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Unsupervised Learning with Mixed
Numeric and Nominal Data

Cen Li and Gautam Biswas, Senior Member, IEEE

AbstractÐThis paper presents a Similarity-Based Agglomerative Clustering (SBAC) algorithm that works well for data with mixed

numeric and nominal features. A similarity measure, proposed by Goodall for biological taxonomy [15], that gives greater weight to

uncommon feature value matches in similarity computations and makes no assumptions of the underlying distributions of the feature

values, is adopted to define the similarity measure between pairs of objects. An agglomerative algorithm is employed to construct a

dendrogram and a simple distinctness heuristic is used to extract a partition of the data. The performance of SBAC has been studied

on real and artificially generated data sets. Results demonstrate the effectiveness of this algorithm in unsupervised discovery tasks.

Comparisons with other clustering schemes illustrate the superior performance of this approach.

Index TermsÐAgglomerative clustering, conceptual clustering, feature weighting, interpretation, knowledge discovery, mixed numeric

and nominal data, similarity measures, �2 aggregation.

æ

1 INTRODUCTION

THE widespread use of computers and information
technology has made extensive data collection in

business, manufacturing and medical organizations a
routine task. The primary challenge that drives the
relatively new field of data mining or knowledge discovery
from databases is the extraction of potentially useful
information by careful processing and analysis of this data
in a computationally efficient and sometimes interactive
manner [21]. Frawley et al. [12] define knowledge discovery
to be ªthe non trivial extraction of implicit, previously unknown
and potentially useful information in data.º This suggests a
generic architecture for a discovery system. At the core of
the system is the discovery engine, which computes and
evaluates groupings, patterns, and relationships using a
relevant set of features selected in the context of a problem
solving task [2]. Depending on the discovery engine
employed in the system, the results can be further analyzed
to derive models as rules, analytic equations, and concept
definitions under the chosen context (e.g., see [21]).
Typically, the discovery engine is powered by one of two
mechanisms:

. Supervised learning schemes, which assume that
class labels of the data objects being analyzed are
known. The process extracts rules/models that
identify groups of objects with the same class label
while differentiating among the objects that have
different labels. The rules form the basis for
classifying new data observations.

. Unsupervised learning or clustering schemes,
which make no assumptions about the category
structure. They use objective criterion functions to
define similarity or dissimilarity among objects. The
goal is to find structure in the form of ªnatural
groups,º i.e., to partition the data into groups where
objects that are more similar tend to fall into the
same group and objects that are relatively distinct
tend to separate into different groups.

Both classification and clustering schemes require data
objects to be defined in terms of a predefined set of
features. Features represent properties of the object that
are relevant to the problem solving task. For example, if
we wish to classify automobiles by speed and power,
body weight, body shape, and engine size are relevant
features, but the color of the car body is not. Selection of
appropriate features is an important task in clustering
and classification applications, but we do not elaborate on
that task in this paper.

Clustering methodologies, illustrated in Fig. 1, incor-
porate three main steps [2]: preprocessing, clustering, and
interpretation. Data preprocessing involves the selection
of relevant features for the analysis task and the
characterization of individual features at the right level
of granularity. The clustering step constructs a flat or
hierarchical partitioning of the objects based on an
objective criterion function and a control algorithm. The
explanation step assigns meaning to the groups or
structures discovered based on the feature value defini-
tions associated with each group. The interpretation
process is often governed by characteristics such as
parsimony and completeness. Domain knowledge may
be employed to assist the interpretation process.

Traditional clustering methodologies [7], [17] assume
features are numeric valued, but as application areas have
grown from the scientific and engineering domains to the
medical, business, and social domains, one has to deal with
features, such as gender, color, shape, and type of disease,
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that are nominal valued. Schemes for processing nominal
valued data, typically called conceptual clustering [10],
combine clustering with the concept formation and inter-
pretation tasks. In the real world, a majority of the useful
data is described by a combination of numeric and nominal
valued features. Attempts to develop criterion functions for
mixed data have not been very successful, mainly because
of the differences in the characteristics of these two kinds of
data. To overcome this problem, pragmatic approaches
have been adopted. Most solutions attempted fall into one
of the following categories:

. Encode nominal attribute values as numeric integer
values and apply distance measures used in numeric
clustering for computing proximity between object
pairs. In many cases, the translation from nominal
data to numeric does not make sense and the
proximity values are hard to interpret.

. Discretize numeric attributes and apply symbolic
clustering algorithms (e.g., [2]). The discretization
process often causes loss of important information
especially the relative (or absolute) difference be-
tween values for the numeric features.

. Generalize criterion functions designed for one type
of feature to handle numeric and nonnumeric
feature values (e.g., [5], [22], [26]). The primary
difficulty in doing this can be attributed to the nature
of the criterion functions used. Criterion functions
used in symbolic clustering are based on probability
distribution functions. For nominal valued attri-
butes, probability distributions can be approximated
by simple counting schemes. Computing and
bounding density estimates for numeric valued
attributes are difficult. This method has been
implemented in some systems, but experimental
results discussed later in this paper show they
produce better results for pure nominal valued data
than they do for mixed or pure numeric valued data.
Criterion functions used in numeric clustering are
based on distance metrics that can not be extended
to nominal attributes except in a superficial way.

The focus of this paper is on developing unsupervised
learning techniques that exhibit good performance with
mixed data. The core of the methodology is based on a
similarity measure from biological taxonomy proposed by
Goodall [15]. The measure processes numeric and nominal
valued attributes within a common framework and can be
conveniently coupled with an agglomerative control strat-
egy that constructs a hierarchy or dendrogram, from which
a distinct partition is extracted by a simple procedure that
trades off distinctness for parsimony.

The rest of the paper is organized as follows: Section 2
reviews existing criterion functions and clustering systems.
Section 3 presents our clustering system SBAC, with its two
components: 1) the similarity measure and 2) the agglom-
erative control structure. Section 4 demonstrates the
effectiveness of the SBAC system by comparative empirical
studies of its performance. General discussion and the
conclusions of this work follow in Section 5.

2 BACKGROUND

Traditional approaches to cluster analysis (numerical
taxonomy) represent data objects as points in a multi-
dimensional metric space and adopt distance metrics, such as
Euclidean and Mahalanobis measures, to define similarity
between objects [7], [17]. On the other hand, conceptual
clustering systems use conditional probability estimates as a
means for defining the relation between groups or clusters.
Systems like COBWEB [8] and its derivatives (e.g., [3], [22],
[26]) use the Category Utility (CU) measure [14], which has
its roots in information theory. The measure partitions a
data set in a manner that maximizes the probability of
correctly predicting a feature value given group Ck. Systems
like WITT [16] use correlation measures to define groupings.
These measures are tailored for nominal attributes, though
variations, such as COBWEB/3 [22] and ECOBWEB [26] use
modifications of the CU measure to handle numeric
attributes. AUTOCLASS [5] uses a finite mixture model and
derives groupings of objects that locally maximize the
posterior probability of individual clusters given the feature
distribution functions. The COBWEB/3, ECOBWEB, and
AUTOCLASS systems are discussed in greater detail below.

2.1 COBWEB/3

The category utility function [14] defines a probability
matching strategy to measure the usefulness of a class in
correctly predicting feature values:

CUk�nominal� �
P �Ck�

X

i

X

j

P �Ai � Vij j Ck�2 ÿ P �Ai � Vij�2;

where P �Ai � Vij� is the unconditional probability of

attribute Ai taking on value Vij and P �Ai � Vij j Ck� is the

conditional probability of Ai � Vij given class Ck. The

difference,
P

i

P

j P �Ai � Vij j Ck�2 ÿ P �Ai � Vij�2, repre-

sents an increase in the number of attribute values that

can be predicted correctly for class k versus the expected

number of correct predictions given no class information.

The partition score, i.e., the utility of a partition structure
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Fig. 1. An unsupervised classification discovery engine.
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made up of K classes, is defined as the average CU over the

K classes:

PK
k�1 CUk

K:

COBWEB/3 combines the original COBWEB [8] algo-
rithm with the methodology defined in CLASSIT [13] to
handle numeric attributes in the CU measure. For numeric
attributes, probabilities are expressed in terms of the
probability density function(pdf) defined for the range of
values that can be associated with the attribute. COBWEB/3
assumes that the numeric feature values are normally
distributed and computes the

P

j P �Ai � Vij j Ck�2 term in
the following manner:

Z

V

P 2�Ai � V j Ck�dv �
Z 1

ÿ1

1

2��ik2
e
ÿ�xÿ�ik

�ik
�2
dv

� 1

2
���

�
p

�ik

;

where �ik and �ik are the mean and standard deviation of

feature i in class k, respectively. Similarly, the unconditional

probability,
P

j P �Ai � Vij�2, is computed as 1
2
��

�
p

�i
, where �i

is the standard deviation for feature Ai over the entire data

set. With the direct interpolation of the criterion function,

the counting scheme used for estimating probabilities for

nominal features is switched to estimating the mean and the

standard deviation for numeric features.
A problem arises with this approach as the range of

possible values for a feature Ai narrows, i.e., �ik (or �i)
becomes small. In the extreme case, when all objects in class
Ck have a unique value, �ik � 0 and 1

�ik
! 1. Therefore,

CUk ! 1. COBWEB/3 introduces a practical solution to
this problem in the form of an additional parameter called
acuity, 1

�. This value bounds the value of � to be used in the
CUk computation. When �ik for a numeric attribute i and
class k becomes less than 1(�ik < 1), the acuity threshold is
applied and 1

�ik
is set to 1.

For the set of numeric features, CU is defined as:

CUk�numeric� � P �Ck�
2
���

�
p

X

i

1

�ik

ÿ 1

�i
:

The overall CU is the sum of the CU contributions from
nominal and numeric features:

CUk � CUk�nominal� � CUk�numeric�:

The nominal form of the CU function represents a well-
understood information theoretic measure for evaluating
the goodness of a partition structure. However, the numeric
form of the CU measure has a number of limitations. First, it
assumes that feature values are normally distributed. This
may not hold for all data sets. Second, the mean and
variance of the feature distribution are estimated using the
sample mean and variance. When the sample populations
are small, the accuracy of the estimate is suspect. Also,
when feature values converge, �ik becomes small, but the
computation is bounded by an ad hoc mechanism, the
acuity measure. All this makes it hard to impose bounds the
accuracy of the CU measure for numeric features.

Another limitation of the numeric CU measure is that it
does not take into account the actual distance between object
values in determining class structure. This can produce
counterintuitive results as shown by the example in Fig. 2.
Consider two intermediate clusters C1 and C2. Numeric
feature Ai has mean �1 and variance �1 for C1, and mean �2

and variance �2 for C2. Also, �1 < �2 and �1 > �2. A new
object to be clustered has value Vi0 for Ai, where Vi0 is closer
to �1 than �2. When the new object is added to C1, the cluster
variance becomes �0

1 and when it is added to C2, the
variance is �0

2. If �
0
1 > �0

2, then CU1 < CU2, so the object will
be placed in C2 despite the fact that jVi0 ÿ �1j < jVi0 ÿ �2j.

2.2 ECOBWEB

ECOBWEB is another extension of the COBWEB system.
ECOBWEB attempts to remedy some of the disadvantages
of the COBWEB/3 interpolation scheme:

. the normal distribution assumption for the pdf of
numeric features and

. the acuity value for bounding the CU contribution
from numeric features.

In the ECOBWEB approach, the probability distribution for
numeric features is approximated by the probability
distribution about the mean for that feature.

For numeric features, the ECOBWEB approach cap-
tures the essence of the CU function by introducing an
approximation:

X

j

P �Ai � Vij j Ck�2 � P �Ai � �Vi j Ck�2;

i.e., the expected score is estimated around the mean, �Vi, of
the feature value distribution. This is computed by

P �Ai � �Vi j Ck�2 �
X

i

Z Iik

ÿIik

pik�v�dv
� �2

;

where �Vi is the mean value for feature i in cluster k and Iik is
a designated interval range around �Vi. For a set of
N numeric features, the CU measure is defined as:

CUk � P �Ck�
X

N

i

Z Iik

ÿIik

pik�v�dv
� �2

ÿ
Z Ii

ÿIi

pi�v�dv
� �2

:

The choice of the interval size, Iik, has a significant effect
on the CU computation. The simplest definition of the
interval size Ii is a fixed one, where

2Ii �
expected range of attribute values of Ai

expected number of distinct intervals of attribute Ai
:
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Fig. 2. A special case scenario for COBWEB/3.
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This fixed interval size is used through the entire
clustering process. As the clustering hierarchy grows
deeper, the range of the attribute values within each class
may become narrower, therefore, these distributions be-
come sharper and more peaked. If the interval value, 2Ii, is
chosen to be too large, the P �Ai � Vij j Ck� will always
evaluate to 1 and this methodology fails to differentiate
contributions of features with narrow distributions lower
down in the hierarchy. On the other hand, if the value
chosen results in a very narrow interval, the probability
about the means of two distributions can be equal even
though the actual distributions may differ dramatically. To
address these problems, ECOBWEB defines two other
methods for computing the interval values: 1) a dynamic
approach, where interval width is a function of the feature
value variance and 2) an adaptive approach, which uses the
geometric mean of the static and dynamic approaches in
computing interval size.

Table 1 lists the three schemes that have been used to
generate the 2Ii value. All of them rely on a user defined
parameter, n, the ªexpected number of distinct intervals of
property attributeAi.º Since the choice of the 2I value is likely
to have a very significant effect on the performance of the
system, it is important to see how the two user controlled
parameters: 1) themethod for calculating2Ii and2)n, affect the
structure of the clustering hierarchy. A cross-comparative
study is performed, where the system is run with different
combinations of themethod and the n values. Thewell-known
IRIS1 data set is used in this study. The top level partitions
were extracted from the concept tree and their structural
differences were compared using the percentage of matched
objects measure. This measure computes the total number of
common objects among corresponding clusters across two
partitions created from two different runs. The computed
number divided by the total number of objects in the data set,
a value between 0 and 1, expresses the percentage of matched
objects between the two partitions. The higher this value, the
greater is the correspondence between the two partitions. A
cross tabulationbetweenpairs ofpartitions is listed inTable 2.
In Table 2a,nwas kept fixed at 82 and the threemethods static,
dynamic, and adaptivewere applied. The pairwise similarity
measures indicate a significantdifference in thegroupings for

the three methods. In Table 2b, the method was kept
fixed(static) and the value of nwas varied. Results are shown
forn � 2; 8, and 16.3The higher similarity scores indicate that
the partition structures are less sensitive to changes in n,
though there are still significant structural differences in the
concept hierarchies generated. These results demonstrate
that the clustering structures generated by ECOBWEB are
very dependent on the two user defined parameters. This
maynotbean issuewhen thehierarchical structure is used for
predictionpurposes [25], but it is not adesirable characteristic
in knowledge discovery tasks.

2.3 AUTOCLASS

AUTOCLASS [5] imposes a classical finite mixture
distribution model on the data and uses a Bayesian
method to derive the most probable class distribution for
the data given prior information(PI). The finite mixture
model contains two parts: 1) the class probability,
P �Xi 2 Cj j PI�, the probability that object Xi belongs to
class Cj independent of information about the object, but
based on prior information about the allowed search
space, the distribution assumptions, and the distribution
parameters and 2) the intraclass pdf , P �~Xi j Xi 2 Cj; PI�,
the probability of observing the instance attribute values
~Xi given object Xi 2 Cj. The intraclass mixture pdf is a
product of individual or covariant attribute pdfs, such as
the Bernoulli distributions for nominal attributes, Gaussian
distributions for numeric attributes, and Poisson distribu-
tions for number counts.

Bayes rule can be applied to combine these two
probabilities, i.e.,

P �~Xi; Xi 2 Cj j PI� �
P �Xi 2 Cj j PI� � P �~Xi j Xi 2 Cj; PI�;

from which the probability of observing an instance Xi with
attribute value ~Xi, regardless of class, is derived by
summing over all classes. Then the probability of observing
the entire data set is derived by taking the product over all
instances, i.e.,

P �X j PI� �
Y

i

X

j

P �Xi 2 Cj j PI�
 !

� P �~Xi j Xi 2 Cj; PI�:

Assuming the model, T, represents the feature distribution
in the data and ~V the parameter values of the model, the
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TABLE 1
Three Methods Implemented in ECOBWEB

for Defining the Interval Value

TABLE 2
Comparisons of Top Level Partitions Generated

by ECOBWEB on IRIS Data with Different
Combinations of n and Method Values

1. The Iris data set, chosen for the study contains 150 objects. Each object
is described by four numeric valued attributes: sepal length, sepal width,
petal length, and petal width. The objects are equally distributed in the
three classes: setosa, versicolor and virginica. From previous studies, it is
known that the setosa class is distinct, but versicolor and virginica are
mixed.

2. n � 8 is the default value in the system for the ªexpected number of
intervals for a property.º Experimental results in [25] indicated that
method=static generated the best results for the ECOBWEB system.

3. In the rest of the paper, n � 8 and method = static are used in
experiments with ECOBWEB.
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Bayesian clustering method derives the clustering partition
model with the highest posterior probability

P �~V ; T j X� � P �~V ;X j T �P �T �
P �X� :

For model selection purposes, this can be approximated by
P �~V ;X j T �, which is expressed by:

P �X; ~V j T � � P �~V j T � � P �X j ~V ; T �:

The second term in the right-hand side of this equation
corresponds to the P �X j PI� term described above.

Assuming the number of classes for the data is known,
the goal of AUTOCLASS is to maximize the posterior
probability of the clustering partition model given the
data. With no information on class membership, direct
optimization approaches for finding the best parameter
values from mixture pdfs are computationally intractable
even for moderate size data sets. A variation of
Dempster's EM algorithm [6] is used to approximate the
solution. Weighted instance assignments and weighted
statistics, calculated from normalized class probability
and data instances, are used to represent known assign-
ment statistics. This allows locally optimal estimation of
the parameter values. Weighted instance assignments and
weighted statistics can be updated using the newly
estimated parameter values, which in turn allow for re-
estimation of locally optimal parameter values. Cycling
between these two steps moves the current parameter
values and weight estimates toward a mutually predictive
and locally maximal stationary point.

Once multiple locally maximum parameter value sets are
estimated for a given classification pdf , the posterior
probability of the current classification pdf can be approxi-
mated using the local statistics derived for those parameter
value sets. The posterior probability of the current
classification pdf is recorded. Then the attribute pdf is
selectively changed in each class. This initiates another
round of the estimation process, which involves finding the
parameter value sets and the posterior probability of this
new classification pdf . The classification pdf that has the
highest posterior probability is retained at the end of this
iterative process.

The above description assumes that the number of
classes in the data is known in the repetitive process of
searching for the best P �~V j PI� and P �T j PI�, where T
denotes the abstract mathematical form of the pdf . For
completeness, another level of search for the optimal
number of classes has to be added to this two-step process
[4]. AUTOCLASS starts out with a number of classes J that
is smaller than the predicted true number of classes for the
data. If the resulting classes have significant probability, the
number of classes are progressively increased. This process
is terminated when the partition structure includes classes
with negligible posterior probability. The classes with small
posterior probability are dropped and the remaining classes
represent an optimal classification of the data given the
assumed class model function.

Despite the fact that a number of approximate optimiza-
tion methods have been implemented in the AUTOCLASS
system, the computational complexity required by the

nested three level search process is extremely high. It often

took us days and sometimes weeks, to get the system to

generate meaningful results for moderate sized data sets on

SPARC station architectures. The computational complexity

is directly attributable to the exhaustive search approach.
AUTOCLASS also suffers from the over fitting problem

associated with the maximum likelihood optimization

methods for probabilistic models. It has been suggested that

ªOccam's Factorº comes into play when considering differ-

ent partition models (i.e., partitions with larger number of

clusters have smaller prior probabilities), which limits the

degree of over fitting. However, our experimental results

show that this phenomenon is not strong enough to prevent

AUTOCLASS from producing manymore classes than some

of the other unsupervised classification methods, especially

when numeric features dominate the class structure.

3 THE SBAC SYSTEM

From our earlier discussion, it is clear that the clustering

process is primarily governed by two factors:

1. The criterion function for evaluating the goodness of a
partition structure. Examples are the mean square

error used in numeric partitioning schemes, the

categoryutilitymeasureused inCOBWEBandrelated

systems and similarity and correlational measures

used in agglomerative algorithms. Section 2discussed

two CU-based approaches and the Bayesian AUTO-

CLASS scheme that can be applied to mixed data.
2. The control algorithm for generating the partition

structure. Control algorithms can be partitional or
hierarchical. Partitional algorithms derive a flat
structure, whereas, hierarchical schemes form clus-
ter in a bottom up (agglomerative) or top down
(divisive) manner. AUTOCLASS uses a partitional
control structure and the COBWEB-based algo-
rithms employ divisive control schemes. All three
algorithms described in Section 2 employ divisive
control algorithms. The COBWEB-based algorithms
are incremental, so the clusters formed are a function
of the data ordering [9].

The SBAC methodology uses a similarity measure

defined by Goodall [15] and adopts a hierarchical

agglomerative approach to build partition structures.

Given a pairwise similarity (or dissimilarity) matrix of

the objects to be clustered, SBAC can use the single,

complete link, and group-average methods [17] to per-

form the aggregation process. In this paper, we use the

group average method, because empirical studies showed

that it produced the best results.

3.1 The Similarity Measure

A number of similarity measures have been used as

measures of proximity [17]. Examples are

. matching coefficients for nominal valued data,

. correlation measures for numeric data, and

. s- and p-proximity measures from fuzzy logic theory
for mixed nominal and numeric data [31].
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The p-measure uses an exponential function based on
differences between feature values, to compute the proxi-
mity between two objects. The s-function employs prespe-
cified fuzzy membership functions. Zemankova and Kandel
[31] discuss the notion of weighted union of fuzzy sets but
do not apply it to compute similarity values for multifeature
objects or object descriptions with mixed nominal and
numeric data. The CU and correlation measures are best
suited for binary-valued features and result in loss of
information and arbitrary weighting of features when
applied to multivalued nominal features. This is because
individual features are weighted in proportion to the
number of values associated with them. There is even
greater loss of information when they are applied to
numeric features because the measures do not consider
the magnitude of the difference between two feature values.

The Goodall similarity measure defines a unified frame-
work for handling nominal and numeric features. It was
first proposed for biological and genetic taxonomy pro-
blems, where unusual characteristics shared by biological
entities is often attributed to closely related genetic
information resulting in these entities being classified into
the same species [15]. In this paper, this similarity measure
has been extended to clustering problems in more general
domains. A pair of objects �i; j� is considered more similar
than a second pair of objects �l;m�, if and only if the objects
i and j exhibit a greater match in feature values that are less
common in the population. In other words, similarity
among objects is decided by the uncommonality of their
feature value matches. Similarity computed using this
heuristic helps to define more cohesive, tight clusters where
objects grouped into the same cluster are likely to share
special and characteristic feature values. One should note
that common feature values also play a role in the similarity
computation and in the clustering process. The similarity
computation is realized by weighing feature value matches
between a pair of objects by the frequency of occurrence of
the feature value in the data set.

Consider two pairs of objects �i; j� and �l;m�. For a
feature k, value �Vi�k � �Vj�k and value �Vl�k � �Vm�k, but
�Vi�k 6� �Vl�k. �Vi�k occurs equally or more frequently in the
population than �Vl�k. This is expressed as

��pi�k � �pj�k� � ��pl�k � �pm�k�;

where �pi�k, �pj�k, �pl�k, and �pm�k define the probabilities of
occurrence of the respective feature values in the popula-
tion. Feature k makes a greater contribution to the similarity
value for object pair �l;m� than it does for object pair �i; j�.
This is summarized as follows:

��Vi�k � �Vj�k� ^ ��Vl�k � �Vm�k�
��pi�k � �pj�k� � ��pl�k � �pm�k�

�

�)�Sij�k � �Slm�k: �1�

For numeric feature values, the similarity measure takes
both the magnitude of the feature value difference and the
uniqueness of the feature value pair into account. The
smaller the magnitude of the difference between the values
��Vi�k; �Vj�k�, the less likely it is that a pair of values picked
at random will fall in the segment defined by the endpoints
�Vi�k and �Vj�k, therefore, the more similar this pair of

objects. Consider two pairs of objects �i; j� and �l;m�. For
numeric feature, k

�j�Vi�k ÿ �Vj�kj > j�Vl�k ÿ �Vm�kj��)�Sij�k < �Slm�k: �2�

When �j�Vi�k ÿ �Vj�kj � j�Vl�k ÿ �Vm�kj� the similarity

value is influenced by the uniqueness of the segment

defined by the values. The uniqueness of a segment is

computed by summing up the frequency of occurrence of

all other values in the population that are between the

pair of values that define the segment. For the object pair

�i; j� this value is computed as
P�Vj�k

t��Vi�k
pt and for object

pair �l;m� it is
P�Vm�k

t��Vl�k
pt. For two segments of equal

length but different endpoints, the segment which

includes the lower cumulative frequency of occurrence

of other values within its endpoints is defined to be more

unique and, therefore, this segment makes a greater

contribution to the similarity measure.

j�Vi�k ÿ �Vj�kj � j�Vl�k ÿ �Vm�kj
P�Vj�k

t��Vi�k
pt �

P�Vm�k
t��Vl�k

pt

9

=

;

�)�Sij�k � �Slm�k: �3�

3.1.1 Computing Similarity for Nominal Features

The similarity index for a nominal valued attribute k is
computed as follows:

�Vi�k 6� �Vj�k �) �Sij�k � 0;
�Vi�k � �Vj�k �) 0 < �Sij�k < 1:

As discussed above, when �Vi�k � �Vj�k, the similarity
value is a function of the uncommonality of the feature
value within the population. For two objects i and j, with an
identical value for feature k (say �Vi�k), we first define its
More Similar Feature Value Set,MSFV S��Vi�k�. This is the set
of all pairs of values for feature k that are equally or more
similar to the pair (�Vi�k; �Vi�k). The value pairs are selected
according to relation defined in (1). Note that a value pair is
more similar if it has lower frequency of occurrence. The
probability of picking a pair ��Vl�k; �Vl�k� 2 MSFV S��Vi�k�
at random is

�pl�2k �
�fl�k � ��fl�k ÿ 1�

n � �nÿ 1� ;

where �fl�k is the frequency of occurrence of value �Vl�k in
the population and n is the total number of objects in the
population. Summation of the probabilities of all such pairs
gives the dissimilarity score of the pair, �Dii�k. Thus, the
similarity of the pair ��Vi�k; �Vi�k� is computed as:

�Sii�k � 1ÿ �Dii�k � 1ÿ
X

l2 MSFV S��Vi�k�
�pl�2k: �4�

A simple example illustrates this computation. Table 3
shows a population of 10 objects, each described by a
nominal and a numeric feature. The similarity value for non
identical nominal features is 0, i.e., S�a;b� � S�a;c� � S�b;c� � 0.
For identical value pairs, i.e., S�a;a�, S�b;b�, and S�c;c�, we first
compute the MSFVS for each pair. In the given population,
f�a� � 3, f�b� � 3, and f�c� � 4, i.e., values a and b are less
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frequent than value c. The MSFV S for feature value

pair �c; c�,

MSFV S�c; c� � f�a; a�; �b; b�; �c; c�g:

Given the MSFVS, the similarity value for the pair �c; c� is

calculated by (4).

D�c;c� � pa
2�pb

2�pc
2 � 3�3ÿ1�

10�10ÿ1��
3�3ÿ1�

10�10ÿ1��
4�4ÿ1�

10�10ÿ1� � 0:267;

S�c;c� � 1ÿD�c;c� � 0:733:

Feature 1 contributes a value of 0.733 to the similarity

between objects 5 and 6.

D�a;a� � pa
2 � pb

2 � 3�3ÿ1�
10�10ÿ1� �

3�3ÿ1�
10�10ÿ1� � 0:133;

S�a;a� � 1ÿD�a;a� � 0:867:

Feature 1 contributes a value of 0.867 to the similarity

between objects 1 and 4. This is larger than the contribution

of feature 1 to the similarity between objects 5 and 6, (0.733).
The computational complexity for the similarity calcula-

tion for a featurewithmd observedvalues is:O�n�mdlogmd�.
Ifmd � n, the total number of objects, this reduces to O�n�.

3.1.2 Computing Similarity for Numeric Attributes

This computation is similar to the similarity calculation for

nominal features. The calculation of the similarity value for

a pair of objects whose kth feature value is ��Vi�k; �Vj�k�
starts with the determination of the More Similar Feature

Segment Set, MSFSS��Vi�k; �Vj�k�. This includes all pairs of

values ��Vl�k; �Vm�k� satisfying (2) or (3). The probability of

picking two objects from the population having values �Vl�k
and �Vm�k for feature k, where

��Vl�k; �Vm�k� 2 MSFSS��Vi�k; �Vj�k�;

is

2�pl�k�pm�k �
2�fl�k�fm�k
n�nÿ1� ; �pl�k 6� �pm�k;

�pl�k�pm�k �
�fl�k��fl�kÿ1�

n�nÿ1� ; �pl�k � �pm�k;

(

where fl and fm are the frequency of occurrence of values

�Vl�k and �Vm�k, respectively and n is the total number of

objects in the population. Summing up the probabilities of all

value pairs in MSFSS(�Vi�k; �Vj�k) produces the dissimilarity

contribution of feature k, �Dij�k. From this the similarity of

the pair ��Vi�k; �Vi�k� is computed as:

�Sij�k � 1ÿ �Dij�k � 1ÿ
X

l;m2 MSFSS ��Vi�k;�Vj�k�
2�pl�k�pm�k:

The simple example from the previous section (Table 3)

helps demonstrate the calculation of the similarity measure

for numeric features. The probability distribution of the

numeric feature of the sample population is plotted in Fig. 3.

Consider two pairs of feature values (7.5, 9) and (9, 10.5).

Both are 1.5 units apart, but the population included in the

two intervals are different. The population included in the

interval (7.5, 9), shaded light, is larger than the population

included in the interval (9, 10.5), which is shaded dark.

Therefore, the similarity contribution from feature 2 for the

pair (9, 10.5) should be greater than that for the pair (7.5, 9).

To calculate the similarity value for each pair, we first

identify the MSFSS for each pair:

MSFSS�7:5;9� � f�5:5;5:5�;�6;6�;�7:5;7:5�;�9;9�;�10:5;10:5�;�5:5;6�;
�6;7:5�;�7:5;9�;�9;10:5�g

MSFSS�9;10:5� � f�5:5;5:5�;�6;6�;�7:5;7:5�;�9;9�;�10:5;10:5�;�5:5;6�;�9;10:5�g:

The computed dissimilarity score for each pair of

values is:

D�7:5;9� � p5:5p5:5�p6p6�p7:5p7:5�p9p9�p10:5p10:5�2p5:5p6�2p6p7:5�
2p7:5p9�2p9p10:5�0:51;

D�9;10:5� � p5:5p5:5�p6p6�p7:5p7:5�p9p9�p10:5p10:5�2p5:5p6�2p9p10:5�0:27:

Finally, the similarity measure for the pair (9, 10.5) is

S�9;10:5� � 1ÿD�9;10:5� � 0:73, which is greater than that of

the pair (7.5, 9), S�7:5;9� � 1ÿD�7:5;9� � 0:49.
Note that the similarity contribution from numeric

features is a function of both distance and density. As long

as a change of scale or a transformation for a numeric

feature preserves the order of relative distances between its

feature values, the similarity measure for the feature value

pairs is invariant. Also, the monotonic nature of the

(dis)similarity measures is preserved. For example,

D�7:5; 9� < D�9; 11� because j7:5ÿ 9j < j9ÿ 11j even though

the range from 9 to 11 is very sparsely populated in the

distribution in Fig. 3. On the other hand, if two distances are

equal, as in the example shown above, the pair that includes

a sparser population in its defined interval is considered

more similar. Therefore, the distance (and similarity)

measure for numeric values preserve metric properties.
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The direct implementation of the above calculation

takes O�mc
4� time complexity for a numeric feature with

mc unique values. The computation can be sped up by

first finding the difference of all pairs of values and

sorting the differences in ascending order and, then,

using an accumulator to collect the similarity score by

counting pairs of values in the sorted difference list. With

this implementation, the time complexity for the compu-

tation is cut down to O�m2
c logm

2
c�. In the worst case,

mc � n, where n is the total number of objects and the

above complexity is bounded by O�n2logn�.

3.1.3 Aggregating Similarity Contributions from Multiple

Features

We now extend the similarity score computations for
individual features to an aggregate similarity score for a
pair of objects described by multiple, mixed type features.
Assuming that the individual results are expressed as the
square of a standard normal deviate, Fisher's �2 transfor-
mation [11]: �2 � ÿ2ln�Pi� works well with data from
continuous populations and for discrete populations where
a feature has a large number of distinct observations
associated with it.

However, for nominal features with a small number of
possible observations, e.g., a binomial distribution with low
index, empirical results show that the transformation causes
the mean and standard deviation of the transformed
population to deviate significantly from the theoretical
mean and standard deviation, which diminishes the power
of the tests [20]. To remedy this problem, Lancaster
suggested a modified transformation called the mean value
�2 transformation [20], �2

m. Instead of using the probability
of the event actually observed, P , in the transformation, an
intermediate value between the probability of the event
actually observed, P , and the next smaller probability in the
discrete set that includes it, P 0, is used. Through the
probability integral transformation, the mean value �2

transformation becomes:

�2
m �

Z P

P 0
�ÿ2lnP �d� P

P ÿ P 0� � 2ÿ 2�PlnP ÿ P 0lnP 0�
P ÿ P 0 :

Thus, we combine the similarity test scores from numeric
features using Fisher's �2 transformation:

��c�2ij � ÿ2
X

tc

k�1

ln��Dij�k�; �5�

where tc is the number of numeric features in the data. �c

also follows �2 distribution with tc degrees of freedom. The
similarity test scores for the nominal features are combined
using Lancaster's mean value �2 transformation:

��d�2ij � 2
X

td

k�1

�1ÿ �Dij�kln�Dij�k ÿ �Dij�0kln�Dij�0k
�Dij�k ÿ �Dij�0k�

; �6�

where td is the number of nominal attributes in the data,
�Dij�k is the dissimilarity score for nominal attribute value
pair (�Vi�k; �Vj�k), and �Dij�0k is the next smaller dissimilarity
score in the nominal set. �2

d is �
2 distributed with td degrees

of freedom.

The addition of two �2 distributions is still �2 with
degree of freedom equal to the sum of the two degrees of
freedom, i.e., the probability distribution for combining the
two types of features is �2 distributed with �tc � td� degrees
of freedom. The significance value of this �2 distribution
can be looked up in standard tables or approximated from
the expression:

Dij � eÿ
�2
ij

2

X

�td�tcÿ1�

k�0

�1
2
�2
ij�

k

k!
;

where �2
ij � ��c�2ij � ��d�2ij. The overall similarity score

representing the set of �tc � td� independent similarity
measures is Sij � 1ÿDij.

We revisit the sample population of objects given in
Table 3 to illustrate the computation for the similarity
measure for pairs of objects. For the nominal feature, the
dissimilarity measure for object pairs (obj6, obj9) and (obj5,
obj8) were computed to be D�a;c� � 1 and D�c;c� � 0:267,
respectively. For the numeric feature, the similarity
measure for the two pairs were computed as D�7:5;9� �
0:51 and D�9;10:5� � 0:27, respectively. Since there is only
one nominal feature and one numeric feature in this
example, the summation of tc and td terms in (5) and (6)
for the aggregate similarity computation are reduced to
single term operations. Results of the step by step
calculations for �d, �c, the dissimilarity measure, and the
similarity score for the object pairs (obj6, obj9) and (obj5,
obj8) appear in Table 4. The overall similarity between
object 5 and object 8 is higher than the similarity score for
object 6 and object 9. This is consistent with the fact that
for each individual feature, values between object 5 and
object 8 are more similar to each other than those between
object 6 and object 9.

3.2 The Control Structure

SBAC's agglomerative, hierarchical clustering algorithm
based on the Unweighted Pair Group Method with
Arithmetic Average (UPGMA) [17], starts with a pairwise
dissimilarity matrix D of the set of objects to be clustered.
Dissimilarity between a pair of objects is the complement of
their similarity score, Dij � 1ÿ Sij. At any step, the clusters
that have the minimum pairwise dissimilarity value are
merged into a single cluster. Dissimilarity between the new
cluster and the other clusters is defined as the average
dissimilarity between an old cluster and the component
clusters of the new cluster. The end result is a dendrogram
(or classification tree) whose leaf nodes are individual
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objects and whose root defines a cluster or group that
includes all objects. Table 5 describes the steps of the
algorithm.

In the classification tree, each node has an associated
dissimilarity score, which indicates the dissimilarity level at
which its child nodes merge together. Naturally, the child
nodes form a more cohesive group than their parent, so
from the root down the dissimilarity score along each path
decreases monotonically down to the leaf nodes, which
have dissimilarity values of 0. Since our goal is to form
clusters that are cohesive but not too fragmented, we have
to deal with the classic trade-off between cohesiveness and
fragmentation. To achieve the proper balance between these
two, we traverse the tree top-down in a depth first fashion
and cut off traversal at points where the difference in
dissimilarity values between parent and child is less than a
predefined percentage threshold, t. The set of nodes on the
frontier of the traversal along the different paths define the
clusters of interest. In our experiment, we set the threshold
value t � 0:3 �D�root�, where D�root� is the dissimilarity
score for the root node.

To illustrate the scheme, an example of the depth-first
traversal is shown for the classification tree in Fig. 4. Given
D�root� � 0:876, we compute the threshold value as
t � 0:263. Following the path from the root to node 2 and
then to node 4, the dissimilarity scores drop by 0.083 and
0.081, respectively, which are lower than the threshold
value. A significant drop in dissimilarity score, 0.585, is
observed from node 4 to node 8, so the search is terminated
below node 8. Paths from node 4 to its other children, node
9 and 10, show dissimilarity score drops below the
threshold, so the search is terminated below nodes 9

and 10. The search then continues from other children of

node 2, in this case node 5, where a significant dissimilarity

score drop of 0.289 is observed. This makes node 5 part of

the extraction frontier. From the root to node 3, the drop of

dissimilarity score is again higher than 0:263. So node 3

becomes part of the extraction frontier and the search

terminates. The end result is that nodes 8, 9, 10, 5, and 3

define the partition structure.
The computational complexity of the SBAC algorithm is

derived in two parts: 1) the complexity for generating the

dissimilarity matrix for all pairs of objects and 2) the

complexity for constructing the dendrogram or concept tree.

It is well established in literature [17] that the upper bound
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complexity for part 2) is O�n2�, where n is the number of
objects in the data set. Also, constructing the similarity
matrix for pairs of objects, given the similarity index for
individual attributes, is O�n2�. Using the time complexities
to compute the individual similarity indices reported earlier,
the overall time complexity for generating partitions is
O�n2 �m2

c logm
2
c�, where mc is the highest possible number

of distinct values observed for a numeric feature. For large
data sets, this reduces toO�n2�, where n � mc, and for small
data sets, it is O�m2

c logmc�, where n � mc.

4 EXPERIMENTAL STUDIES

Our goal for performing empirical studies with SBAC were
twofold: 1) to gain a better understanding of the character-
istics of the Goodall similarity measure and (2) to compare
the performance of SBAC with existing unsupervised
discovery systems, such as AUTOCLASS, COBWEB/3,
and ECOBWEB. To achieve this, we used two kinds of
data 1) artificially generated data, with mixed nominal and
numeric features and 2) three real data sets, the hand
written 8OX character data, the mushroom data, and the
heart disease data.

4.1 Artificial Data

We first describe themethodused for generating the artificial
data and then present a comparative analysis of the results.

4.1.1 Data Description

The artificial data set had 180 data points, equally
distributed into three classes: G1, G2, and G3. Each data
point was described using four features: two nominal and
two numeric. The nominal feature values were predefined
and assigned to each class in equal proportion. Nominal
feature 1 has a unique symbolic value for each class and
nominal feature 2 had two distinct symbolic values assigned
to each class. The numeric feature values were generated by
sampling normal distributions with different means and
standard deviations for each class, where the means for the
three classes are three standard-deviations apart from each
other. For the first class, the two numeric features are
distributed as N�� � 4; � � 1� and N�� � 20; � � 2�; for the
second class, the distributions were N�� � 10; � � 1� and
N�� � 32; � � 2�; and for the third class, N�� � 16; � � 1�
and N�� � 44; � � 2�.

For the base data set, d0%c0%, none of the feature values
were corrupted. The remaining data sets were created by
randomly corrupting the base data set using 1) non-
Gaussian noise on both the nominal features and the
numeric features and 2) Gaussian noise, on the numeric
features. To avoid the influence of order effects for the
COBWEB/3 and ECOBWEB algorithms, the order of objects
for each run were randomized using the same seed for
random number generation. This order was used for all
four algorithms.

In our experiments, we created data sets that had
corrupted numeric features, or corrupted nominal features,
but not both. Our primary goal here was to study how each
one of the systems was biased toward numeric and nominal
features.

Data with Non-Gaussian Noise. Six data sets were
created as variations of the d0%c0% data set by successively
mixing up 20 percent, 40 percent, and 60 percent of the
feature values for one class with the other two classes. For
example, the data set d20%c0% represents the data set
where 20 percent of the nominal feature values picked
randomly in each class were changed to values from other
classes, but none of the numeric feature values were
corrupted. On the other hand, d0%c40% implies that no
nominal feature values were corrupted, but 40 percent of
the numeric feature values in each class were corrupted by
picking their values from the normal distributions defined
for the other two classes. The corrupted data sets used in
this study can be described as: d20%c0%, d40%c0%,
d60%c0%, d0%c20%, d0%c40%, and d0%c60%.

DatawithGaussianNoise. Four data setswere created by
adding successively higher degree of Gaussian noise to the
numeric features. The noise was characterized by N�0; x

2
��,

where x indicated the degree of noise introduced. For
example, the data set d0c��

2
� introduced into the base data

set Gaussian noise with mean = 0 and standard deviation =
half the value of the standard deviations of the original
feature values. The standard deviations of the two numeric
features in the base data set were 1.0 and 2.0, respectively. So,
d0c �

2
represents a data set with well-separated nominal

features and two numeric features corrupted with noise
distributions N�0; 1

2
� and N�0; 1�, respectively. The four

corrupted data sets created for this experiment were d0c��
2
�,

d0c���, d0c�3�
2
�, and d0c�2��.

4.1.2 Results

The partitional structures generated by the four clustering
systems were evaluated using a misclassification count
measure under the assumption that the structure derived
from the d0%c0% data set was the true structure. The
misclassification count computes the number of object
misclassifications in the Ci class assuming Gi is the true
class. Ci and Gi correspond when a majority of the Ci

objects have the Gi label and no other Gk (k 6� i) group has a
larger number of objects in Ci. If more than three groups are
formed, the additional smaller C groups are labeled as
fragmented groups. The misclassification count is com-
puted as follows:

1. if an object falls into a fragmented C group, where its
type (G label) is a majority, it is assigned a value of 1,

2. if the object is a minority in any group, it is assigned
a misclassification value of 2,

3. otherwise themisclassification value for an object is 0.

The misclassification values summed over all objects is the
misclassification count for the partition. This is used to
measure the goodness of the derived partition. The smaller
this value, the closer this partition structure is to the
assumed true structure.

Results for Data with Non-Gaussian Noise The parti-
tional structures generated by the four methods are listed in
Table 6. The misclassification counts for the partitional
structures are plotted in Fig. 5. The solid lines represent
the effects of increasing noise added to the numeric
attributes and the dotted lines represent the effects of
adding noise to the nominal attributes. It was observed that
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as the noise levels in the numeric features increased, the

AUTOCLASS partitions deteriorated quite rapidly, but
there was little deterioration when the nominal features

were corrupted. COBWEB/3 showed the opposite effect. It

was more sensitive to deterioration in the nominal features.

For ECOBWEB, the deterioration in partition structure was

almost equal for degraded numeric and nominal features.

Overall, ECOBWEB was more sensitive to noisy numeric

features whereas COBWEB/3 was more sensitive to noisy

nominal features. Also, unlike the other algorithms,

ECOBWEB did not perform very well on the base data

set. Of the four algorithms, SBAC was the most robust and

showed very little deterioration in performance as the

degradation levels were increased. Also, unlike the other
three algorithms, SBAC showed no noticeable bias toward

either the nominal or numeric features.
We analyze the SBAC algorithm in more detail. For

similarity score computations among objects belonging to

the same class, when a particular feature value for an object

was corrupted (i.e., it took on a value from another class),

this feature's contribution to the similarity score decreased

significantly, but the remaining feature contributions

remained high. As a result, the effect of the corrupted

features on the similarity score was greatly mitigated. This

is illustrated in Table 7. The average contribution from the

nominal features and the numeric features to the overall

similarity measure are compared for pairs of objects from

the same class and pairs of objects from different classes.

For the data set with well-separated numeric features and

corrupted nominal features, the difference in average

similarity for the within class and between class object

pairs is quite small. This indicates that the predictability of

noisy nominal features is low. But there is a big difference

in the within class and between class average similarity

values for the numeric features. Moreover, the contribution

to similarity from the numeric features is about two times

the contribution from the nominal features within a class

and about 1
2
between classes. This big difference implies the

robustness of the similarity measure to added noise and this

is primarily due to the difference in contributions between

the uncorrupted versus corrupted features. The overall

results for the data set with well-separated nominal features

and noisy numeric features were just the same. Here noise

reduced the difference between the within and between

class similarity values for the numeric features, while

maintaining a large difference for the nominal features.

However, the differences in contribution were not as
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distinct, which explains the slightly larger misclassification
percentages observed in Fig. 5a.

TheAUTOCLASS resultsmay be explained by comparing
the data generation scheme to the assumptions that the
algorithm makes about the data. The numeric data was
generated from Gaussian distributions. This provided a
closer fit to the AUTOCLASS assumption for the distribution
of the prior probability. However, AUTOCLASS assumes a
Bernoulli distributionwith uniformDirichlet conjugate prior
for the nominal attributes and this did not match the way we
generated the nominal data for this experiment. Never-
theless, it is still a little surprising that AUTOCLASS seemed
to disregard the distinctive nominal attributes completely in
d0%c �% cases. Another possible reason for the deterioration
of AUTOCLASS's performance to the gradual increase of
noise in nonnumeric features is that the model assumed by
AUTOCLASS is Gaussian. Separate experiments conducted
by adding Gaussian noise to the numeric features demon-
strated better performance. This is discussed later. Also,
when comparing the partition structures generated by the
other algorithms to the AUTOCLASS partitions, AUTO-
CLASS tended to construct more fragmented partition
structures. This may be attributed to the fact that with the
addition of noise, AUTOCLASS found better fit when using

a larger number of component distributions. Cheesman and
Stutz discuss this issue (Occam's Razor [5]) and implement
schemes to help prevent AUTOCLASS from over fitting.
However, the schemes do not seem to be activated early
enough to prevent fragmentation in the partition structures
created by AUTOCLASS.

The partition structure generated by ECOBWEB was not
dominated by either well-separated nominal attributes or
well-separated numeric attributes. Despite the fact that
ECOBWEB and COBWEB/3 share the same criterion
function for nominal attributes, the partition structure
formed by COBWEB/3 is better than the one generated
by ECOBWEB for the d0%c ?% data sets. The difference in
the structures can be explained by the differences in the
implementations of the CU function for numeric features.
For COBWEB/3, the CUnumeric score depends solely on the
standard deviation of the feature distribution for a class.
When noise is introduced, the standard-deviations of the
ªmodel classesº increase, causing CUnumeric to decrease. The
higher the level of noise, the less the contribution of
CUnumeric to the overall CU score. Thus when numeric
features were corrupted, the clustering process is mainly
based on the CUnominal score which remains high for all
d0%c ?% cases. For ECOBWEB, its CUnumeric score is
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TABLE 7
Similarity Contribution from Nominal Features and Numeric Features Averaged Over All
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calculated as the probability of a small interval around the
mean value of the feature distribution in a class. When noise
is introduced, the mean values of the features are shifted
away from those of the ªmodel classes.º Depending on the
size of the interval defined, the probability calculated
around the mean and, thus, the CUnumeric contribution,
can be large enough to make a difference in the overall
CU score. This perturbed the class structures that would
have been generated using the CUnominal scores. It is
interesting to observe that the performance of ECOBWEB
improved when high levels of noise were introduced to the
numeric features (60 percent and larger). We conjecture that
an excessive amount of noise makes the distribution of
numeric features close to uniform over the entire range. No
matter what the estimated mean value for each of the three
classes is, the computed probability of the small interval
around the mean is going to be about the same. Therefore,
the CUnumeric scores have little effect on the overall CU
measure and the CUnominal scores govern the cluster
formation process.

On the other hand, ECOBWEB performs noticeably
better than COBWEB/3 with noisy nominal but clean
numeric data (the d ?%c0% data). This is because nominal
features make a greater contribution than the numeric
features to the CU measure for COBWEB/3. This is
especially true for the CUnumeric scores when the standard
deviations of feature distributions in a ªtrue class'
exceeds 1. ECOBWEB's CUnumeric measure is based on
the approximation of the true probability of feature
distributions in a class. When the approximation is close
enough to the real probability, it captures distinct
differences in numeric feature values and it mitigates
the effect of the CUnominal scores derived from the
corrupted nominal features.

Results from Data with Gaussian Noise The mis-
classification count was again used as the performance
measure to evaluate the four clustering systems. The
results are plotted in Fig. 6. The misclassification count
for the SBAC remains low till noise levels become very
large�2��. The performance is in conformance with the
results for non-Gaussian noise (Fig. 5a). A significant
performance improvement is observed for AUTOCLASS.

ECOBWEB's performance with data having Gaussian and
non-Gaussian noise follows a similar pattern. In both
cases, performance degrades as noise levels are increased
and they improve slightly when noise levels become high.
Like SBAC and AUTOCLASS, there are only minor
changes observed for the clustering results generated by
COBWEB/3, when Gaussian noise is present.

In order to explain these results, we revisited the
criterion functions and the assumptions employed by each
system. For SBAC, noise mitigation is achieved the same
way as with non-Gaussian noise. Since the nominal features
are well-separated for each class, a big difference in the
�2
d score is expected for pairs of objects from the same class

versus pairs of objects from different classes. For numeric
features with low levels of added Gaussian noise
(�noise � 1

2
�feature and �noise � �feature), the relative distance

of feature values is not altered by much, so feature values
within a class remain closer than the feature values between
classes. As a result, the �2

c score for objects within a class are
higher than for objects across classes and the partition
structure is preserved. When noise levels are increased
beyond �feature, feature values overlap at the boundaries
between classes, thus the differences between within class
and between class similarities (i.e., �2

c ) decreases for the
numeric features. Therefore, objects at the boundaries
between classes may be misclassified.

AUTOCLASS showed much better performance for data
with Gaussian noise. Low noise levels did not affect the
separability of feature values, therefore, AUTOCLASS
correctly estimated the parameters of the normal distribu-
tion for each cluster and this was sufficient to generate the
right partition structure. When noise levels were higher,
AUTOCLASS had trouble estimating the parameters of the
overlapping distributions. The result was a partition
structure with fragmented groups. This explains the larger
misclassification values.

4.2 Real Data

Our experiments with real data sets focus on the interpret-
ability of the partition structures generated by SBAC. We
exploit the characteristic of the Goodall measure of
weighing features according to their commonality when
computing similarity values. The importance of individual
features in defining class structure can be directly linked to
their assigned weights.

4.2.1 Data Description

Three representative data sets, one with numeric valued
features, one with nominal valued features, and a third with
a combination of numeric and nominal features were used
in these experiments.

Hand Written Character (8OX) Data. Character-8OX
(CH8OX) data is extracted from the well-known Munson
hand printed Fortran character set. A hand written
character is interpreted as a binary image placed on a
24x24 grid. The distance to the first cell of the character
from the perimeter measured in eight directions, defines the
eight numeric valued features for this data set. The 45 object
data set used in this study has characters ª8,º ªO,º and ªX,º
written three times each by five different authors. The
overall goal is to partition the data into the three groups and
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Fig. 6. Comparison of partitional structures generated by clustering

systems on artificial data sets with Gaussian noise, � is the standard

deviation of the numeric feature values of the base data set.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on May 04,2010 at 17:49:47 UTC from IEEE Xplore.  Restrictions apply. 



extract features from the individual groups for automated
handwriting recognition.

Mushroom Data. This data was extracted from the
mushroom database in the UCI data repository. The
mushroom database consists of mushroom descriptions
represented by 22 nominal features. Each data object
belongs to one of two classes: edible(e) and poisonous(p).
There are 23 species of mushrooms in this data set and we
randomly picked a subset of 200 data objects making sure
100 of them were poisonous and 100 were edible. Further,
the database source notes that there are no simple rules for
determining the edibility of a mushroom. The goal of the
clustering study is to separate the mushroom objects into
the poisonous and nonpoisonous categories.

Heart Disease Data The heart disease data, generated at
the Cleveland Clinic,4 contains a mixture of nominal and
numeric features. Heart disease refers to the build-up of
plaque on the coronary artery walls that restricts blood flow
to the heart muscle, a condition that is termed ªischemia.º
The end result is a reduction or deprivation of the necessary
oxygen supply to the heart muscle. The data set consists of
303 patient instances defined by 13 features. Five of these

1. age,
2. resting blood pressure,
3. cholesterol,
4. maximum heart rate achieved during stress test, and
5. ECG ST depression,

are numeric-valued features, and eight:

6. gender,
7. chest pain type,
8. fasting blood sugar,
9. resting electrocardiograph,
10. chest pain during stress test,
11. ECG ST segment slope on exertion,
12. flouroscopy indication of calcification of major

cardiac arteries, and
13. thalium scan

are nominal-valued features. The data comes from two
classes: people with no heart disease and people with
different degrees (severity) of heart disease.

The class labels available in the UCI repository were
used for postevaluation in the interpretation study but they
were not used as a feature in the clustering process.

4.2.2 Results

The clustering partitions generated by the SBAC system on
the three data sets are summarized in Table 8.

Hand Written Character Data. The feature values in this
data set are approximately normally distributed. The nature
of the characters and the individual writing styles made the
character pairs (ª8,º ªXº) and (ª8,º ªOº) hard to distinguish
because six out of eight measurements for these two pairs of
characters are quite similar. The data feature values indicate
that character ªXº should be quite distinct from the
character ªO.º

From the dendrogram, the partition extraction process
generated a three cluster structure, where cluster one, C1,
contains 13 ªXº characters, cluster two, C2, contains a
mixture of the three characters, and cluster three, C3,
contains two ª8º characters. Looking further down into the
dendrogram subtree rooted at C2, reveals a subdivision into
three clusters with C21 containing 15 ªOº objects and one
ª8º object, C22 containing 10 ª8º objects, and C23 containing
two ª8º objects and two ªXº objects. Characters ª8º and
ªOº separate into their own groups, but the similarity
values between some of the hand written ª8º and ªXº
objects contribute to the mixed cluster C23.

To explain why SBAC groups the data objects into this
partition structure, it is useful to study its feature value
distributions from the clusters generated. Table 9 gives the
mean values and the standarddeviations of the eight features
for clusters C1, C2, C21, and C22. It is clear that the significant
differences between cluster pairs C1 and C2 and C1 and
C21=C22 can be attributed to the fourmeasurements along the
top, bottom, left and right directions. The differences in
measurements along the other four directions are small.

The similarity measure assigns a larger weight to
numeric features with a larger spread in their values. For
the four distinctive features the mean difference of their
feature values between clusters C1 and C2 is 3.67 and this is
much higher than the mean difference of the feature values
between clusters C21 and C22, which is 2.29. In other words,
character ªXº has feature values that distinguish it from
characters ª8º and ªO,º but the latter two have more similar
feature values. Therefore, ªXº easily separates from the
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TABLE 8
SBAC Generated Partition Structures for the Three Data Sets

4. The Cleveland Clinic heart disease database is maintained at the UCI
repository for machine learning databases. Acknowledgment goes to Robert
Detrano, MD, PhD as the principal investigator for the data collection study.

TABLE 9
Feature Distributions for Clusters Generated

with the ch8OX Data: Mean (Standard Deviation)
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other two. For the remaining objects, the measurement
differences for the ªtopº and ªbottomº direction features
become more significant and this helps separate the two
characters into separate groups.

Mushroom Data SBAC generated a three cluster parti-
tion for the mushroom data: 100 poisonous mushrooms
formed one group and the edible mushrooms separated
into two clusters, one with 29 objects and the other with
71 objects. Table 10 lists the feature profiles of the poisonous
mushroom group and the two edible mushroom groups. A
quick glance reveals that the feature value distributions for
the two types of mushrooms are quite similar.

The similarity measure of SBAC gives more weight to the
rarer and more distinctive nominal valued features in the
similarity calculation. Features such as cap shape, cap color,
gill spacing, stalk shape, and ring type, values are shared
between the two types of mushrooms, and do not play a
significant role in the similarity computation. However, the
values for the feature ªodorº are disjoint for the two
mushroom types. The similarity measure assigned a larger
weight to this feature, which then played an important role
in defining the partition structure derived.

As discussed earlier, the edible mushroom objects were

randomly drawn from different edible mushroom cate-

gories from the larger data set. From Table 10, the most

noticeable differences between the two clusters of edible

mushrooms is the feature ªstalk root,º Cluster C2 contains

the values, c, r, and cluster C3 includes the values b, e.

Features like cap surface, gill size, and habitat also provide

contrasts between the two groups of edible mushrooms.

Heart Disease Data SBAC produced a two cluster

partition for the heart data. The feature value distributions

for the two groups of patients appear in Table 11. For the

numeric features, the mean value and standard deviations

are listed in the table. Features (4) maximum heart rate

achieved, (5) ECG ST depression, (7) type of chest pain

experienced, (10) whether or not patient had chest pain

during the stress test, and (13) number of cardiac arteries

that have calcification had the most influence on the

formation of the two cluster structure. On the other hand,

features (3) cholesterol level, (8) fasting blood sugar, and (9)

resting ECG provided no significant discriminating infor-

mation in the partition structure.

A closer study of the profiles of these two groups of

patients reveals that patients in group one have low risk

and likely absence of heart disease. All the patients in this

group showed no symptoms of ischemia during the stress

test, which is significant in diagnosing the absence of heart

disease. Also, indicators like no artery calcification seen on

flouroscopy, ability to attain higher heart rates without

distress during exercise, no chest pain exhibited on

exertion, and normal thalium scan results suggest this

group has low risk for heart disease. The presence of

atypical anginal/nonanginal pain could be related to a

variety of health factors (not just heart disease).

It is also significant that the second group had a higher

average age and were mostly male. Statistically, this group

is more susceptible to heart problems than younger

individuals and females. Other supporting features include:

calcification of cardiac arteries, which increases the risk of

cardiac disease for this population since it contributes to the

narrowing of the arteries, signs of cardiac ischemia on

exertion during their stress test, inability to tolerate a high

heart rate, and symptomatic chest pain.
Table 12 gives the clustering partitions generated by

COBWEB/3, AUTOCLASS, and ECOBWEB for the three
data sets. Comparing these to the SBAC results in Table 8,
we observe that the AUTOCLASS partitions are fragmen-
ted, especially for the ªCharacter 8OXº and ªHeart Diseaseº
data sets. For the ªHeart Diseaseº data set, even small
fragmented clusters have very mixed class labels. A similar
phenomena is observed in the ECOBWEB results for the
ªCharacter 8OXº data. The partitions generated by COB-
WEB/3 are comparable to those generated by SBAC.

5 DISCUSSION AND CONCLUSIONS

Limitations of earlier methodologies and criterion functions

in dealing with data described by mixed nominal and

numeric features prompted us to look for a criterion function

that would give better performance in clustering and

discovery tasks. We have demonstrated that the similarity

measure, initially proposed by Goodall [15], works well with

data with mixed type features. The measure assigns greater

weight to feature value matches that are uncommon in the

population. For nominal valued features, an uncommon

feature value match is assigned a greater similarity value

than a more common feature value match. For numeric

valued features, the uncommonality of feature value pairs is

a function of the distances between pairs and the density of

the population encompassed between the two values. A

common framework is defined for incorporating individual

feature similarity values for both numeric and nominal

features. Illustrative examples are presented to demonstrate

the properties of the similarity measure. An efficient
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TABLE 10
Feature Distribution for Clusters Generated

with the Mushroom Data
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algorithm for computing the similarity values, especially for

numeric features, has been developed.

The similarity measure is incorporated into an agglom-

erative clustering algorithm, SBAC and its performance is

studied on real and artificially generated data. Comparative

studies on the artificial data reveal the limitations of

AUTOCLASS, COBWEB/3, and ECOBWEB in working

with mixed data. On the other hand, SBAC works well with

mixed data and is equally robust to noisy numeric and

nominal features.

In previous work [2], we discussed systematic discretiza-

tion methods to generate uniform data descriptions and

avoid the limitations of the category utility measure in

dealing with numeric features. This similarity measure goes

a step further in that it retains the characteristics of

probabilistic matching schemes and includes useful infor-

mation like the actual separation in values of the numeric

features. By studying contributions of different features in

the similarity contributions, one can perform better inter-

pretation studies with SBAC and the Goodall measure.

A challenging, yet promising, next step is to study

variations of the form of the heuristic in Goodall's measure.

For example, instead of assigning similarities based on

uncommonality of the feature value matches, other expert-

supplied heuristics may be employed to refine the proximity

measure. This allows the incorporation of weighting
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TABLE 11
Patient Profiles for the Heart Disease Data

TABLE 12
Results from COBWEB/3, AUTOCLASS, and ECOBWEB on the Real Data Sets
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schemes that incorporate the relevance of features in the

context of the problem solving tasks. This notion has been
discussed in Stepp and Michalski's Goal Dependency

Network(GDN) [27], where task-oriented classification goals

are employed in selecting relevant features, constructing

new features and capturing the interrelationships between

concepts. Similar ideas can be extracted from Kolodner's

work on automatic indexing in organization and retrieval

from long-term memory [18]. Kolodner discusses ways for

characterizing indices by their predictive power and their

uniqueness in describing desired features. From an inter-

pretation viewpoint, these extensions may make the cluster-

ing scheme a much more effective tool for customized data

mining tasks.

Recent approaches have used symbolic rules to bias the

cluster formation process. Thompson and Langley [29]

performed case studies on the use of background knowl-

edge in incremental concept formation. More recently,

Talavera and Bejar [28] have employed rules expressed as

first-order logic expressions to bias an agglomerative

clustering algorithm. Merging of two clusters is disallowed

if their definitions partially match two different rules

specified in the background knowledge base. Once a cluster

completely satisfies a rule, it is free to merge with other

clusters. This work generalizes Explanation Based Learning

(EBL) [24] approaches where the deductive scheme plays

the primary role in the cluster or concept formation process

and data objects have to be assigned class labels. The

Talavera and Bejar algorithm uses an unsupervised learn-

ing approach where the inductive component is the

primary driver of cluster (concept) formation process. Prior

knowledge just biases the data-driven search process. A

similar method by Wagstaff and Cardie [30] uses pre-

specified ªmust-linkº and ªcannot-linkº constraints among

the data objects to bias the cluster formation process. The

SBAC algorithm differs from these methods in that the bias

is built into the criterion function. The assumption is prior

knowledge in the form of rules is not available in the
domain of study, therefore, weaker and more domain-

independent heuristics are employed to bias the search for

partition structure. This technique is more applicable in

novel situations where very little knowledge is available on

task and domain structure, or the goal of the study is to

discover new ways of structuring information in a problem-

solving domain.
Another interesting direction followed by Beck et al. [1],

applies conceptual clustering [8] methods to database
schema generation. They combine the use of EBL [23] and
case-based reasoning [19] to match new objects to existing
categories (class definitions in the database) and to create
new category definitions when exceptions are detected (i.e.,
a good match cannot be established). In future work, it will
be interesting to see how the weighting features of the
similarity measure employed in SBAC may be used for
category matching and for defining alternate models when
a poor fit between an object and the existing categories is
detected. Identifying the features that contribute most to the
mismatch, as we did in our interpretation studies may
provide a first step in generating new category definitions.
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