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ABSTRACT

A central goal of unsupervised learning is to acquire representations from unla-
beled data or experience that can be used for more effective learning of down-
stream tasks from modest amounts of labeled data. Many prior unsupervised
learning works aim to do so by developing proxy objectives based on reconstruc-
tion, disentanglement, prediction, and other metrics. Instead, we develop an unsu-
pervised meta-learning method that explicitly optimizes for the ability to learn a
variety of tasks from small amounts of data. To do so, we construct tasks from un-
labeled data in an automatic way and run meta-learning over the constructed tasks.
Surprisingly, we find that, when integrated with meta-learning, relatively simple
task construction mechanisms, such as clustering embeddings, lead to good per-
formance on a variety of downstream, human-specified tasks. Our experiments
across four image datasets indicate that our unsupervised meta-learning approach
acquires a learning algorithm without any labeled data that is applicable to a wide
range of downstream classification tasks, improving upon the embedding learned
by four prior unsupervised learning methods.

1 INTRODUCTION

Unsupervised learning is a fundamental, unsolved problem (Hastie et al., 2009) and has seen promis-
ing results in domains such as image recognition (Le et al., 2013) and natural language understand-
ing (Ramachandran et al., 2017). A central use case of unsupervised learning methods is enabling
better or more efficient learning of downstream tasks by training on top of unsupervised representa-
tions (Reed et al., 2014; Cheung et al., 2015; Chen et al., 2016) or fine-tuning a learned model (Erhan
et al., 2010). However, since the downstream objective requires access to supervision, the objectives
used for unsupervised learning are only a rough proxy for downstream performance. If a central goal
of unsupervised learning is to learn useful representations, can we derive an unsupervised learning
objective that explicitly takes into account how the representation will be used?

The use of unsupervised representations for downstream tasks is closely related to the objective
of meta-learning techniques: finding a learning procedure that is more efficient and effective than
learning from scratch. However, unlike unsupervised learning methods, meta-learning methods
require large, labeled datasets and hand-specified task distributions. These dependencies are major
obstacles to widespread use of these methods for few-shot classification.

To begin addressing these problems, we propose an unsupervised meta-learning method: one which
aims to learn a learning procedure, without supervision, that is useful for solving a wide range of
new, human-specified tasks. With only raw, unlabeled observations, our model’s goal is to learn
a useful prior such that, after meta-training, when presented with a modestly-sized dataset for a
human-specified task, the model can transfer its prior experience to efficiently learn to perform the
new task. If we can build such an algorithm, we can enable few-shot learning of new tasks without
needing any labeled data nor any pre-defined tasks.

To perform unsupervised meta-learning, we need to automatically construct tasks from unlabeled
data. We study several options for how this can be done. We find that a good task distribution
should be diverse, but also not too difficult: naı̈ve random approaches for task generation produce
tasks that contain insufficient regularity to enable useful meta-learning. To that end, our method pro-
poses tasks by first leveraging prior unsupervised learning algorithms to learn an embedding of the
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input data, and then performing an overcomplete partitioning of the dataset to construct numerous
categorizations of the data. We show how we can derive classification tasks from these catego-
rizations for use with meta-learning algorithms. Surprisingly, even with simple mechanisms for
partitioning the embedding space, such as k-means clustering, we find that meta-learning acquires
priors that, when used to learn new, human-designed tasks, learn those tasks more effectively than
methods that directly learn on the embedding. That is, the learning algorithm acquired through un-
supervised meta-learning achieves better downstream performance than the original representation
used to derive meta-training tasks, without introducing any additional assumptions or supervision.
See Figure 1 for an illustration of the complete approach.

The core idea in this paper is that we can leverage unsupervised embeddings to propose tasks for
a meta-learning algorithm, leading to an unsupervised meta-learning algorithm that is particularly
effective as pre-training for human-specified downstream tasks. In the following sections, we for-
malize our problem assumptions and goal, which match those of unsupervised learning, and discuss
several options for automatically deriving tasks from embeddings. We instantiate our method with
two meta-learning algorithms and compare to prior state-of-the-art unsupervised learning meth-
ods. Across four image datasets (MNIST, Omniglot, miniImageNet, and CelebA), we find that our
method consistently leads to effective downstream learning of a variety of human-specified tasks,
including character recognition tasks, object classification tasks, and facial attribute discrimination
tasks, without requiring any labels or hand-designed tasks during meta-learning and where key hy-
perparameters of our method are held constant across all domains. We show that, even though our
unsupervised meta-learning algorithm trains for one-shot generalization, one instantiation of our ap-
proach performs well not only on few-shot learning, but also when learning downstream tasks with
up to 50 training examples per class. In fact, some of our results begin to approach the performance
of fully-supervised meta-learning techniques trained with fully-specified task distributions.
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Figure 1: Illustration of the proposed unsupervised meta-learning procedure. Embeddings of raw observations
are clustered with k-means to construct partitions, which give rise to classification tasks. Each task involves
distinguishing between examples from N = 2 clusters, with Km-tr = 1 example from each cluster being a
training input. The meta-learner’s aim is to produce a learning procedure that successfully solves these tasks.

2 UNSUPERVISED META-LEARNING

In this section, we describe our problem setting in relation to that of unsupervised and semi-
supervised learning, provide necessary preliminaries, and present our approach.

2.1 PROBLEM STATEMENT

Our goal is to leverage unlabeled data for the efficient learning of a range of human-specified down-
stream tasks. We only assume access to an unlabeled dataset D = {xi} during meta-training. After
learning from the unlabeled data, which we will refer to as unsupervised meta-training, we want
to apply what was learned towards learning a variety of downstream, human-specified tasks from
a modest amount of labeled data, potentially as few as a single example per class. These down-
stream tasks may, in general, have different underlying classes or attributes (in contrast to typical
semi-supervised problem assumptions), but are assumed to have inputs from the same distribution
as the one from which datapoints in D are drawn. Concretely, we assume that downstream tasks
are M -way classification tasks, and that the goal is to learn an accurate classifier using K labeled
datapoints (xk,yk) from each of the M classes, where K is relatively small (i.e. between 1 and 50).

2



Published as a conference paper at ICLR 2019

The unsupervised meta-training phase aligns with the unsupervised learning problem in that it in-
volves no access to information about the downstream tasks, other than the fact that they are M -way
classification tasks, for variable M upper-bounded by N . The upper bound N is assumed to be
known during unsupervised meta-training, but otherwise, the values of M and K are not known a
priori. As a result, the unsupervised meta-training phase needs to acquire a sufficiently general prior
for applicability to a range of classification tasks with variable quantities of data and classes. This
problem definition is our prototype for a practical use-case in which a user would like to train an
application-specific image classifier, but does not have an abundance of labeled data.

2.2 PRELIMINARIES

Unsupervised embedding learning. An unsupervised embedding learning algorithm E is a pro-
cedure that takes as input an unlabeled dataset D = {xi} and outputs a mapping from {xi} to
embeddings {zi}. These embedded points are typically lower-dimensional and arranged such that
distances correspond to meaningful differences between inputs, in contrast to distances between the
original inputs, such as image pixels, which are not meaningful measures of image similarity.

Task. An M -way K-shot classification task T consists of K training datapoints and labels
{(xk, ℓk)} per class, which are used for learning a classifier, and Q query datapoints and labels
per class, on which the learned classifier is evaluated. That is, in a task there are K + Q = R
datapoints and labels for each of the M classes.

Meta-learning. A supervised meta-learning algorithm M(·) takes as input a set of supervised meta-
training tasks {Tt}. It produces a learning procedure F(·), which, in turn, ingests the supervised
training data of a task to produce a classifier f(·). The goal of M is to learn F such that, when faced
with a meta-test time task Tt′ held-out from {Tt}, F can learn a ft′ that accomplishes Tt′ . At a
high level, the quintessential meta-learning strategy is to have M iterate over {Tt}, cycling between
applying the current form of Ft on training data from Tt to learn ft, assessing its performance
by calculating some meta-loss L on held-out data from the task, and optimizing L to improve the
learning procedure.

We build upon two meta-learning algorithms: model agnostic meta-learning (MAML) (Finn et al.,
2017) and prototypical networks (ProtoNets) (Snell et al., 2017). MAML aims to learn the initial
parameters of a deep network such that one or a few gradient steps leads to effective generalization;
it specifies F as gradient descent starting from the meta-learned parameters. ProtoNets aim to meta-
learn a representation in which a class is effectively identified by its prototype, defined to be the
mean of the class’ training examples in the meta-learned space; F is the computation of these class
prototypes, and f is a linear classifier that predicts the class whose prototype is closest in Euclidean
distance to the query’s representation.

Task generation for meta-learning. We briefly summarize how tasks are typically generated from
labeled datasets {(xi,yi)} for supervised meta-learning, as introduced by Santoro et al. (2016). For
simplicity, consider the case where the labels are discrete scalar values yi. To construct an N -way
classification task T (assuming N is not greater than the number of unique yi), we can sample
N classes, sample R datapoints {xr}n for each of the N classes, and sample a permutation of N
distinct one-hot vectors (ℓn) to serve as task-specific labels of the N sampled classes. The task is
then defined as T = {(xn,r, ℓn) | xn,r ∈ {xr}n}. Of course, this procedure is only possible with
labeled data; in the next section, we discuss how we can construct tasks without ground-truth labels.

2.3 UNSUPERVISED META-LEARNING WITH AUTOMATICALLY CONSTRUCTED TASKS

We approach our problem from a meta-learning perspective, framing the problem as the acquisition,
from unlabeled data, of an efficient learning procedure that is transferable to human-designed tasks.
In particular, we aim to construct classification tasks from the unlabeled data and then learn how
to efficiently learn these tasks. If such tasks are adequately diverse and structured, then meta-
learning these tasks should enable fast learning of new, human-provided tasks. A key question, then,
is how to automatically construct such tasks from unlabeled data D = {xi}. Notice that in the
supervised meta-learning task generation procedure detailed in Section 2.2, the labels yi induce a
partition P = {Cc} over {xi} by assigning all datapoints with label yc to subset Cc. Once a partition
is obtained, task generation is simple; we can reduce the problem of constructing tasks to that of
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constructing a partition over {xi}. All that’s left is to find a principled alternative to human labels
for defining the partition.

A naı̈ve approach is to randomly partition the data D. While such a scheme introduces diverse
tasks, there is no structure; that is, there is no consistency between a task’s training data and query
data, and hence nothing to be learned during each task, let alone across tasks. As seen in Table 3,
providing a meta-learner with purely random tasks results in failed meta-learning.

To construct tasks with structure that resembles that of human-specified labels, we need to group dat-
apoints into consistent and distinct subsets based on salient features. With this motivation in mind,
we propose to use k-means clustering. Consider the partition P = {Cc} learned by k-means as a
simplification of a Gaussian mixture model p(x|c)p(c). If the clusters can recover a semblance of
the true class-conditional generative distributions p(x|c), creating tasks based on treating these clus-
ters as classes should result in useful unsupervised meta-training. However, the result of k-means is
critically dependent on the metric space on which its objective is defined. Clustering in pixel-space
is unappealing for two reasons: (1) distance in pixel-space correlates poorly with semantic meaning,
and (2) the high dimensionality of raw images renders clustering difficult in practice. We empirically
show in Table 3 that meta-learning with tasks defined by pixel-space clusters, with preprocessing as
directed by Coates & Ng (2012), also fails.

We are now motivated to cluster in spaces in which common distance functions correlate to semantic
meaning. However, we must satisfy the constraints of our problem statement in the process of learn-
ing such spaces. To these ends, we use state-of-the-art unsupervised learning methods to produce
useful embedding spaces. For qualitative evidence in the unsupervised learning literature that such
embedding spaces exhibit semantic meaning, see Cheung et al. (2015); Bojanowski & Joulin (2017);
Donahue et al. (2017). We note that while a given embedding space may not be directly suitable
for highly-efficient learning of new tasks (which would require the embedding space to be precisely
aligned or adaptable to the classes of those tasks), we can still leverage it for the construction of
structured tasks, a process for which requirements are less strict.

Thus, we first run an out-of-the-box unsupervised embedding learning algorithm E on D, then map
the data {xi} into the embedding space Z , producing {zi}. To produce a diverse task set, we gener-
ate P partitions {Pp} by running clustering P times, applying random scaling to the dimensions of
Z to induce a different metric, represented by diagonal matrix A, for each run of clustering. With
µc denoting the learned centroid of cluster Cc, a single run of clustering can be summarized with

P, {µc} = argmin
{Cc},{µc}

k∑

c=1

∑

z∈Cc

‖z− µc‖
2

A
(1)

We derive tasks for meta-learning from the partitions using the procedure detailed in Section 2.2,
except we begin the construction of each task by sampling a partition from the uniform distribution
U(P), and for xi ∈ Cc, specify yi = c. To avoid imbalanced clusters dominating the meta-training
tasks, we opt not to sample from p(c) ∝ |Cc|, but instead sample N clusters uniformly without
replacement for each task. We note that Caron et al. (2018) are similarly motivated in their design
decision of sampling data from a uniform distribution over clusters.

With the partitions being constructed over {zi}, we have one more design decision to make: should
we perform meta-learning on embeddings or images? We consider that, to successfully solve new
tasks at meta-test time, a learning procedure F that takes embeddings as input would depend on the
embedding function’s ability to generalize to out-of-distribution observations. On the other hand, by
meta-learning on images, F can separately adapt f to each evaluation task from the rawest level of
representation. Thus, we choose to meta-learn on images.

We call our method clustering to automatically construct tasks for unsupervised meta-learning
(CACTUs). We detail the task construction algorithm in Algorithm 1, and provide an illustration of
the complete unsupervised meta-learning approach for classification in Figure 1.

3 RELATED WORK

The method we propose aims to address the unsupervised learning problem (Hastie et al., 2009; Le
et al., 2013), namely acquiring a transferable learning procedure without labels. We show that our
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Algorithm 1 CACTUs for classification

1: procedure CACTUS(E ,D, P, k, T,N,Km-tr, Q)
2: Run embedding learning algorithm E on D and produce embeddings {zi} from observations {xi}.
3: Run k-means on {zi} P times (with random scaling) to generate a set of partitions {Pp = {Cc}p}.
4: for t from 1 to the number of desired tasks T do
5: Sample a partition P uniformly at random from the set of partitions {Pp}.
6: Sample a cluster Cn uniformly without replacement from P for each of the N classes desired for a

task.
7: Sample an embedding zr without replacement from Cn for each of the R = Km-tr +Q training and

query examples desired for each class, and record the corresponding datapoint xn,r .

8: Sample a permutation (ℓn) of N one-hot labels.
9: Construct Tt = {(xn,r, ℓn)}.

10: return {Tt}

method is complementary to a number of unsupervised learning methods, including ACAI (Berth-
elot et al., 2018), BiGAN (Donahue et al., 2017; Dumoulin et al., 2017), DeepCluster (Caron et al.,
2018), and InfoGAN (Chen et al., 2016): we leverage these prior methods to learn embeddings
used for constructing meta-learning tasks, and demonstrate that our method learns a more useful
representation than the embeddings. The ability to use what was learned during unsupervised pre-
training to better or more efficiently learn a variety of downstream tasks is arguably one of the most
practical applications of unsupervised learning methods, which has a long history in neural network
training (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2006; Vincent et al., 2008; Erhan
et al., 2010). Unsupervised pre-training has demonstrated success in a number of domains, includ-
ing speech recognition (Yu et al., 2010), image classification (Zhang et al., 2017), machine transla-
tion (Ramachandran et al., 2017), and text classification (Dai & Le, 2015; Howard & Ruder, 2018;
Radford et al., 2018). Our approach, unsupervised meta-learning, can be viewed as an unsupervised
learning algorithm that explicitly optimizes for few-shot transferability. As a result, we can expect it
to better learn human-specified downstream tasks, compared to unsupervised learning methods that
optimize for other metrics, such as reconstruction (Vincent et al., 2010; Higgins et al., 2017), fidelity
of constructed images (Radford et al., 2016; Salimans et al., 2016; Donahue et al., 2017; Dumoulin
et al., 2017), representation interpolation (Berthelot et al., 2018), disentanglement (Bengio et al.,
2013; Reed et al., 2014; Cheung et al., 2015; Chen et al., 2016; Mathieu et al., 2016; Denton &
Birodkar, 2017), and clustering (Coates & Ng, 2012; Krähenbühl et al., 2016; Bojanowski & Joulin,
2017; Caron et al., 2018). We empirically evaluate this hypothesis in the next section. In contrast to
many previous evaluations of unsupervised pre-training, we focus on settings in which only a small
amount of data for the downstream tasks is available, since this is where the unlabeled data can be
maximally useful.

Unsupervised pre-training followed by supervised learning can be viewed as a special case of the
semi-supervised learning problem (Zhu, 2011; Kingma et al., 2014; Rasmus et al., 2015; Oliver
et al., 2018). However, in contrast to our problem statement, semi-supervised learning methods
assume that a significant proportion of the unlabeled data, if not all of it, shares underlying labels
with the labeled data. Additionally, our approach and other unsupervised learning methods are well-
suited for transferring their learned representation to many possible downstream tasks or labelings,
whereas semi-supervised learning methods typically optimize for performance on a single task, with
respect to a single labeling of the data.

Our method builds upon the ideas of meta-learning (Schmidhuber, 1987; Bengio et al., 1991; Naik
& Mammone, 1992) and few-shot learning (Santoro et al., 2016; Vinyals et al., 2016; Ravi &
Larochelle, 2017; Munkhdalai & Yu, 2017; Snell et al., 2017). We apply two meta-learning al-
gorithms, model-agnostic meta-learning (Finn et al., 2017) and prototypical networks (Snell et al.,
2017), to tasks constructed in an unsupervised manner. Similar to our problem setting, some prior
works have aimed to learn an unsupervised learning procedure with supervised data (Garg & Kalai,
2017; Metz et al., 2018). Instead, we consider a problem setting that is entirely unsupervised, aim-
ing to learn efficient learning algorithms using unlabeled datasets. Our problem setting is similar to
that considered by Gupta et al. (2018), but we develop an approach that is suitable for supervised
downstream tasks, rather than reinforcement learning problems, and demonstrate our algorithm on
problems with high-dimensional visual observations.
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4 EXPERIMENTS

We begin the experimental section by presenting our research questions and how our experiments are
designed to address them. Links to code for the experiments can be found at https://sites.
google.com/view/unsupervised-via-meta.

Benefit of meta-learning. Is there any significant benefit to doing meta-learning on tasks derived
from embeddings, or is the embedding function already sufficient for downstream supervised learn-
ing of new tasks? To investigate this, we run MAML and ProtoNets on tasks generated via CACTUs
(CACTUs-MAML, CACTUs-ProtoNets). We compare to five alternate algorithms, with four being
supervised learning methods on top of the embedding function. i) Embedding knn-nearest neighbors
first infers the embeddings of the downstream task images. For a query test image, it predicts the
plurality vote of the labels of the knn training images that are closest in the embedding space to
the query’s embedding. ii) Embedding linear classifier also begins by inferring the embeddings of
the downstream task images. It then fits a linear classifier using the NK training embeddings and
labels, and predicts labels for the query embeddings using the classifier. iii) Embedding multilayer
perceptron instead uses a network with one hidden layer of 128 units and tuned dropout (Srivastava
et al., 2014). iv) To isolate the effect of meta-learning on images, we also compare to embedding
cluster matching, i.e. directly using the meta-training clusters for classification by labeling clusters
with a task’s training data via plurality vote. If a query datapoint maps to an unlabeled cluster,
the closest labeled cluster is used. v) As a baseline, we forgo any unsupervised pre-training and
train a model with the MAML architecture from standard random network initialization via gradient
descent separately for each evaluation task.

Different embedding spaces. Does CACTUs result in successful meta-learning for many distinct
task-generating embeddings? To investigate this, we run unsupervised meta-learning using four
embedding learning algorithms: ACAI (Berthelot et al., 2018), BiGAN (Donahue et al., 2017),
DeepCluster (Caron et al., 2018), and InfoGAN (Chen et al., 2016). These four approaches collec-
tively cover the following range of objectives and frameworks in the unsupervised learning literature:
generative modeling, two-player games, reconstruction, representation interpolation, discriminative
clustering, and information maximization. We describe these methods in more detail in Appendix A.

Applicability to different tasks. Can unsupervised meta-learning yield a good prior for a variety of
task types? In other words, can unsupervised meta-learning yield a good representation for tasks that
assess the ability to distinguish between features on different scales, or tasks with various amounts of
supervision signal? To investigate this, we evaluate our procedure on tasks assessing recognition of
character identity, object identity, and facial attributes. For this purpose we choose to use the existing
Omniglot (Santoro et al., 2016) and miniImageNet (Ravi & Larochelle, 2017) datasets and few-shot
classification tasks and, inspired by Finn et al. (2018), also construct a new few-shot classification
benchmark based on the CelebA dataset and its binary attribute annotations. For miniImageNet,
we consider both few-shot downstream tasks and tasks involving larger datasets (up to 50-shot).
Specifics on the datasets and human-designed tasks are presented in Appendix B.

Oracle. How does the performance of our unsupervised meta-learning method compare to super-
vised meta-learning with a human-specified, near-optimal task distribution derived from a labeled
dataset? To investigate this, we use labeled versions of the meta-training datasets to run MAML and
ProtoNets as supervised meta-learning algorithms (Oracle-MAML, Oracle-ProtoNets). To facilitate
fair comparison with the unsupervised variants, we control for the relevant hyperparameters.

Task construction ablation. How do the alternatives for constructing tasks from the embeddings
compare? To investigate this, we run MAML on tasks constructed via clustering (CACTUs-MAML)
and MAML on tasks constructed via random hyperplane slices of the embedding space with varying
margin (Hyperplanes-MAML). The latter partitioning procedure is detailed in Appendix C. For the
experiments where tasks are constructed via clustering, we also investigate the effect of sampling
based on a single partition versus multiple partitions. We additionally experiment with tasks based
on random assignments of images to “clusters” (Random-MAML) and tasks based on pixel-space
clusters (Pixels CACTUs-MAML) with the Omniglot dataset.

To investigate the limitations of our method, we also consider an easier version of our problem
statement where the data distributions at meta-training and meta-test time perfectly overlap, i.e.
the images share a common set of underlying labels (Appendix D). Finally, we present results on
miniImageNet after unsupervised meta-learning on most of ILSVRC 2012 (Appendix G).

6

https://sites.google.com/view/unsupervised-via-meta
https://sites.google.com/view/unsupervised-via-meta


Published as a conference paper at ICLR 2019

(a) (b)

train test

C
el

eb
A

m
in

iI
m

ag
eN

et

Figure 2: Examples of three DeepCluster-embedding cluster-based classes (a) and a 2-way 5-shot test task (b)
for two datasets. (a) Some of the clusters correspond well to unseen labels (top left, bottom left). Others exhibit
semantic meaning despite members not being grouped as such in the labeled version of the dataset (top middle:
pair of objects, bottom middle: white hat). Still others are uninterpretable (top right) or are based on image
artifacts (bottom right). (b) We evaluate unsupervised pre-training based on the ability to learn downstream,
human-designed tasks with held-out images and underlying classes.

4.1 EXPERIMENTAL PROTOCOL SUMMARY

As discussed by Oliver et al. (2018), keeping proper experimental protocol is particularly important
when evaluating unsupervised and semi-supervised learning algorithms. Our foremost concern is
to avoid falsely embellishing the capabilities of our approach by overfitting to the specific datasets
and task types that we consider. To this end, we adhere to two key principles. We do not perform
any architecture engineering: we use architectures from prior work as-is, or lightly adapt them to
our needs if necessary. We also keep hyperparameters related to the unsupervised meta-learning
stage as constant as possible across all experiments, including the MAML and ProtoNets model
architectures. Details on hyperparameters and architectures are presented in Appendix E. We assume
knowledge of an upper bound on the number of classes N present in each downstream meta-testing
task for each dataset. However, regardless of the number of shots K, we do not assume knowledge
of K during unsupervised meta-learning. We use N -way 1-shot tasks during meta-training, but test
on larger values of K during meta-testing.

We partition each dataset into meta-training, meta-validation, and meta-testing splits. For Omniglot
and miniImageNet, these splits contain disjoint sets of classes. For all algorithms, we run unsuper-
vised pre-training on the unlabeled meta-training split and report performance on downstream tasks
dictated by the labeled data of the meta-testing split, generated using the procedure from prior work
recounted in Section 2.2. For the supervised meta-learning oracles, meta-training tasks are con-
structed in the same manner but from the dataset’s meta-training split. See Figure 2 for illustrative
examples of embedding-derived clusters and human-designed test tasks.

To facilitate analysis on meta-overfitting, we use the labels of the meta-validation split (instead
of clustering embeddings) to construct tasks for meta-validation. However, because our aim is to
perform meta-learning without supervision, we do not tune hyperparameters on this labeled data. We
use a fixed number of meta-training iterations, since there is no suitable criterion for early stopping.

When we experiment with the embedding-plus-supervised-learning methods used as fair compar-
isons to unsupervised meta-learning, we err on the side of providing more supervision and data than
technically allowed. Specifically, we separately tune the supervised learning hyperparameters for
each dataset and each task difficulty on the labeled version of the meta-validation split. With Deep-
Cluster embeddings, we also use the entire meta-testing split’s statistics to perform dimensionality
reduction (via PCA) and whitening, which is unfair as this shares information across tasks.

4.2 RESULTS

Our primary results are summarized in Tables 1 and 2. Task construction ablations are summarized
in Tables 3 and 4.
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Benefit of meta-learning. CACTUs-MAML consistently yields a learning procedure that results
in more successful downstream task performance than all other unsupervised methods, including
those that learn on top of the embedding that generated meta-training tasks for MAML. We find the
same result for CACTUs-ProtoNets for 1-shot downstream tasks. However, as noted by Snell et al.
(2017), ProtoNets perform best when meta-training shot and meta-testing shot are matched; this
characteristic prevents ProtoNets from improving upon ACAI for 20-way 5-shot Omniglot and upon
DeepCluster for 50-shot miniImageNet. We attribute the success of CACTUs-based meta-learning
over the embedding-based methods to two factors: its practice in distinguishing between many dis-
tinct sets of clusters from modest amounts of signal, and the underlying classes of the meta-testing
split data being out-of-distribution. In principle, the latter factor is solely responsible for the success
over embedding cluster matching, since this algorithm can be viewed as a meta-learner on embed-
dings that trivially obtains perfect accuracy (via memorization) on the meta-training tasks. The same
factor also helps explain why training from standard network initialization is, in general, competi-
tive with directly using the task-generating embedding as a representation. On the other hand, the
MNIST results (Table 7 in Appendix F) suggest that when the meta-training and meta-testing data
distributions have perfect overlap and the embedding is well-suited enough that embedding cluster
matching can already achieve high performance, CACTUs-MAML yields only a small benefit, as
we would expect.

Table 1: Results of unsupervised learning on Omniglot images, averaged over 1000 downstream character
recognition tasks. CACTUs experiments use k = 500 clusters for each of P = 100 partitions. Embedding
cluster matching uses the same k. For complete results with confidence intervals, see Table 8 in Appendix F.

Algorithm (way, shot) (5, 1) (5, 5) (20, 1) (20, 5)

Training from scratch 52.50% 74.78% 24.91% 47.62%

ACAI knn-nearest neighbors 57.46% 81.16% 39.73% 66.38%
ACAI linear classifier 61.08% 81.82% 43.20% 66.33%
ACAI MLP with dropout 51.95% 77.20% 30.65% 58.62%
ACAI cluster matching 54.94% 71.09% 32.19% 45.93%
ACAI CACTUs-MAML (ours) 68.84% 87.78% 48.09% 73.36%
ACAI CACTUs-ProtoNets (ours) 68.12% 83.58% 47.75% 66.27%

BiGAN knn-nearest neighbors 49.55% 68.06% 27.37% 46.70%
BiGAN linear classifier 48.28% 68.72% 27.80% 45.82%
BiGAN MLP with dropout 40.54% 62.56% 19.92% 40.71%
BiGAN cluster matching 43.96% 58.62% 21.54% 31.06%
BiGAN CACTUs-MAML (ours) 58.18% 78.66% 35.56% 58.62%
BiGAN CACTUs-ProtoNets (ours) 54.74% 71.69% 33.40% 50.62%

Oracle-MAML (control) 94.46% 98.83% 84.60% 96.29%
Oracle-ProtoNets (control) 98.35% 99.58% 95.31% 98.81%

Different embedding spaces. CACTUs is effective for a variety of embedding learning methods
used for task generation. The performance of unsupervised meta-learning can largely be predicted
by the performance of the embedding-based non-meta-learning methods. For example, the ACAI
embedding does well with Omniglot, leading to the best unsupervised results with ACAI CACTUs-
MAML. Likewise, on miniImageNet, the best performing prior embedding (DeepCluster) also cor-
responds to the best performing unsupervised meta-learner (DeepCluster CACTUs-MAML).

Applicability to different tasks. CACTUs-MAML learns an effective prior for a variety of task
types. This can be attributed to the application-agnostic task-generation process and the expressive
power of MAML (Finn & Levine, 2018). We also observe that, despite all meta-learning models
being trained for N -way 1-shot classification of unsupervised tasks, the models work well for a
variety of M -way K-shot tasks, where M ≤ N and K ≤ 50. As mentioned previously, the
representation that CACTUs-ProtoNets learns is best suited for downstream tasks which match the
single shot used for meta-training.

Oracle. The penalty for not having ground truth labels to construct near-optimal tasks ranges from
substantial to severe, depending on the difficulty of the downstream task. Easier downstream tasks
(which have fewer classes and/or more supervision) incur less of a penalty. We conjecture that
with such tasks, the difference in the usefulness of the priors matters less since the downstream
task-specific evidence has more power to shape the posterior.
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Table 2: Results of unsupervised learning on miniImageNet and CelebA images, averaged over 1000 down-
stream human-designed tasks. CACTUs experiments use k = 500 for each of P = 50 partitions. Embedding
cluster matching uses the same k. For complete results with confidence intervals, see Tables 9 and 10 in
Appendix F.

miniImageNet CelebA
Algorithm (way, shot) (5, 1) (5, 5) (5, 20) (5, 50) (2, 5)

Training from scratch 27.59% 38.48% 51.53% 59.63% 63.19%

BiGAN knn-nearest neighbors 25.56% 31.10% 37.31% 43.60% 56.15%
BiGAN linear classifier 27.08% 33.91% 44.00% 50.41% 58.44%
BiGAN MLP with dropout 22.91% 29.06% 40.06% 48.36% 56.26%
BiGAN cluster matching 24.63% 29.49% 33.89% 36.13% 56.20%
BiGAN CACTUs-MAML (ours) 36.24% 51.28% 61.33% 66.91% 74.98%
BiGAN CACTUs-ProtoNets (ours) 36.62% 50.16% 59.56% 63.27% 65.58%

DeepCluster knn-nearest neighbors 28.90% 42.25% 56.44% 63.90% 61.47%
DeepCluster linear classifier 29.44% 39.79% 56.19% 65.28% 59.57%
DeepCluster MLP with dropout 29.03% 39.67% 52.71% 60.95% 60.65%
DeepCluster cluster matching 22.20% 23.50% 24.97% 26.87% 51.51%
DeepCluster CACTUs-MAML (ours) 39.90% 53.97% 63.84% 69.64% 73.79%
DeepCluster CACTUs-ProtoNets (ours) 39.18% 53.36% 61.54% 63.55% 74.15%

Oracle-MAML (control) 46.81% 62.13% 71.03% 75.54% 87.10%
Oracle-ProtoNets (control) 46.56% 62.29% 70.05% 72.04% 85.13%

Task construction ablation. As seen in Tables 3 and 4, CACTUs-MAML consistently outperforms
Hyperplanes-MAML with any margin. We hypothesize that this is due to the issues with zero-margin
Hyperplanes-MAML pointed out in Appendix C, and the fact that nonzero-margin Hyperplanes-
MAML is able to use less of the meta-training split to generate tasks than CACTUs-MAML is.
We find that using multiple partitions for CACTUs-MAML, while beneficial, is not strictly neces-
sary. Using non-zero margin with Hyperplanes-MAML is crucial for miniImageNet, but not for
Omniglot. We conjecture that the enforced degree of separation between classes is needed for mini-
ImageNet because of the dataset’s high diversity. Meta-learning on random tasks or tasks derived
from pixel-space clustering (Table 3) results in a prior that is much less useful than any other con-
sidered algorithm, including a random network initialization; evidently, practicing badly is worse
than not practicing at all.

Note on overfitting. Because of the combinatorially many unsupervised tasks we can create from
multiple partitions of the dataset, we do not observe substantial overfitting to the unsupervised meta-
training tasks. However, we observe that meta-training performance is sometimes worse than meta-
test time performance, which is likely due to a portion of the automatically generated tasks being
based on nonsensical clusters (for examples, see Figure 2). Additionally, we find that, with a few
exceptions, using multiple partitions has a regularizing effect on the meta-learner: a diverse task set
reduces overfitting to the meta-training tasks and increases the applicability of the learned prior.

Table 3: Ablation study of task construction methods on Omniglot. For a more complete set of results with
confidence intervals, see Table 8 in Appendix F.

Algorithm (way, shot) (5, 1) (5, 5) (20, 1) (20, 5)

Random-MAML, P = 2400, k = 500 25.99% 25.74% 6.51% 6.74%
Pixels CACTUs-MAML, P = 1, k = 500 30.55% 40.19% 12.05% 19.01%

ACAI Hyperplanes-MAML, P = 2400, m = 0 62.34% 81.81% 39.30% 63.18%
ACAI Hyperplanes-MAML, P = 2400, m = 1.2 62.44% 83.20% 41.86% 65.23%
ACAI CACTUs-MAML, P = 1, k = 500 66.49% 85.60% 45.04% 69.14%
ACAI CACTUs-MAML, P = 100, k = 500 68.84% 87.78% 48.09% 73.36%

BiGAN Hyperplanes-MAML, P = 2400, m = 0 53.60% 74.60% 29.02% 50.77%
BiGAN Hyperplanes-MAML, P = 2400, m = 0.5 53.18% 73.55% 29.98% 50.14%
BiGAN CACTUs-MAML, P = 1, k = 500 55.92% 76.28% 32.44% 54.22%
BiGAN CACTUs-MAML, P = 100, k = 500 58.18% 78.66% 35.56% 58.62%
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Table 4: Ablation study of task construction methods on miniImageNet. For a more complete set of results
with confidence intervals, see Table 9 in Appendix F.

Algorithm (way, shot) (5, 1) (5, 5) (5, 20) (5, 50)

BiGAN Hyperplanes-MAML, P = 4800, m = 0 20.00% 20.00% 20.00% 20.00%
BiGAN Hyperplanes-MAML, P = 4800, m = 0.9 29.67% 41.92% 51.32% 54.72%
BiGAN CACTUs-MAML, P = 1, k = 500 37.75% 52.59% 62.70% 67.98%
BiGAN CACTUs-MAML, P = 50, k = 500 36.24% 51.28% 61.33% 66.91%

DeepCluster Hyperplanes-MAML, P = 4800, m = 0 20.02% 20.01% 20.00% 20.01%
DeepCluster Hyperplanes-MAML, P = 4800, m = 0.1 35.85% 49.54% 60.68% 65.55%
DeepCluster CACTUs-MAML, P = 1, k = 500 38.75% 52.73% 62.72% 67.77%
DeepCluster CACTUs-MAML, P = 50, k = 500 39.90% 53.97% 63.84% 69.64%

5 DISCUSSION

We demonstrate that meta-learning on tasks produced using simple mechanisms based on embed-
dings improves upon the utility of these representations in learning downstream, human-specified
tasks. We empirically show that this holds across benchmark datasets and tasks in the few-shot
classification literature (Santoro et al., 2016; Ravi & Larochelle, 2017; Finn et al., 2018), task diffi-
culties, and embedding learning methods while fixing key hyperparameters across all experiments.

In a sense, CACTUs can be seen as a facilitating interface between an embedding learning method
and a meta-learning algorithm. As shown in the results, the meta-learner’s performance significantly
depends on the nature and quality of the task-generating embeddings. We can expect our method
to yield better performance as the methods that produce these embedding functions improve, be-
coming better suited for generating diverse yet distinctive clusterings of the data. However, the gap
between unsupervised and supervised meta-learning will likely persist because, with the latter, the
meta-training task distribution is human-designed to mimic the expected evaluation task distribu-
tion as much as possible. Indeed, to some extent, supervised meta-learning algorithms offload the
effort of designing and tuning algorithms onto the effort of designing and tuning task distributions.
With its evaluation-agnostic task generation, CACTUs-based meta-learning trades off performance
in specific use-cases for broad applicability and the ability to train on unlabeled data. In principle,
CACTUs-based meta-learning may outperform supervised meta-learning when the latter is trained
on a misaligned task distribution. We leave this investigation to future work.

While we have demonstrated that k-means is a broadly useful mechanism for constructing tasks
from embeddings, it is unlikely that combinations of k-means clusters in learned embedding spaces
are universal approximations of arbitrary class definitions. An important direction for future work
is to find examples of datasets and human-designed tasks for which CACTUs-based meta-learning
results in ineffective downstream learning. This will result in better understanding of the practical
scope of applicability for our method, and spur further development in automatic task construction
mechanisms for unsupervised meta-learning.

A potential concern of our experimental evaluation is that MNIST, Omniglot, and miniImageNet
exhibit particular structure in the underlying class distribution (i.e., perfectly balanced classes), since
they were designed to be supervised learning benchmarks. In more practical applications of machine
learning, such structure would likely not exist. Our CelebA results indicate that CACTUs is effective
even in the case of a dataset without neatly balanced classes or attributes. An interesting direction
for future work is to better characterize the performance of CACTUs and other unsupervised pre-
training methods with highly-unstructured, unlabeled datasets.

Since MAML and ProtoNets produce nothing more than a learned representation, our method can
be viewed as deriving, from a previous unsupervised representation, a new representation particu-
larly suited for learning downstream tasks. Beyond visual classification tasks, the notion of using
unsupervised pre-training is generally applicable to a wide range of domains, including regression,
speech (Oord et al., 2018), language (Howard & Ruder, 2018), and reinforcement learning (Shel-
hamer et al., 2017). Hence, our unsupervised meta-learning approach has the potential to improve
unsupervised representations for a variety of such domains, an exciting avenue for future work.
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APPENDIX A THE EMBEDDING LEARNING ZOO

We evaluate four distinct methods from prior work for learning the task-generating embeddings.

In adversarially constrained autoencoder interpolation (ACAI), a convolutional autoencoder’s pixel-
wise L2 loss is regularized with a term encouraging meaningful interpolations in the latent
space (Berthelot et al., 2018). Specifically, a critic network takes as input a synthetic image gener-
ated from a convex combination of the latents of two dataset samples, and regresses to the mixing
factor. The decoder of the autoencoder and the generator for the critic are one and the same. The reg-
ularization term is minimized when the autoencoder fools the critic into predicting that the synthetic
image is a real sample.

The bidirectional GAN (BiGAN) is an instance of a generative-adversarial framework in which
the generator produces both synthetic image and embedding from real embedding and image, re-
spectively (Donahue et al., 2017; Dumoulin et al., 2017). Discrimination is done in joint image-
embedding space.

The DeepCluster method does discriminative clustering by alternating between clustering the fea-
tures of a convolutional neural network and using the clusters as labels to optimize the network
weights via backpropagating a standard classification loss (Caron et al., 2018).

The InfoGAN framework conceptually decomposes the generator’s input into a latent code and
incompressible noise (Chen et al., 2016). The structure of the latent code is hand-specified based
on knowledge of the dataset. The canonical GAN minimax objective is regularized with a mutual
information term between the code and the generated image. In practice, this term is optimized using
variational inference, involving the approximation of the posterior with an auxiliary distribution
Q(code|image) parameterized by a recognition network.

Whereas ACAI explicitly optimizes pixel-wise reconstruction error, BiGAN only encourages the
fidelity of generated image and latent samples with respect to their respective prior distributions.
While InfoGAN also encourages the fidelity of generated images, it leverages domain-specific
knowledge to impose a favorable structure on the embedding space and information-theoretic meth-
ods for optimization. DeepCluster departs from the aforementioned methods in that it is not con-
cerned with generation or decoding, and only seeks to learn general-purpose visual features by way
of end-to-end discriminative clustering.

APPENDIX B DATASET INFORMATION

The Omniglot dataset consists of 1623 characters each with 20 hand-drawn examples. Ignoring
the alphabets from which the characters originate, we use 1100, 100, and 423 characters for our
meta-training, meta-validation, and meta-testing splits. The miniImageNet dataset consists of 100
classes each with 600 examples. The images are predominantly natural and realistic. We use the
same meta-training/meta-validation/meta-testing splits of 64/16/20 classes as proposed by Ravi &
Larochelle (2017). The CelebA dataset includes 202,599 facial images of celebrities and 40 binary
attributes that annotate every image. We follow the prescribed 162,770/19,867/19,962 data split.

For Omniglot and miniImageNet, supervised meta-learning tasks and evaluation tasks are con-
structed exactly as detailed in Section 2.2: for an N -way K-shot task with Q queries per class,
we sample N classes from the data split and K + Q datapoints per class, labeling the task’s data
with a random permutation of N one-hot vectors.

For CelebA, we consider binary classification tasks (i.e., 2-way), each defined by 3 attributes and
an ordering of 3 Booleans, one for each attribute. Every image in a task-specific class shares
all task-specific attributes with each other and none with images in the other class. For exam-
ple, the task illustrated in Figure 2 involves distinguishing between images whose subjects sat-
isfy not Sideburns, Straight Hair, and not Young, and those whose subjects satisfy
Sideburns, not Straight Hair, and Young. To keep with the idea of having distinct
classes for meta-training and meta-testing, we split the task-defining attributes. For the supervised
meta-learning oracle, we construct meta-training tasks from the first 20 attributes (when alphabet-
ically ordered), meta-validation tasks from the next 10, and meta-testing tasks from the last 10.
Discarding tasks with too few examples in either class, this results in 4287, 391, and 402 task
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prototypes (but many more possible tasks). We use the same meta-test time tasks to evaluate the
unsupervised methods. We only consider assessment with 5-shot tasks because, given that there are
multiple attributes other than the task-defining ones, any 1-shot task is likely to be ill-defined.

APPENDIX C TASK CONSTRUCTION VIA RANDOM HYPERPLANES

Given a set of embedding points {zi} in a space Z , a simple way of defining a partition P = {Cc}
on {zi} is to use random hyperplanes to slice Z into subspaces and assign the embeddings that lie
in the c-th subspace to subset Cc. However, a hyperplane slicing can group together two arbitrarily
far embeddings, or separate two arbitrarily close ones; given our assumption that good embedding
spaces have a semantically meaningful metric, this creates ill-defined classes. This problem can be
partially alleviated by extending the hyperplane boundaries with a non-zero margin, as empirically
shown in Section 4.2.

We now describe how to generate tasks via random hyperplanes in the embedding space. We first
describe a procedure to generate a partition P of the set of embeddings {zi} for constructing meta-
training tasks. A given hyperplane slices the embedding space into two, so for an N -way task, we
need H = ⌈log

2
N⌉ hyperplanes to define sufficiently many subsets/classes for a task. To randomly

define a hyperplane in d-dimensional embedding space, we sample a normal vector n and a point
on the plane z0, each with d elements. For an embedding point z, the signed point-plane distance
is given by n

|n|
2

· (z − z0). Defining H hyperplanes in this manner, we discard embeddings for

which the signed point-plane distance to any of the H hyperplanes lies within (−m,m), where m
is a desired margin. The H hyperplanes collectively define 2H subspaces. We assign embedding
points in the c-th subspace to subset Cc. We define the partition as P = {Cc}. We prune subsets that
do not have at least R = Km-tr +Q members, and check that the partition has at least N remaining
subsets; if not, we reject the partition and restart the procedure. After obtaining partitions {Pp},
meta-training tasks can be generated by following Algorithm 1 from Line 4.

In terms of practical implementation, we pre-compute 1000 hyperplanes and pruned pairs of subsets
of {zi}. We generate partitions by sampling combinations of the hyperplanes and taking intersec-
tions of their associated subsets to define the elements of the partition. We determine the number of
partitions needed for a given Hyperplanes-MAML run by the number of meta-training tasks desired
for the meta-learner: we fix 100 tasks per partition.

APPENDIX D MNIST EXPERIMENTS

The MNIST dataset consists of 70,000 hand-drawn examples of the 10 numerical digits. Our split
respects the original MNIST 60,000/10,000 training/testing split. We assess on 10-way classification
tasks. This setup results in examples from all 10 digits being present for both meta-training and
meta-testing, making the probem setting essentially equivalent to that of semi-supervised learning
sans a fixed permutation of the labels. The MNIST scenario is thus a special case of the problem
setting considered in the rest of the paper. For MNIST, we only experiment with MAML as the
meta-learning algorithm.

For ACAI and InfoGAN we constructed the meta-validation split from the last 5,000 examples of the
meta-training split; for BiGAN this figure was 10,000. After training the ACAI model and inferring
embeddings, manually assigning labels to 10 clusters by inspection results in a classification accu-
racy of 96.00% on the testing split. As the ACAI authors observe, we found it important to whiten
the ACAI embeddings before clustering. The same metric for the InfoGAN embedding (taking an
argmax over the categorical dimensions instead of actually running clustering) is 96.83%. Note that
these results are an upper-bound for embedding cluster matching. To see this, consider the 10-way
1-shot scenario. 1 example sampled from each cluster is insufficient to guarantee the optimal label
for that cluster; 1 example sampled from each label is not guaranteed to each end up in the optimal
category.

Aside from CACTUs-MAML, embedding knn-nearest neighbors, embedding linear classifier, and
embedding direct clustering, we also ran CACTUs-MAML on embeddings instead of raw images,
using a simple model with 2 hidden layers with 64 units each and ReLU activation, and all other
MAML hyperparameters being the same as in Table 5.
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Departing from the fixed k = 500 used for all other datasets, we deliberately use k = 10 to better
understand the limitations of CACTUs-MAML. The results can be seen in Table 7 in Appendix B.
In brief, with the better embeddings (ACAI and InfoGAN), there is only little benefit of CACTUs-
MAML over embedding cluster matching. Additionally, even in the best cases, CACTUs-MAML
falls short of state-of-the-art semi-supervised learning methods.

APPENDIX E HYPERPARAMETERS AND ARCHITECTURES

E.1 MAML

Table 5: MAML hyperparameter summary.

Hyperparameter MNIST Omniglot miniImageNet CelebA

Input size 28× 28 28× 28 84× 84× 3 84× 84× 3
Outer (meta) learning rate 0.001 0.001 0.001 0.001
Inner learning rate 0.05 0.05 0.05 0.05
Task batch size 8 8 8 8
Inner adaptation steps (meta-training) 5 5 5 5
Meta-training iterations 30,000 30,000 60,000 60,000
Adaptation steps (evaluation) 50 50 50 50
Classes per task (meta-training) 10 20 5 2
Shots per class (meta-training) 1 1 1 1
Queries per class 5 5 5 5

For MNIST and Omniglot we use the same 4-block convolutional architecture as used by Finn et al.
(2017) for their Omniglot experiments, but with 32 filters (instead of 64) for each convolutional layer
for consistency with the model used for miniImageNet and CelebA, which is the same as what Finn
et al. (2017) used for their miniImageNet experiments. When evaluating the meta-learned 20-way
Omniglot model with 5-way tasks, we prune the unused output dimensions. The outer optimizer
is Adam (Kingma & Ba, 2014), and the inner optimizer is SGD. We build on the authors’ publicly
available codebase found at https://github.com/cbfinn/maml.

When using batch normalization (Ioffe & Szegedy, 2015) to process a task’s training or query in-
puts, we observe that using only 1 query datapoint per class can allow the model to exploit batch
statistics, learning a strategy analogous to a process of elimination that causes significant, but spuri-
ous, improvement in accuracy. To mitigate this, we fix 5 queries per class for every task’s evaluation
phase, meta-training or meta-testing.

E.2 PROTONETS

Table 6: ProtoNets hyperparameter summary.

Hyperparameter Omniglot miniImageNet CelebA

Input size 28× 28 84× 84× 3 84× 84× 3
Learning rate 0.001 0.001 0.001
Task batch size 1 1 1
Training iterations 30,000 60,000 60,000
Classes per task (meta-training) 20 5 2
Shots per class (meta-training) 1 1 1
Queries per class (meta-training/meta-testing) 15/5 15/5 15/5

For the three considered datasets we use the same architecture as used by Snell et al. (2017) for their
Omniglot and miniImageNet experiments. This is a 4-block convolutional architecture with each
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block consisting of a convolutional layer with 64 3 × 3 filters, stride 1, and padding 1, followed
by BatchNorm, ReLU activation, and 2 × 2 MaxPooling. The ProtoNets embedding is simply the
flattened output of the last block. We follow the authors and use the Adam optimizer, but do not
use a learning rate scheduler. We build upon the authors’ publicly available codebase found at
https://github.com/jakesnell/prototypical-networks.

E.3 CACTUS

For Omniglot, miniImageNet, and CelebA we fix the number of clusters k to be 500. For Omniglot
we choose the number of partitions P = 100, but in the interest of keeping runtime manageable,
choose P = 50 for miniImageNet and CelebA.

E.4 USE OF UNSUPERVISED LEARNING METHODS

ACAI (Berthelot et al., 2018): We run ACAI for MNIST and Omniglot. We pad the images
by 2 and use the authors’ architecture. We use a 256-dimensional embedding for all datasets.
We build upon the authors’ publicly available codebase found at https://github.com/
brain-research/acai.

We unsuccessfully try running ACAI on 64× 64 miniImageNet and CelebA. To facilitate this input
size, we add one block consisting of two convolutional layers (512 filters each) and one down-
sampling/upsampling layer to the encoder and decoder. However, because of ACAI’s pixel-wise
reconstruction loss, for these datasets the ACAI embedding prioritizes information about the few
“features” that dominate the reconstruction pixel count, resulting in clusters that only corresponded
to a limited range of factors, such as background color and pose. For curiosity’s sake, we tried run-
ning meta-learning on tasks derived from these uninteresting clusters anyways, and found that the
meta-learner quickly produced a learning procedure that obtained high accuracy on the meta-training
tasks. However, this learned prior was not useful for solving downstream tasks.

BiGAN (Donahue et al., 2017): For MNIST, we follow the BiGAN authors and specify a uni-
form 50-dimensional prior on the unit hypercube for the latent. The BiGAN authors use a 200-
dimensional version of the same prior for their ImageNet experiments, so we follow suit for Om-
niglot, miniImageNet, and CelebA. For MNIST and Omniglot, we use the permutation-invariant
architecture (i.e. fully connected layers only) used by the authors for their MNIST results; for mini-
ImageNet and CelebA, we randomly crop to 64×64 and use the AlexNet-inspired architecture used
by Donahue et al. (2017) for their ImageNet results. We build upon the authors’ publicly available
codebase found at https://github.com/jeffdonahue/bigan.

DeepCluster (Caron et al., 2018): We run DeepCluster for miniImageNet and CelebA, which we
respectively randomly crop and resize to 64 × 64. We modify the first layer of the AlexNet archi-
tecture used by the authors to accommodate this input size. We follow the authors and use the input
to the (linear) output layer as the embedding. These are 4096-dimensional, so we follow the au-
thors and apply PCA to reduce the dimensionality to 256, followed by whitening. We build upon the
authors’ publicly available codebase found at https://github.com/facebookresearch/
deepcluster.

InfoGAN (Chen et al., 2016): We only run InfoGAN for MNIST. We follow the InfoGAN authors
and specify the product of a 10-way categorical distribution and a 2-dimensional uniform distribution
as the latent code. We use the authors’ architecture. Given an image, we use the recognition network
to obtain its embedding. We build upon the authors’ publicly available codebase found at https:
//github.com/openai/InfoGAN.

APPENDIX F EXPERIMENTAL RESULTS

This section containsfull experimental results for the MNIST, Omniglot, miniImageNet, and CelebA
datasets, including consolidated versions of the tables found in the main text. The metric is clas-
sification accuracy averaged over 1000 tasks based on human-specified labels of the testing split,
with 95% confidence intervals. d: dimensionality of embedding, h: number of hidden units in a
fully connected layer, k: number of clusters in a partition, P : number of partitions used during
meta-learning, m: margin on boundary-defining hyperplanes.
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Table 10: CelebA facial attribute classification results averaged over 1000 tasks. ± denotes a 95% confidence
interval. d: dimensionality of embedding, h: number of hidden units in a fully connected layer, k: number of
clusters in a partition, P : number of partitions used during meta-learning.

Algorithm (way, shot) (2, 5)

Baselines
Training from scratch 63.19 ± 1.06 %

BiGAN, d = 200
Embedding knn-nearest neighbors 56.15 ± 0.89 %
Embedding linear classifier 58.44 ± 0.90 %
Embedding MLP with dropout, h = 128 56.26 ± 0.94 %
Embedding cluster matching, k = 500 56.20 ± 1.00 %
CACTUs-MAML (ours), P = 50, k = 500 74.98 ± 1.02 %
CACTUs-ProtoNets (ours), P = 50, k = 500 65.58 ± 1.04 %

DeepCluster, d = 256
Embedding knn-nearest neighbors 61.47 ± 0.99 %
Embedding linear classifier 59.57 ± 0.98 %
Embedding MLP with dropout, h = 128 60.65 ± 0.98 %
Embedding cluster matching, k = 500 51.51 ± 0.89 %
CACTUs-MAML (ours), P = 50, k = 500 73.79 ± 1.01 %
CACTUs-ProtoNets (ours), P = 50, k = 500 74.15 ± 1.02 %

Supervised meta-learning
Oracle-MAML (control) 87.10 ± 0.85 %
Oracle-ProtoNets (control) 85.13 ± 0.92 %
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APPENDIX G IMAGENET EXPERIMENTS

We investigate unsupervised meta-learning in the context of a larger unsupervised meta-training
dataset by using the ILSVRC 2012 dataset’s training split (Russakovsky et al., 2015), which is a
superset of the miniImageNet dataset (including meta-validation and meta-testing data) consisting
of 1000 classes and over 1,200,000 images. To facilitate comparison to the previous miniImageNet
experiments, for meta-validation and meta-test we use the miniImageNet meta-validation and meta-
test splits. To avoid task leakage, we hold out all data from these 36 underlying classes from the rest
of the data to construct the meta-training split.

For CACTUs, we use the best-performing unsupervised learning method from the previous experi-
ments, DeepCluster, to obtain the embeddings. Following Caron et al. (2018), we run DeepCluster
using the VGG-16 architecture with a 256-dimensional feature space and 10,000 clusters on the
meta-training data until the normalized mutual information between the data-cluster mappings of
two consecutive epochs converges. To our knowledge, no prior works have yet been published on
using MAML for ImageNet-sized meta-learning. We extend the standard convolutional neural net-
work model class with residual connections (He et al., 2016), validate hyperparameters with super-
vised meta-learning, then use it for unsupervised meta-learning without further tuning. See Table 11
for MAML hyperparameters. The training from scratch, embedding knn-nearest neighbors, and em-
bedding linear classifier algorithms are the same as they were in the previous sets of experiments.
For Oracle-MAML, we generated tasks using the ground-truth 964 ImageNet meta-training classes.
We also run semi-supervised MAML, with the meta-training tasks consisting of CACTUs-based
tasks as well as tasks constructed from the 64 miniImageNet meta-training classes. The unsuper-
vised/supervised task proportion split was fixed according to the ratio of the number of data available
to each task proposal method. As before, the meta-learning methods only meta-learned on 1-shot
tasks.

Table 11: MAML hyperparameter summary for ImageNet.

Hyperparameter Value

Input size 224× 224
Outer (meta) learning rate 0.0001
Inner learning rate 0.001
Task batch size 3
Inner adaptation steps (meta-training) 5
Meta-training iterations 240,000
Adaptation steps (evaluation) 100
Classes per task (meta-training) 5
Shots per class (meta-training) 1
Queries per class 5
Residual blocks 5
Layers per residual block 2

We find that the vastly increased amount of unlabeled meta-training data (in comparison to miniIm-
ageNet) results in significant increases for all methods over their counterparts in Table 9 (other than
training from scratch, which does not use this data). We find that CACTUs-MAML slightly outper-
forms embedding linear classifier for the 1-shot test tasks, but that the linear classifier on top of the
unsupervised embedding becomes better as the amount of test time supervision increases. Augment-
ing the unsupervised tasks with (a small number of) supervised tasks during meta-training results
in slight improvement for the 1-shot test tasks. The lackluster performance of CACTUs-MAML is
unsurprising insofar as meta-learning with large task spaces is still an open problem: higher shot
Oracle-MAML only marginally stays ahead of the embedding linear classifier, which is not the case
in the other, smaller-scale experiments. We expect that using a larger architecture in conjunction
with MAML (such as Kim et al. (2018)) would result in increased performance for all methods
based on MAML. Further, given the extensive degree to which unsupervised learning methods have
been studied, we suspect that unsupervised task construction coupled with better meta-learning al-
gorithms and architectures will result in improved performance on the entire unsupervised learning
problem. We leave such investigation to future work.
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