 0.012± 0.015 0.223± 0.243 0.469± 0.152
CBGC 0.744± 0.076 — 0.575± 0.068 — 0.575± 0.069 — —

Table 7: NMI scores of the algorithms on tri-partite graphs

on mining the taxonomy structures. However, this is beyond
the scope of this paper.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a general model RSN to find the

hidden structures (the local cluster structures and the global
community structures) from a k-partite graph. The model
provides a principal framework for unsupervised learning on
k-partite graphs of various structures. Under this model,
we derive a novel algorithm to find the hidden structures
from a k-partite graph under a broad range of distortion
measures. By iteratively updating the cluster structures for
each type of nodes, the algorithm takes advantage of the
interactions among the cluster structures of different types
of nodes and performs implicit adaptive feature reduction
for each type of nodes. Experiments on both synthetic and
real data sets demonstrate the promise and effectiveness of
the proposed model and algorithm. We also establish the
connections between existing clustering approaches and the
proposed model to provide a unified view to the existing
clustering approaches in the literature. There are a number
of interesting potential directions for future research on the
RSN model and algorithms, such as extending RSN model to
other cases of unsupervised learning on k-partite graphs and
applying the RSN algorithms to a wide range of problems
involving k-partite graphs.
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