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ABSTRACT

An unsupervised algorithm for speaker’s lip segmentation is
presented in this paper. A color video sequence of speaker’s
face is acquired, under natural lighting conditions and with-
out any particular make-up. First, a logarithmic color
transform is performed from RGB to HI (hue, intensity)
color space and sequence dependant parameters are evalu-
ated. Second, a statistical approach using Markov random
field modeling segment mouth shape using red hue predom-
inant region and motion in a spatiotemporal neighborhood.
Simultaneously, a Region Of Interest (ROI) is automatically
extracted. Third, the speaker’s lip shape is extracted from
the final hue field with good quality results in this challeng-
ing situation.

1. INTRODUCTION

It is commonly observed that visual information provides a
precious help to the listener under degraded acoustical con-
ditions [1]. The motivation of the present work is to extract
visual information for automatic speech recognition (ASR),
videoconferencing and speaker’s face synthesis under natu-
ral lighting conditions with few assumptions.

Some approaches proposed in this area are based on
gray level analysis (e.g. Luettin in [5]). Others use color
analysis but need to determine optimal values of some pa-
rameters (e.g. Coianiz in [5]). Strong assumptions are re-
quired on the skin hue parameters and the mouth location
[6], therefore the skin hue region is often determined man-
ually beforehand.

The previous work [4] used a segmentation to locate the
mouth before estimating lip geometrical features, some of
the segmentation parameters were determined beforehand.
Here, an algorithm is proposed for unsupervised lip shape
extraction and mouth location under natural conditions, the
requirement being that a micro-camera is mounted on a light
helmet worn by the speaker so that it is fixed w.r.t. the head.
TheRGB video sequence (8 bits/color/pixel) contains the
region of the face spanning from chin to nostrils. The pur-
pose of the process is to obtain the mouth shape using red

hue label fields and motion information. The processing is
divided into three stages:

1: Logarithmic color-space transform,RGBto HI.
2: Estimation of sequence dependant parameters:

Computation of the mean value of the lip hueHlip.
Estimation of the noise on the motion information.

3: Spatiotemporal segmentation of the lip and ROI estima-
tion.

2. PARAMETER ESTIMATION

2.1. Logarithmic color transform

Color–based approaches often use color angles methods
(HSI) for illuminant–invariant recognition. Color shifts can
be well categorized with angles if camera sensors are suf-
ficiently narrowband. But, in our application, we deal with
a mono-CCD camera which gives poor results with angular
transforms (noisy conditions). Moreover,G andB channels
seem to be correlated in the red region (whereR is prepon-
derant). From theRGB color space, we use only two di-
mensionsR andG under the assumption that red prevails
in face areas and specially in lip areas. We define the chro-
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Figure 1:Left: 3D RGB histogram of a face under natural illu-
mination;Right: 2DRG chromacity histogram.

macity histogram (R,G) as the non-normalized projection
of theRGB color space. The typical histogram of a face
sample is shown Fig. 1. Two regions with a specific angular
direction appear.

To obtain a robust hue observation to the lighting con-
ditions, we compute the hue in a mathematical framework



based on a logarithmic image processing model [3]. The in-
tensityI of an image is represented by its associated gray
tone functioni (Eq. 1). This model satisfies the saturation
characteristics of the human visual system and is justified
from a physical point of view. Specific algebraic and func-
tional operations are redefined in a vectorial structure, like
� and	 as respectively the addition and the opposite of a
gray tone function. The difference betweeng andf , respec-
tively logarithmic tone of the intensityG andF , is given Eq.
2.
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Considering the illuminanceI0 close to the maximum value
of whiteM , the logarithmic transform becomesi =M�I .
We defineh as the logarithmic hue tone ofH , difference of
g andr, logarithmic color tone ofG andR (Eq. 3). The
logarithmic difference becomes a ratio betweenR andG
componentsH = M � G

R
. Finally, from theRGB color

space, aHI logarithmic color space (Fig. 2) is defined con-
sideringM = 256 and the intensityI as the mean value of
theR,G andB components (Eq. 4).

H = 256�
G

R
and I =

R+G+B

3
(4)

Figure 2:Top: 5 typical images of luminance sequence;Bottom:
the corresponding hue sequence.

2.2. Observations

To detect lip regions, motion information is combined with
red hue. From theHI color space, two kinds of ob-
servationso are derived, defined to be in the same range
[0 � � � 255] as the image quantification (8 bits). First, a hue
observationh(s) consists in filtering the hue valueH(s) at
pixelswith a parabola centered on the mean value of lip hue
Hlip with a standard deviation of the hue value�H (Eq. 5).

h(s) =

"
256�

�
H(s)�Hlip

�H

�2
#
� 1 jH(s)�Hlipj

�H
�16

(5)

The notation1condition denotes a binary function which
takes the value1 is the condition is true,0 otherwise.

Second, a temporal observationfd(s) is defined as the
unsigned difference between the luminance of two consec-
utive images (Eq. 6).I(s) represents the intensity (or lumi-
nance) at pixels.

fd(s) = jIt(s)� It�1(s)j (6)

2.3. Hue and motion estimation

The hue segmentation needs three estimated parameters to
be unsupervised :Hlip, �H , �h. Due to the chosen expres-
sion ofh(s), the tresholded hue field is defined by Eq. 7,
expressing the link between�H and�h.

h(s) > �h , jH(s)�Hlipj < �H

p
256� �h (7)

The hue histogramfpi;h; i 2 [0 � � � 255]g is an useful rep-
resentation of the hue distribution over the image. We can
detect two modes, one for the face, the second for the lip.
But, in natural conditions (no make-up), the two modes are
mixed (Fig. 3). In order to estimateHlip accurately, a spe-

Figure 3:Left: histogram of hue image;Right: unsupervised seg-
mentation of hue face.

cific hueH�h(face;lip) is defined in Eq. 8.Hlip is defined
by the Eq. 9.

H�h(S) =
card(S)

�h

X
i2�h

(pi;h(S)� i) (8)

Hlip = H�h(lip)(Ss) (9)

�h corresponds to the appropriate interval andSs represents
the imageS after face segmentation. The processing re-
spects the following steps:

1: EstimateHface usingfpi;h; i 2 [0 � � � 255]g computed
over the hue image.

2: Segment the first hue image with a basic spatial MRF
segmentation via the hue transform observation

3: EvaluateHlip using fpi;h; i 2 [0 � � � 255]g computed
over the segmented hue image.

�h(lip) and �h(face), camera dependant parameters,
are independant from the speaker and the lighting condi-
tions. They can be estimated by camera calibration. Cur-
rently, the range of�h is the result of the statistical distribu-
tion of manually estimate over caracteristic natural condi-
tions. The selected range for�h(face; lip) is [100 � � �200]
and for�h(lip), [100 � � �150]. This range corresponds to the



red predominant region. The equation 7 is then respected
with �h = 192 and�H = 6.

The algorithm requires an appropriate threshold�fd to
suppress the camera noise without cutting significant tem-
poral changes. In the previous work [4], this threshold was
determined before segmentation by hand. We compute here
the entropyEfd(S) over an image difference (Eq. 11). This
gives the level of noise from which we can deduce the value
of �fd (Eq. 12). The thresholded motion field is then de-
fined byfd > �fd.

pi;o(S) =
1

card(S)

X
s2S

1(o(s)=i) (10)

Eo(S) = �
X

i2[0���255]

pi;o(S)log2(pi;o(S)) (11)

�fd(S) = 2Efd(S) (12)

wherepi;o(S) represents the probability of leveli in the ob-
servationo over imageS.

The thresholded fields appear non homogeneous and
noisy (Fig. 4). Therefore, we need a statistical relaxation
to segment more accurately the lip.

Figure 4:From top to bottom: sequence of temporal observation
fd; sequence of red predominance observationh with unsuper-
vised parameter estimation (Hlip = 130 ; �H = 6); sequence
of temporal observation thresholded with unsupervised parame-
ter estimation (�fd = 9); sequence of red prevailing observation
thresholded (�h = 192).

3. THE SEGMENTATION ALGORITHM

3.1. The spatiotemporal MRF framework

From these two thresholded observations, four initial la-
bels (a0,a1,b0,b1) are derived, for coding four pixel classes:
pixels with (1) (resp. without (0)) motion, belonging (a)

(resp. not belonging (b)) to red hue areas. This label field is
supposed to follow the main MRF (Markov Random Field)
property related to aspatiotemporal neighborhoodstructure,
i.e. the labells of the current pixells depends only on the
labels of its spatiotemporal neighborsn.

Maximizing the A Posteriori probability (MAP crite-
rion) of the label field is equivalent to minimizing a global
energy function [2]:

W (S) =
X

o2ffd;hg

Uo(S) + �:Um(S) (13)

whereUo andUm represent respectively theattachment en-
ergies(expressing the link between labels and observations,
Eq. 14) and themodel energy(corresponding to spatial and
temporal a priori constraints) (Eq. 15) over the imageS, �
is a weighting coefficient between the two energies.

Uo(S) =
X
s2S

�
[os �  o(ls)]

2

2�2o

�
(14)

where o is an attachment function, mean value of the ob-
servationo over S and�2o is the corresponding variance.
Both are estimated on line.

Thea priori model energy is defined as a sum of inter-
action potential functions over the neighborhood:

Um(S) =
X
s2S

h X
n2�(s)

Vst(ln; ls)
i

(15)

The spatiotemporal potential functionVst is defined as the
inverse of the Euclidian distance between two neighbors.
The distance integrates two elementary potentials�s and�t
as scale factors (Eq. 16).

Vst(ln; ls) =
�s(ln; ls)�t(ln; ls)q

�t(ln; ls)2
�
�2x + 4�2y

�
+ �s(ln; ls)2�2t

(16)

where
���!
(s; n) = (�x; �y; �t) and� 2 f�1; 0; 1g

The elementary potentials�s and�t are defined to con-
strain the model respectively to spatial homogeneity of la-
bels and temporal homogeneity of hue when no motion is
detected (details in [4]).

3.2. The relaxation algorithm

The iterative deterministic algorithm ICM (Iterated Condi-
tional Modes) is implemented to compute the minimum en-
ergy at each site (Eq. 13 with typ.� = 20), starting from
the thresholded fields as initial label configuration. After a
few iterations on the field (less than10 to respect the stop-
ping criterion for convergence�W (S)=W (S) < 0:05 %),
convergence is achieved. One obtains homogeneous red hue
and lip motion fields (Fig. 5).



Figure 5: From top to bottom: initial labels; label fields after
relaxation,The 4 labels are shown in grey levels (from white to
black: b1, a1, b0, a0); red hue relevant label images (a0 anda1)
superposed with luminance.

3.3. ROI estimation

From lip red hue relevant labels, the ROI is evaluatedon line
by maximising a cost function�(S) on each image (Eq. 10
in [4]) after each step of the relaxation. One each image, the
last estimated ROI is increased with a scale factor and used
to initialize the current one. The ROI estimation reduces the
relaxation time by surrounding the mouth precisely. More-
over, it increases the accuracy of parameter’s estimation.

4. LIP SHAPE EXTRACTION

Different sequences have been tested, some with natural red
make-up (Top in Fig. 6), others with poor lighting condi-
tions without any make-up (Bottomin Fig. 6). These results
show the robustness of the unsupervised algorithm to the
variability of natural conditions. The unsupervised param-
eter estimation method gives a one pixel mean difference
with ground truth measures for the vertical height and the
horizontal width of the internal lip opening (Fig. 7). The
external shape is unfortunately more elusive but accurate
enough to initiate a simple deformable geometrical model.

Figure 6:Top: Sequence of final red hue fields with ROI super-
posed on the luminance with soft red make-up;Bottom: Sequence
of final red hue fields with ROI superposed on the luminance with
no lighting supply and no make-up.

5. CONCLUSION

An unsupervised lip segmentation have been successfully
applied to several sequences in natural conditions (natural
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Figure 7: Internal lip measurement on the sequence partially
shown Fig. 5 (Bmanual as manual parameter setting measure;
Bunsup: as unsupervised parameter estimation measure;Bg:truth

as ground truth measure)

images of speaker’s face without any particular make-up or
lighting). First, the choice of a logarithmic transformation
close to the characteristic of the human visual system en-
ables the algorithm to estimate accurately the mean value
of lip hueHlip (the speaker’s dependant parameter). This
transformation is combined with a noise estimation on the
frame difference. Second, the spatiotemporal algorithm in-
tegrates hue with motion information, improving the quality
of contours often elusive on speaker’s lips. Finally, the qual-
ity of the segmented fields is similar to those obtained with
parameters determined beforehand manually [4]. We need
to process more sequences to test the robustness of the pa-
rameter estimation with more difficult cases, like faces with
beard or colored people faces.

The proposed algorithm requires less than 10 iterations
until convergence (about 2 sec. on a SunUltra1).
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