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ABSTRACT While machine learning and artificial intelligence have long been applied in networking

research, the bulk of such works has focused on supervised learning. Recently, there has been a rising

trend of employing unsupervised machine learning using unstructured raw network data to improve network

performance and provide services, such as traffic engineering, anomaly detection, Internet traffic classifica-

tion, and quality of service optimization. The growing interest in applying unsupervised learning techniques

in networking stems from their great success in other fields, such as computer vision, natural language

processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars).

In addition, unsupervised learning can unconstrain us from the need for labeled data and manual handcrafted

feature engineering, thereby facilitating flexible, general, and automated methods of machine learning. The

focus of this survey paper is to provide an overview of applications of unsupervised learning in the domain of

networking. We provide a comprehensive survey highlighting recent advancements in unsupervised learning

techniques, and describe their applications in various learning tasks, in the context of networking. We also

provide a discussion on future directions and open research issues, while identifying potential pitfalls. While

a few survey papers focusing on applications of machine learning in networking have previously been

published, a survey of similar scope and breadth is missing in the literature. Through this timely review,

we aim to advance the current state of knowledge, by carefully synthesizing insights from previous survey

papers, while providing contemporary coverage of the recent advances and innovations.

INDEX TERMS Machine learning, deep learning, unsupervised learning, computer networks.

I. INTRODUCTION

Networks—such as the Internet and mobile telecom

networks—serve the function of the central hub of modern

human societies, which the various threads of modern

life weave around. With networks becoming increasingly

dynamic, heterogeneous, and complex, the management of

such networks has become less amenable to manual admin-

istration, and it can benefit from leveraging support from

The associate editor coordinating the review of this manuscript and
approving it for publication was Nuno Garcia.

methods for optimization and automated decision-making

from the fields of artificial intelligence (AI) and machine

learning (ML). Such AI and ML techniques have already

transformed multiple fields—e.g., computer vision, natural

language processing (NLP), speech recognition, and opti-

mal control (e.g., for developing autonomous self-driving

vehicles)—with the success of these techniques mainly

attributed to firstly, significant advances in unsupervised

ML techniques such as deep learning, secondly, the ready

availability of large amounts of unstructured raw data

amenable to processing by unsupervised learning algorithms,
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and finally, advances in computing technologies through

advances such as cloud computing, graphics processing unit

(GPU) technology and other hardware enhancements. It is

anticipated that AI and ML will also make a similar impact

on the networking ecosystem and will help realize a future

vision of cognitive networks [1], [2], in which networks will

self-organize and will autonomously implement intelligent

network-wide behavior to solve problems such as routing,

scheduling, resource allocation, and anomaly detection. The

initial attempts towards creating cognitive or intelligent

networks have relied mostly on supervised ML methods,

which are efficient and powerful but are limited in scope

by their need for labeled data. With network data becom-

ing increasingly voluminous (with a disproportionate rise

in unstructured unlabeled data), there is a groundswell of

interest in leveraging unsupervised ML methods to utilize

unlabeled data, in addition to labeled data where available,

to optimize network performance [3]. The rising interest in

applying unsupervised ML in networking applications also

stems from the need to liberate ML applications from restric-

tive demands of supervisedML.Another reason of employing

unsupervised ML in networking is the expensiveness of

curating labeled network data at scale, since labeled data

may be unavailable and manual annotation is prohibitively

inconvenient, in addition, to be outdated quickly (due to the

highly dynamic nature of computer networks) [4].

We are already witnessing the failure of human network

administrators to manage and monitor all bits and pieces

of network [5], and the problem will only exacerbate with

further growth in the size of networks with paradigms such as

becoming the Internet of things (IoT). An ML-based network

management system (NMS) is desirable in such large net-

works so that faults/bottlenecks/anomalies may be predicted

in advance with reasonable accuracy. In this regard, networks

already have ample amount of untapped data, which can pro-

vide us with decision-making insights making networks more

efficient and self-adapting. With unsupervised ML, the pipe

dream is that every algorithm for adjusting network parame-

ters (be it, TCP congestion window or rerouting network traf-

fic during peak time) will optimize itself in a self-organizing

fashion according to the environment and application, user,

and network Quality of Service (QoS) requirements and

constraints [6]. Unsupervised ML methods, in concert with

existing supervisedMLmethods, can provide amore efficient

method that lets a network manage, monitor, and optimize

itself while keeping the human administrators in the loopwith

the provisioning of timely actionable information.

Next generation networks are expected to be self-driven,

whichmeans they have the ability to self-configure, optimize,

and heal [7]. All these self-driven properties can be achieved

by building artificial intelligence in the system using ML

techniques. Self-driven networks are supposed to utilize the

network data to perform networking chores and most of

the network data is imbalanced and unlabeled. In order to

develop a reliable data-driven network, data quality must be

taken care before subjecting it to an appropriate unsupervised

ML [8]. Unsupervised ML techniques facilitate the analy-

sis of raw datasets, thereby helping in generating analytic

insights from unlabeled data. Recent advances in hierarchical

learning, clustering algorithms, factor analysis, latent models,

and outlier detection, have helped significantly advance the

state of the art in unsupervised ML techniques. In particular,

recent unsupervised ML advances—such as the development

of ‘‘deep learning’’ techniques [22]—have however signif-

icantly advanced the ML state of the art by facilitating the

processing of raw data without requiring careful engineering

and domain expertise for feature crafting. Deep learning is

a class of machine learning, where hierarchical architectures

are used for unsupervised feature learning and these learned

features are then used for classification and other related tasks

[23]. The versatility of deep learning and distributed ML

can be seen in the diversity of their applications that range

from self-driving cars to the reconstruction of brain circuits

[22]. Unsupervised learning is also often used in conjunction

with supervised learning in semi-supervised learning setting

to preprocess the data before analysis and thereby help in

crafting a good feature representation and in finding patterns

and structures in unlabeled data.

The rapid advances in deep neural networks, the democ-

ratization of enormous computing capabilities through cloud

computing and distributed computing, and the ability to store

and process large swathes of data have motivated a surging

interest in applying unsupervised ML techniques in the net-

working field. The field of networking also appears to be well

suited to, and amenable to applications of unsupervised ML

techniques, due to the largely distributed decision-making

nature of its protocols, the availability of large amounts of

network data, and the urgent need for intelligent/cognitive

networking. Consider the case of routing in networks. Net-

works these days have evolved to be very complex, and

they incorporate multiple physical paths for redundancy and

utilize complex routing methodologies to direct the traffic.

The application traffic does not always take the optimal

path we would expect, leading to unexpected and inefficient

routing performance. To tame such complexity, unsupervised

ML techniques can autonomously self-organize the network

taking into account a number of factors such as real-time

network congestion statistics as well as application QoS

requirements [24].

The purpose of this paper is to highlight the important

advances in unsupervised learning, and after providing a

tutorial introduction to these techniques, to review how such

techniques have been, or could be, used for various tasks in

modern next-generation networks comprising both computer

networks as well as mobile telecom networks.

A. CONTRIBUTION OF THE PAPER

To the best of our knowledge, there does not exist a survey that

specifically focuses on the important applications of unsu-

pervised ML techniques in networks, even though a number

of surveys exist that focus on specific ML applications per-

taining to networking—for instance, surveys on using ML
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TABLE 1. Comparison of our paper with existing survey and review papers (Legend:
√

means covered; × means not covered; ≈ means partially covered.).

for cognitive radios [11], traffic identification and classifica-

tion [10], and anomaly detection [9], [15]. Previous survey

papers have either focused on specific unsupervised learning

techniques (e.g., [25] have provided a survey of the applica-

tions of neural networks in wireless networks) or on some

specific applications of computer networking ([13] have pro-

vided a survey of the applications of ML in cyber intru-

sion detection). Our survey paper is timely since there is

great interest in deploying automated and self-taught unsu-

pervised learning models in the industry and academia. Due

to relatively limited applications of unsupervised learning

in networking—in particular, the deep learning trend has

not yet impacted networking in a major way—unsupervised

learning techniques hold a lot of promises for advancing

the state of the art in networking in terms of adaptability,

flexibility, and efficiency. The novelty of this survey is that it

covers many different important applications of unsupervised

ML techniques in computer networks and provides readers

with a comprehensive discussion of the unsupervised ML

trends, as well as the suitability of various unsupervised ML

techniques. A tabulated comparison of our paper with other

existing survey and review articles is presented in Table 1.

B. ORGANIZATION OF THE PAPER

The organization of this paper is depicted in Figure 1.

Section II provides a discussion on various unsupervised ML

techniques (namely, hierarchical learning, data clustering,

latent variable models, and outlier detection). Section III

presents a survey of the applications of unsupervised ML

specifically in the domain of computer networks. Section IV

describes future work and opportunities with respect to the

use of unsupervised ML in future networking. Section V dis-

cusses a few major pitfalls of the unsupervised ML approach

and its models. Finally, Section VI concludes this paper. For

the reader’s facilitation, Table 2 shows all the acronyms used

in this survey for convenient referencing.

II. TECHNIQUES FOR UNSUPERVISED LEARNING

In this section, we will introduce some widely used

unsupervised learning techniques and their applications in

computer networks. We have divided unsupervised learning

techniques into six major categories: hierarchical learning,

data clustering, latent variable models, dimensionality reduc-

tion, and outlier detection. Figure 2 depicts a taxonomy of

unsupervised learning techniques and also the relevant sec-

tions in which these techniques are discussed. To provide a

better understanding of the application of unsupervised ML

techniques in networking, we have added few subsections

highlighting significant applications of unsupervised ML

techniques in networking domain.

A. HIERARCHICAL LEARNING

Hierarchical learning is defined as learning simple and

complex features from a hierarchy of multiple linear and

nonlinear activations. In learning models, a feature is a mea-

surable property of the input data. Desired features are ideally

informative, discriminative, and independent. In statistics,

features are also known as explanatory (or independent) vari-

ables [26]. Feature learning (also known as data representa-

tion learning) is a set of techniques that can learn one or more
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FIGURE 1. Outline of the paper.

FIGURE 2. Taxonomy of unsupervised learning techniques.

features from input data [27]. It involves the transformation

of raw data into a quantifiable and comparable representation,

which is specific to the property of the input but general

enough for comparison to similar inputs. Conventionally,

features are handcrafted specific to the application on hand.

It relies on domain knowledge but even then they do not

generalize well to the variation of real-world data, which

gives rise to automated learning of generalized features from

the underlying structure of the input data. Like other learning

algorithms, feature learning is also divided among domains

of supervised and unsupervised learning depending on the

type of available data. Almost all unsupervised learning

algorithms undergo a stage of feature extraction in order to

learn data representation from unlabeled data and generate
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TABLE 2. List of common acronyms used.

a feature vector on the basis of which further tasks are

performed.

Hierarchical learning is intimately related to how deep

learning is performed in modern multi-layer neural networks.

In particular, deep learning techniques benefits from the

fundamental concept of artificial neural networks (ANNs),

a deep structure consists of multiple hidden layers with mul-

tiple neurons in each layer, a nonlinear activation function,

a cost function, and a back-propagation algorithm. Deep

learning [40] is a hierarchical technique that models high-

level abstraction in data using many layers of linear and

nonlinear transformations. With deep enough stack of these

transformation layers, a machine can self-learn a very com-

plex model or representation of data. Learning takes place

in hidden layers and the optimal weights and biases of the

neurons are updated in two passes, namely, the forward pass

and backward pass. A typical ANN and typical cyclic and

acyclic topologies of interconnection between neurons are

shown in Figure 3. A brief taxonomy of Unsupervised NNs

is presented in Figure 4.

An ANN has three types of layers (namely input,

hidden and output, each having different activation

parameters). Learning is the process of assigning optimal

activation parameters enabling ANN to perform input to

output mapping. For a given problem, an ANN may require

multiple hidden layers involving a long chain of computa-

tions, i.e., its depth [41]. Deep learning has revolutionized

ML and is now increasingly being used in diverse settings—

e.g., object identification in images, speech transcription into

text, matching user’s interests with items (such as news items,

movies, products) and making recommendations, etc. But

until 2006, relatively few people were interested in deep

learning due to the high computational cost of deep learning

procedures. It was widely believed that training deep learning

architectures in an unsupervised manner was intractable, and

supervised the training of deep NNs (DNN) also showed poor

performance with large generalization errors [42]. However,

recent advances [43]–[45] have shown that deep learning

can be performed efficiently by separate unsupervised pre-

training of each layer with the results revolutionizing the field

ofML. Starting from the input (observation) layer, which acts

as an input to the subsequent layers, pre-training tends to learn

data distributions while the usual supervised stage performs

a local search for fine-tuning.

1) UNSUPERVISED MULTILAYER FEED FORWARD NN

Unsupervised multilayer feedforward NN, with reference

to graph theory, has a directed graph topology as shown

in Figure 3. It consists of no cycles, i.e., does not have a feed-

back path in input propagation through NN. Such kind of NN

is often used to approximate a nonlinear mapping between

inputs and required outputs. Autoencoders are the prime

examples of unsupervised multilayer feedforward NNs.

a: AUTOENCODERS

An autoencoder is an unsupervised learning algorithm for

ANN used to learn compressed and encoded representation

of data, mostly for dimensionality reduction and for unsu-

pervised pre-training of feedforward NNs. Autoencoders are

generally designed using approximation function and trained

using backpropagation and stochastic gradient descent (SGD)

techniques. Autoencoders are the first of their kind to use

the back-propagation algorithm to train with unlabeled data.

Autoencoders aim to learn a compact representation of the

function of input using the same number of input and output

units with usually less hidden units to encode a feature vector.

They learn the input data function by recreating the input

at the output, which is called encoding/decoding, to learn
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FIGURE 3. Illustration of an ANN (left); Different types of ANN topologies (right).

FIGURE 4. Taxonomy of unsupervised neural networks.

at the time of training NN. In short, a simple autoencoder

learns a low-dimensional representation of the input data by

exploiting similar recurring patterns.

Autoencoders have different variants [46] such as vari-

ational autoencoders, sparse autoencoders, and denoising

autoencoders. Variational autoencoder is an unsupervised

learning technique used clustering, dimensionality reduction,

and visualization, and for learning complex distributions [47].

In a sparse autoencoder, a sparse penalty on the latent layer

is applied for extracting a unique statistical feature from

unlabeled data. Finally, denoising autoencoders are used to

learn the mapping of a corrupted data point to its original

location in the data space in an unsupervised manner for

manifold learning and reconstruction distribution learning.

2) UNSUPERVISED COMPETITIVE LEARNING NN

Unsupervised competitive learning NNs is a winner-take-all

neuron scheme, where each neuron competes for the right of

the response to a subset of the input data. This scheme is used

to remove the redundancies from the unstructured data. Two

major techniques of unsupervised competitive learning NNs

are self-organizing maps and adaptive resonance theory NNs.

a: SELF-ORGANIZING/ KOHONEN MAPS

Self-Organizing Maps (SOM), also known as Kohonen’s

maps [48], [49], are a special class of NNs that uses the

concept of competitive learning, in which output neurons

compete amongst themselves to be activated in a real-valued

output, results having only single neuron (or group of neu-

rons), called winning neuron. This is achieved by creat-

ing lateral inhibition connections (negative feedback paths)

between neurons [50]. In this orientation, the network deter-

mines the winning neuron within several iterations; subse-

quently, it is forced to reorganize itself based on the input data

distribution (hence they are called Self-Organizing Maps).

They were initially inspired by the human brain, which has

specialized regions in which different sensory inputs are rep-

resented/processed by topologically ordered computational

maps. In SOM, neurons are arranged on vertices of a lattice

(commonly one or two dimensions). The network is forced

to represent higher-dimensional data in lower-dimensional

representation by preserving the topological properties of

input data by using neighborhood function while transform-

ing the input into a topological space in which neuron posi-

tions in the space are representatives of intrinsic statistical
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features that tell us about the inherently nonlinear nature

of SOMs.

Training a network comprising SOM is essentially a

three-stage process after random initialization of weighted

connections. The three stages are as follow [51].

• Competition: Each neuron in the network computes its

value using a discriminant function, which provides the

basis of competition among the neurons. Neuron with

the largest discriminant value in the competition group

is declared the winner.

• Cooperation: The winner neuron then locates the center

of the topological neighborhood of excited neurons in

the previous stage, providing a basis for cooperation

among excited neighboring neurons.

• Adaption: The excited neurons in the neighborhood

increase/decrease their individual values of the discrimi-

nant function in regard to input data distribution through

subtle adjustments such that the response of the winning

neuron is enhanced for similar subsequent input. Adap-

tion stage is distinguishable into two sub-stages: (1) the

ordering or self-organizing phase, in which weight vec-

tors are reordered according to topological space; and

(2) the convergence phase, in which the map is fine-

tuned and declared accurate to provide statistical quan-

tification of the input space. This is the phase in which

the map is declared to be converged and hence trained.

One essential requirement in training a SOM is the

redundancy of the input data to learn about the underlying

structure of neuron activation patterns. Moreover, sufficient

quantity of data is required for creating distinguishable clus-

ters; withstanding enough data for classification problem,

there exist a problem of gray area between clusters and cre-

ation of infinitely small clusters where input data has minimal

patterns.

b: ADAPTIVE RESONANCE THEORY

Adaptive Resonance Theory (ART) is another different cat-

egory of NN models that is based on the theory of human

cognitive information processing. It can be explained as an

algorithm of incremental clustering which aims at forming

multi-dimensional clusters, automatically discriminating and

creating new categories based on input data. Primarily, ART

models are classified as an unsupervised learning model;

however, there exist ART variants that employ supervised

and semi-supervised learning approaches as well. The main

setback of most NN models is that they lose old information

(updating/diminishing weights) as new information arrives,

therefore an ideal model should be flexible enough to accom-

modate new information without losing the old one, and this

is called the plasticity-stability problem. ARTmodels provide

a solution to this problem by self-organizing in real time and

creating a competitive environment for neurons, automati-

cally discriminating/creating new clusters among neurons to

accommodate any new information.

ART model resonates around (top-down) observer

expectations and (bottom-up) sensory information while

keeping their difference within the threshold limits of vigi-

lance parameter, which in result is considered as the member

of the expected class of neurons [52]. Learning of an ART

model primarily consists of a comparison field, recognition

field, vigilance (threshold) parameter, and a reset module.

The comparison field takes an input vector, which in result is

passed, to best match in the recognition field; the best match

is the current winning neuron. Each neuron in the recognition

field passes a negative output in proportion to the quality of

the match, which inhibits other outputs, therefore, exhibiting

lateral inhibitions (competitions). Once the winning neuron

is selected after a competition with the best match to the input

vector, the reset module compares the quality of the match to

the vigilance threshold. If the winning neuron is within the

threshold, it is selected as the output, else the winning neuron

is reset and the process is started again to find the next best

match to the input vector. In case where no neuron is capable

to pass the threshold test, a search procedure begins in which

the reset module disables recognition neurons one at a time to

find a correct match whose weight can be adjusted to accom-

modate the new match, therefore ART models are called self-

organizing and can deal with the plasticity/stability dilemma.

3) UNSUPERVISED DEEP NN

In recent years unsupervised deep NN has become the most

successful unsupervised structure due to its application in

many benchmarking problems and applications [53]. Three

major types of unsupervised deep NNs are deep belief NNs,

deep autoencoders, and convolutional NNs.

a: DEEP BELIEF NN

Deep Belief Neural Network or simply Deep Belief Networks

(DBN) is a probability-based generative graph model that is

composed of hierarchical layers of stochastic latent variables

having binary valued activations, which are referred as hidden

units or feature detectors. The top layers in DBNs have

undirected, symmetric connections between them forming

an associative memory. DBNs provide a breakthrough in

unsupervised learning paradigm. In the learning stage, DBN

learns to reconstruct its input, each layer acting as feature

detectors. DBN can be trained by greedy layer-wise training

starting from the top layer with raw input, subsequent layers

are trained with the input data from the previously visible

layer [43]. Once the network is trained in an unsupervised

manner and learned the distribution of the data, it can be

fine-tuned using supervised learning methods, or supervised

layers can be concatenated in order to achieve the desired task

(for instance, classification).

b: DEEP AUTOENCODER

Another famous type of DBN is the deep autoencoder, which

is composed of two symmetric DBNs—the first of which is

used to encode the input vector, while the second decodes.

By the end of the training of the deep autoencoder, it tends

to reconstruct the input vector at the output neurons, and
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therefore the central layer between both DBNs is the actual

compressed feature vector.

c: CONVOLUTIONAL NN

Convolutional NN (CNN) are feed forward NN in which

neurons are adapted to respond to overlapping regions in

two-dimensional input fields such as visual or audio input.

It is commonly achieved by local sparse connections among

successive layers and tied shared weights followed by rec-

tifying and pooling layers which results in transformation

invariant feature extraction. Another advantage of CNN over

simple multilayer NN is that it is comparatively easier to train

due to sparsely connected layers with the same number of

hidden units. CNN represents the most significant type of

architecture for computer vision as they solve two challenges

with the conventional NNs: 1) scalable and computationally

tractable algorithms are needed for processing high-

dimensional images; and 2) algorithms should be transfor-

mation invariant since objects in an image can occur at an

arbitrary position. However, most CNN’s are composed of

supervised feature detectors in the lower and middle hidden

layers. In order to extract features in an unsupervised manner,

a hybrid of CNN and DBN, called Convolutional Deep Belief

Network (CDBN), is proposed in [54]. Making probabilistic

max-pooling1 to cover larger input area and convolution as

an inference algorithmmakes this model scalable with higher

dimensional input. Learning is processed in an unsupervised

manner as proposed in [44], i.e., greedy layer-wise (lower to

higher) training with unlabeled data.

CDBN is a promising scalable generative model for learn-

ing translation invariant hierarchical representation from any

high-dimensional unlabeled data in an unsupervised man-

ner taking advantage of both worlds, i.e., DBN and CNN.

CNN, being widely employed for computer vision applica-

tions, can be employed in computer networks for optimiza-

tion of Quality of Experience (QoE) and Quality of Service

(QoS) of multimedia content delivery over networks, which

is an open research problem for next-generation computer

networks [55].

4) UNSUPERVISED RECURRENT NN

Recurrent NN (RNN) is the most complex type of NN,

and hence the nearest match to an actual human brain that

processes sequential inputs. It can learn temporal behaviors

of a given training data. RNN employs an internal memory

per neuron to process such sequential inputs in order to

exhibit the effect of the previous event on the next. Compared

to feed forward NNs, RNN is a stateful network. It may

contain computational cycles among states and uses time

as the parameter in the transition function from one unit to

another. Being complex and recently developed, it is an open

research problem to create domain-specific RNNmodels and

train them with sequential data. Specifically, there are two

1Max-pooling is an algorithm of selecting the most responsive receptive
field of a given interest region.

perspectives of RNN to be discussed in the scope of this

survey, namely, the depth of the architecture and the training

of the network. The depth, in the case of a simple artificial

NN, is the presence of hierarchical nonlinear intermediate

layers between the input and output signals. In the case of an

RNN, there are different hypotheses explaining the concept

of depth. One hypothesis suggests that RNNs are inherently

deep in nature when expanded with respect to sequential

input; there are a series of nonlinear computations between

the input at time t(i) and the output at time t(i+ k).

However, at an individual discrete time step, certain tran-

sitions are neither deep nor nonlinear. There exist input-to-

hidden, hidden-to-hidden, and hidden-to-output transitions,

which are shallow in the sense that there are no intermediate

nonlinear layers at discrete time step. In this regard, different

deep architectures are proposed in [56] that introduce inter-

mediate nonlinear transitional layers in between the input,

hidden and output layers. Another novel approach is also

proposed by stacking hidden units to create a hierarchical

representation of hidden units, which mimic the deep nature

of standard deep NNs.

Due to the inherently complex nature of RNN, to the best

of our knowledge, there is no widely adopted approach for

training RNNs and many novel methods (both supervised

and unsupervised) are introduced to train RNNs. Considering

unsupervised learning of RNN in the scope of this paper, [57]

employ Long Short-termMemory (LSTM)RNN to be trained

in an unsupervised manner using unsupervised learning algo-

rithms, namely Binary Information Gain Optimization and

non parametric Entropy Optimization, in order to make a

network to discriminate between a set of temporal sequences

and cluster them into groups. Results have shown remarkable

ability of RNNs for learning temporal sequences and cluster-

ing them based on a variety of features. Two major types of

unsupervised recurrent NN are Hopfield NN and Boltzmann

machine.

a: HOPFIELD NN

Hopfield NN is a cyclic recurrent NN where each node is

connected to others. Hopfield NN provides an abstraction

of circular shift register memory with nonlinear activation

functions to form a global energy function with guaranteed

convergence to local minima. Hopfield NNs are used for

finding clusters in the data without a supervisor.

b: BOLTZMANN MACHINE

The Boltzmann machine is a stochastic symmetric recur-

rent NN that is used for search and learning problems.

Due to binary vector based simple learning algorithm of

Boltzmann machine, very interesting features representing

the complex unstructured data can be learned [58]. Since

the Boltzmann machine uses multiple hidden layers as fea-

ture detectors, the learning algorithm becomes very slow.

To avoid slow learning and to achieve faster feature detection

instead of Boltzmann machine, a faster version, namely the

restricted Boltzmann machine (RBM), is used for practical
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FIGURE 5. Clustering process.

problems [59]. Restricted Boltzmann machine learns a prob-

ability distribution over its input data but since it is restricted

in its layer to layer connectivity RBM loses its property of

recurrence. It is faster than a Boltzmann machine because it

only uses one hidden layer as a feature detector layer. RBM

is used for dimensionality reduction, clustering and feature

learning in computer networks.

5) SIGNIFICANT APPLICATIONS OF HIERARCHICAL

LEARNING IN NETWORKS

ANNs/DNNs are the most researched topic when creat-

ing intelligent systems in computer vision and natural lan-

guage processing whereas their application in computer

networks are very limited, they are employed in differ-

ent networking applications such as classification of traffic,

anomaly/intrusion detection, detecting Distributed Denial of

Service (DDoS) attacks, and resource management in cogni-

tive radios [60]. The motivation of using DNN for learning

and predicting in networks is the unsupervised training that

detects hidden patterns in ample amount of data that is near

to impossible for a human to handcraft features catering for

all scenarios. Moreover, many new research shows that a

single model is not enough for the need of some applications,

so developing a hybrid NN architecture having pros and

cons of different models creates a new efficient NN which

provides even better results. Such an approach is used in [61],

in which a hybrid model of ART and RNN is employed to

learn and predict traffic volume in a computer network in

real time. Real-time prediction is essential to adaptive flow

control, which is achieved by using hybrid techniques so that

ART can learn new input patterns without re-training the

entire network and can predict accurately in the time series

of RNN. Furthermore, DNNs are also being used in resource

allocation and QoE/QoS optimizations. Using NN for opti-

mization, efficient resource allocation without affecting the

user experience can be crucial in the time when resources are

scarce. Authors of [62], [63] propose a simple DBN for opti-

mizing multimedia content delivery over wireless networks

by keeping QoE optimal for end users. Table 3 also provides

a tabulated description of hierarchical learning in networking

applications. However, these are just a few notable examples

of deep learning and neural networks in networks, refer to

Section III for more applications and detailed discussion on

deep learning and neural networks in computer networks.

B. DATA CLUSTERING

Clustering is an unsupervised learning task that aims to find

hidden patterns in unlabeled input data in the form of clus-

ters [64]. Simply put, it encompasses the arrangement of data

in meaningful natural groupings on the basis of the similarity

between different features (as illustrated in Figure 5) to learn

about its structure. Clustering involves the organization of

data in such a way that there are high intra-cluster and low

inter-cluster similarity. The resulting structured data is termed

as data-concept [65]. Clustering is used in numerous applica-

tions from the fields of ML, data mining, network analysis,

pattern recognition, and computer vision. The various tech-

niques used for data clustering are described in more detail

later in Section II-B. In networking, clustering techniques

are widely deployed for applications such as traffic analysis

and anomaly detection in all kinds of networks (e.g., wireless

sensor networks and mobile ad-hoc networks), with anomaly

detection [66].

Clustering improves performance in various applications.

McGregor et al. [67] propose an efficient packet tracing

approach using the Expectation-Maximization (EM) proba-

bilistic clustering algorithm, which groups flows (packets)

into a small number of clusters, where the goal is to analyze

network traffic using a set of representative clusters.

A brief overview of different types of clustering methods

and their relationships can be seen in Figure 6. Clustering can

be divided into three main types [68], namely hierarchical

clustering, Bayesian clustering, and partitional clustering.

Hierarchical clustering creates a hierarchical decomposition

of data, whereas Bayesian clustering forms a probabilistic

model of the data that decides the fate of a new test point

probabilistically. In contrast, partitional clustering constructs

multiple partitions and evaluates them on the basis of certain

criterion or characteristic such as the Euclidean distance.

Before delving into the general sub-types of clustering,

there are two unique clustering techniques, which need to be

discussed, namely density-based clustering and grid-based

clustering. In some cases, density-based clustering is classi-

fied as a partitional clustering technique; however, we have

kept it separate considering its applications in networking.

Density-based models target the most densely populated area

of data space and separate it from areas having low densities,

thus forming clusters [69]. [70] use density-based clustering

to cluster data stream in real time, which is important in many
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TABLE 3. Applications of hierarchical learning/ deep learning in networking applications.

FIGURE 6. Clustering taxonomy.

applications (e.g., intrusion detection in networks). Another

technique is grid-based clustering, which divides the data

space into cells to form a grid-like structure; subsequently,

all clustering actions are performed on this grid [71]. [71]

also present a novel approach that uses a customized grid-

based clustering algorithm to detect anomalies in networks.

[72] proposed a novel method for clustering the time series

data, this scheme was based on a distance measure between

temporal features of the time series.

Wemove on next to describe three major types of data clus-

tering approaches as per the taxonomy is shown in Figure 6.

1) HIERARCHICAL CLUSTERING

Hierarchical clustering is a well-known strategy in data min-

ing and statistical analysis in which data is clustered into a

hierarchy of clusters using an agglomerative (bottom-up) or a

divisive (top-down) approach. Almost all hierarchical clus-

tering algorithms are unsupervised and deterministic. The

primary advantage of hierarchical clustering over unsuper-

vised K-means and EM algorithms is that it does not require

the number of clusters to be specified beforehand. However,

this advantage comes at the cost of computational efficiency.

Common hierarchical clustering algorithms have at least
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quadratic computational complexity compared to the linear

complexity of K-means and EM algorithms. Hierarchical

clustering methods have a pitfall: these methods fail to accu-

rately classify messy high-dimensional data as its heuristic

may fail due to the structural imperfections of empirical

data. Furthermore, the computational complexity of the com-

mon agglomerative hierarchical algorithms is NP-hard. SOM,

as discussed in Section II-A.2, is a modern approach that can

overcome the shortcomings of hierarchical models [73].

2) BAYESIAN CLUSTERING

Bayesian clustering is a probabilistic clustering strategy

where the posterior distribution of the data is learned on the

basis of a prior probability distribution. Bayesian clustering

is divided into two major categories, namely parametric and

non-parametric [74]. The major difference between para-

metric and non-parametric techniques is the dimensionality

of parameter space: if there are finite dimensions in the

parameter space, the underlying technique is called Bayesian

parametric; otherwise, the underlying technique is called

Bayesian non-parametric. A major pitfall with the Bayesian

clustering approach is that the choice of the wrong prior prob-

ability distributions can distort the projection of the data. [75]

performed Bayesian non-parametric clustering of network

traffic data to determine the network application type.

3) PARTITIONAL CLUSTERING

Partitional clustering corresponds to a special class of cluster-

ing algorithms that decomposes data into a set of disjoint clus-

ters. Given n observations, the clustering algorithm partitions

a data into k < n clusters [76]. Partitional clustering is further

classified into K-means clustering and mixture models.

a: K-MEANS CLUSTERING

K-means clustering is a simple, yet widely used approach

for classification. It takes a statistical vector as an input to

deduce classification models or classifiers. K-means cluster-

ing tends to distribute m observations into n clusters where

each observation belongs to the nearest cluster. The member-

ship of observation to a cluster is determined using the cluster

mean. K-means clustering is used in numerous applications

in the domains of network analysis and traffic classifica-

tion. [77] used K-means clustering in conjunction with super-

vised ID3 decision tree learning models to detect anomalies

in a network. An ID3 decision tree is an iterative supervised

decision tree algorithm based on the concept learning system.

K-means clustering provided excellent results when used

in traffic classification. [78] showed that K-means cluster-

ing performs well in traffic classification with an accuracy

of 90%.

K-means clustering is also used in the domain of network

security and intrusion detection. Reference [79] proposed

a K-means algorithm for intrusion detection. Experimental

results on a subset of KDD-99 dataset shows that the detec-

tion rate stays above 96% while the false alarm rate stays

below 4%. Results and analysis of experiments on K-means

algorithm have demonstrated a better ability to search clusters

globally.

Another variation of K-means is known as K-medoids,

in which rather than taking the mean of the clusters, the most

centrally located data point of a cluster is considered as the

reference point of the corresponding cluster [80]. Few of

the applications of K-medoids in the spectrum of anomaly

detection can be seen here [80], [81].

b: MIXTURE MODELS

Mixture models are powerful probabilistic models for uni-

variate and multivariate data. Mixture models are used to

make statistical inferences and deductions about the prop-

erties of the sub-populations given only observations on the

pooled population. They have also used to statistically model

data in the domains of pattern recognition, computer vision,

ML, etc. Finite mixtures, which are a basic type of mixture

model, naturally model observations that are produced by

a set of alternative random sources. Inferring and deduc-

ing different parameters from these sources based on their

respective observations lead to clustering of the set of obser-

vations. This approach to clustering tackles drawbacks of

heuristic-based clustering methods, and hence it is proven to

be an efficient method for node classification in any large-

scale network and has shown to yield effective results com-

pared to techniques commonly used. For instance, K-means

and hierarchical agglomerative methods rely on supervised

design decisions, such as the number of clusters or validity

of models [82]. Moreover, combining the EM algorithm with

mixture models produces remarkable results in deciphering

the structure and topology of the vertices connected through a

multi-dimensional network [83]. Reference [84] used Gaus-

sian mixture model (GMM) to outperform signature based

anomaly detection in network traffic data.

4) SIGNIFICANT APPLICATIONS OF

CLUSTERING IN NETWORKS

Clustering can be found in mostly all unsupervised learning

problems, and there are diverse applications of clustering

in the domain of computer networks. Two major network-

ing applications where significant use of clustering can be

seen are intrusion detection and Internet traffic classifica-

tion. One novel way to detect anomaly is proposed in [85],

this approach preprocesses the data using Genetic Algo-

rithm (GA) combined with hierarchical clustering approach

called Balanced Iterative Reducing using Clustering Hier-

archies (BIRCH) to provide an efficient classifier based on

Support Vector Machine (SVM). This hierarchical cluster-

ing approach stores abstracted data points instead of the

whole dataset, thus giving more accurate and quick clas-

sification compared to all past methods, producing bet-

ter results in detecting anomalies. Another approach [71]

discusses the use of grid-based and density-based cluster-

ing for anomaly and intrusion detection using unsupervised

learning. Reference [86] used k-shape clustering scheme

for analyzing spatiotemporal heterogeneity in mobile usage.
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TABLE 4. Applications of data clustering in networking applications.

Basically, a scalable parallel framework for clustering large

datasets with high dimensions is proposed and then improved

by inculcating frequency pattern trees. Table 4 also provides

a tabulated description of data clustering applications in net-

works. These are just a few notable examples of clustering

approaches in networks: refer to Section III for the detailed

discussion on some salient clustering applications in the con-

text of networks.

C. LATENT VARIABLE MODELS

A latent variable model is a statistical model that relates

the manifest variables with a set of latent or hidden vari-

ables. Latent variable model allows us to express relatively

complex distributions in terms of tractable joint distributions

over an expanded variable space [95]. Underlying variables

of a process are represented in higher dimensional space

using a fixed transformation, and stochastic variations are

known as latent variable models where the distribution in

higher dimension is due to small number of hidden variables

acting in a combination [96]. These models are used for

data visualization, dimensionality reduction, optimization,

distribution learning, blind signal separation and factor anal-

ysis. Next we will begin our discussion on various latent

variable models, namelymixture distribution, factor analysis,

blind signal separation, non-negative matrix factorization,

Bayesian networks & probabilistic graph models (PGM),

hidden Markov model (HMM), and nonlinear dimensional-

ity reduction techniques (which further includes generative

topographic mapping, multi-dimensional scaling, principal

curves, Isomap, localliy linear embedding, and t-distributed

stochastic neighbor embedding).

1) MIXTURE DISTRIBUTION

Mixture distribution is an important latent variable model

that is used for estimating the underlying density function.

Mixture distribution provides a general framework for den-

sity estimation by using the simpler parametric distributions.

Expectation maximization (EM) algorithm is used for esti-

mating the mixture distribution model [97], through max-

imization of the log-likelihood of the mixture distribution

model.

2) FACTOR ANALYSIS

Another important type of latent variable model is factor

analysis, which is a density estimation model. It has been

used quite often in collaborative filtering and dimensionality

reduction. It is different from other latent variable models

in terms of the allowed variance for different dimensions

as most latent variable models for dimensionality reduction

in conventional settings use a fixed variance Gaussian noise

model. In the factor analysis model, latent variables have

diagonal covariance rather than isotropic covariance.

3) BLIND SIGNAL SEPARATION

Blind Signal Separation (BSS), also referred to as Blind

Source Separation, is the identification and separation of

independent source signals from mixed input signals with-

out or very little information about the mixing process.

Figure 7 depicts the basic BSS process in which source

signals are extracted from a mixture of signals. It is a funda-

mental and challenging problem in the domain of signal pro-

cessing although the concept is extensively used in all types of

multi-dimensional data processing.Most common techniques

employed for BSS are principal component analysis (PCA)

and independent component analysis (ICA).

a) Principal Component Analysis (PCA) is a statisti-

cal procedure that utilizes orthogonal transformation on

the data to convert n number of possibly correlated vari-

ables into lesser k number of uncorrelated variables named
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FIGURE 7. Blind signal separation (BSS): A mixed signal composed of various input signals mixed by some
mixing process is blindly processed (i.e., with no or minimal information about the mixing process) to
show the original signals.

principal components. Principal components are arranged in

the descending order of their variability, first one catering

for the most variable and the last one for the least. Being a

primary technique for exploratory data analysis, PCA takes a

cloud of data in n dimensions and rotates it such that maxi-

mum variability in the data is visible. Using this technique,

it brings out the strong patterns in the dataset so that these

patterns are more recognizable therebymaking the data easier

to explore and visualize.

PCA has primarily been used for dimensionality reduction

in which input data of n dimensions is reduced to k dimen-

sions without losing critical information in the data. The

choice of the number of principal components is a question

of the design decision. Much research has been conducted on

selecting the number of components such as cross-validation

approximations [98]. Optimally, k is chosen such that the

ratio of the average squared projection error to the total

variation in the data is less than or equal to 1% by which

99% of the variance is retained in the k principal components.

But, depending on the application domain, different designs

can increase/decrease the ratio whilemaximizing the required

output. Commonly, many features of a dataset are often

highly correlated; hence, PCA results in retaining 99% of the

variance while significantly reducing the data dimensions.

b) Independent Component Analysis (ICA) is another tech-

nique for BSS that focuses on separating multivariate input

data into additive components with the underlying assump-

tion that the components are non-Gaussian and statistically

independent. The most common example to understand ICA

is the cocktail party problem in which there are n people

talking simultaneously in a room and one tries to listen to

a single voice. ICA actually separates source signals from

input mixed signal by either minimizing the statistical depen-

dence or maximizing the non-Gaussian property among the

components in the input signals by keeping the underly-

ing assumptions valid. Statistically, ICA can be seen as the

extension of PCA, while PCA tries to maximize the second

moment (variance) of data, hence relying heavily onGaussian

features; on the other hand, ICA exploits inherently non-

Gaussian features of the data and tries to maximize the fourth

moment of linear combination of inputs to extract non-normal

source components in the data [99].

4) NON-NEGATIVE MATRIX FACTORIZATION

Non-Negative Matrix Factorization (NMF) is a technique to

factorize a large matrix into two or more smaller matrices

with no negative values, that is when multiplied, it recon-

structs the approximate original matrix. NMF is a novel

method in decomposing multivariate data making it easy

and straightforward for exploratory analysis. By NMF, hid-

den patterns and intrinsic features within the data can be

identified by decomposing them into smaller chunks, enhanc-

ing the interpretability of data for analysis, with posi-

tivity constraints. However, there exist many classes of

algorithms [100] for NMF having different generalization

properties, for example, two of them are analyzed in [101],

one of which minimizes the least square error and while the

other focuses on the Kullback-Leibler divergence keeping

algorithm convergence intact.

5) HIDDEN MARKOV MODEL

Hidden Markov Models (HMM) are stochastic models of

great utility, especially in domains where we wish to analyze

temporal or dynamic processes such as speech recognition,

primary users (PU) arrival pattern in cognitive radio net-

works (CRNs), etc. HMMs are highly relevant to CRNs since

many environmental parameters in CRNs are not directly

observable. AnHMM-based approach can analytically model

a Markovian stochastic process in which we do not have

access to the actual states, which are assumed to be unob-

served or hidden; instead, we can observe a state that is

stochastically dependent on the hidden state. It is for this

reason that an HMM is defined to be a doubly stochastic

process.

6) BAYESIAN NETWORKS & PROBABILISTIC

GRAPH MODELS (PGM)

In Bayesian learning we try to find the posterior proba-

bility distributions for all parameter settings, in this setup,

we ensure that we have a posterior probability for every

possible parameter setting. It is computationally expensive

but we can use complicated models with a small dataset and

still avoid overfitting. Posterior probabilities are calculated by

dividing the product of sampling distribution and prior dis-

tribution by marginal likelihood; in simple words, posterior
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probabilities are calculated using Bayes theorem. The basis

of reinforcement learning was also derived by using Bayes

theorem [102]. Since Bayesian learning is computationally

expensive a new research trend is approximate Bayesian

learning [103]. Authors in [104] have given a comprehensive

survey of different approximate Bayesian inference algo-

rithms. With the emergence of Bayesian deep learning frame-

work the deployment of Bayes learning based solution is

increasing rapidly.

Probabilistic graph modeling is a concept associated with

Bayesian learning. A model representing the probabilistic

relationship between random variables through a graph is

known as a probabilistic graph model (PGM). Nodes and

edges in the graph represent a random variable and their prob-

abilistic dependence, respectively. PGM are of two types:

directed PGM and undirected PGM. Bayes networks also

fall in the regime of directed PGM. PGM is used in many

important areas such as computer vision, speech processing,

and communication systems. Bayesian learning combined

with PGM and latent variable models forms a probabilistic

frameworkwhere deep learning is used as a substrate formak-

ing improved learning architecture for recommender systems,

topic modeling, and control systems [105].

7) SIGNIFICANT APPLICATIONS OF LATENT VARIABLE

MODELS IN NETWORKS

In [106], authors have applied latent structure on email corpus

to find interpretable latent structure as well as evaluating

its predictive accuracy on missing data task. A dynamic

latent model for a social network is represented in [107].

Characterization of the end-to-end delay using a Weibull

mixture model is discussed in [108]. Mixture models for end

host traffic analysis have been explored in [109]. BSS is a

set of statistical algorithms that are widely used in differ-

ent application domains to perform different tasks such as

dimensionality reduction, correlating and mapping features,

etc. [110] employed PCA for Internet traffic classification in

order to separate different types of flows in a network packet

stream. Similarly, authors of [111] used a semi-supervised

approach, where PCA is used for feature learning and an

SVM classifier for intrusion detection in an autonomous

network system. Another approach for detecting anomalies

and intrusions proposed in [112] uses NMF to factorize differ-

ent flow features and cluster them accordingly. Furthermore,

ICA has been widely used in telecommunication networks to

separate mixed and noisy source signals for efficient service.

For example, [113] extends a variant of ICA called Efficient

Fast ICA (EF-ICA) for detecting and estimating the symbol

signals from the mixed CDMA signals received from the

source endpoint.

In other literature, PCA uses a probabilistic approach to

find the degree of confidence in detecting an anomaly in

wireless networks [114]. Furthermore, PCA is also chosen

as a method of clustering and designing Wireless Sensor

Networks (WSNs) with multiple sink nodes [115]. However,

these are just a few notable examples of BSS in networks,

refer to Section III for more applications and detailed discus-

sion on BSS techniques in the networking domain.

Bayesian learning has been applied for classifying Inter-

net traffic, where Internet traffic is classified based on the

posterior probability distributions. For early traffic identifi-

cation in campus network real discretized conditional proba-

bility has been used to construct a Bayesian classifier [116].

Host-level intrusion detection using Bayesian networks is

proposed in [117]. Authors in [118] purposed a Bayesian

learning based feature vector selection for anomalies classi-

fication in BGP. Port scan attacks prevention scheme using

a Bayesian learning approach is discussed in [119]. Inter-

net threat detection estimation system is presented in [120].

A new approach towards outlier detection using Bayesian

belief networks is described in [121]. Application of Bayesian

networks in MIMO systems has been explored in [122].

Location estimation using Bayesian network in LAN is dis-

cussed in [123]. Similarly, Bayes theory and PGM are both

used in Low-Density Parity Check (LDPC) and Turbo codes,

which are the fundamental components of information coding

theory. Table 5 also provides a tabulated description of latent

variable models applications in networking.

D. DIMENSIONALITY REDUCTION

Representing data in fewer dimensions is another well-

established task of unsupervised learning. Real world data

often have high dimensions—in many datasets, these dimen-

sions can run into thousands, even millions, of potentially

correlated dimensions [133]. However, it is observed that the

intrinsic dimensionality (governing parameters) of the data is

less than the total number of dimensions. In order to find the

essential pattern of the underlying data by extracting intrinsic

dimensions, it is necessary that the real essence is not lost;

e.g., it may be the case that a phenomenon is observable

only in higher-dimensional data and is suppressed in lower

dimensions, these phenomena are said to suffer from the

curse of dimensionality [134]. While dimensionality reduc-

tion is sometimes used interchangeably with feature selection

[135], [136], a subtle difference exists between the two [137].

Feature selection is traditionally performed as a supervised

task with a domain expert helping in handcrafting a set of

critical features of the data. Such an approach generally

can perform well but is not scalable and prone to judgment

bias. Dimensionality reduction, on the other hand, is more

generally an unsupervised task, where instead of choosing

a subset of features, it creates new features (dimensions) as

a function of all features. Said differently, feature selection

considers supervised data labels, while dimensionality reduc-

tion focuses on the data points and their distributions in an

N-dimensional space.

There exist different techniques for reducing data dimen-

sions [138] including projection of higher dimensional points

onto lower dimensions, independent representation, and

sparse representation, which should be capable of recon-

structing the approximate data. Dimensionality reduction is

useful for data modeling, compression, and visualization.
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TABLE 5. Applications of latent variable models in networking applications.

By creating representative functional dimensions of the data

and eliminating redundant ones, it becomes easier to visualize

and form a learning model. Independent representation tries

to disconnect the source of variation underlying the data

distribution such that the dimensions of the representation

are statistically independent [40]. Sparse representation tech-

nique represents the data vectors in linear combinations of

small basis vectors.

It is worth noting here that many of the latent variable mod-

els (e.g., PCA, ICA, factor analysis) also function as tech-

niques for dimensionality reduction. In addition to techniques

such as PCA, ICA—which infer the latent inherent structure

of the data through a linear projection of the data—a number

of nonlinear dimensionality reduction techniques have also

been developed and will be focused upon in this section to

avoid repetition of linear dimensionality reduction techniques

that have already been covered as part of the previous subsec-

tion. Linear dimensionality reduction techniques are useful in

many settings but these methods may miss important nonlin-

ear structure in the data due to their subspace assumption,

which posits that the high-dimensional data points lie on a

linear subspace (for example, on a 2-D or 3D plane). Such

an assumption fails in high dimensions when data points are

random but highly correlatedwith neighbors. In such environ-

ments nonlinear dimensionality reductions through manifold

learning techniques—which can be construed as an attempt

to generalize linear frameworks like PCA so that nonlinear

structure in data can also be recognized—become desirable.

Even though some supervised variants also exist, manifold

learning is mostly performed in an unsupervised fashion

using the nonlinear manifold substructure learned from the

high-dimensional structure of the data from the data itself

without the use of any predetermined classifier or labeled

data. Some nonlinear dimensionality reduction (manifold

learning) techniques are described below:

1) ISOMAP

Isomap is a nonlinear dimensionality reduction technique that

finds the underlying low dimensional geometric information

about a dataset. Algorithmic features of PCA and MDS

are combined to learn the low dimensional nonlinear man-

ifold structure in the data [139]. Isomap uses geodesic dis-

tance along the shortest path to calculate the low dimension

representation shortest path, which can be computed using

Dijkstra’s algorithm.

2) GENERATIVE TOPOGRAPHIC MODEL

Generative topographic mapping (GTM) represents the

nonlinear latent variable mapping from continuous low

dimensional distributions embedded in high dimensional

spaces [140]. Data space in GTM is represented as reference

vectors and these vectors are a projection of latent points in

data space. It is a probabilistic variant of SOM and works

by calculating the Euclidean distance between data points.

GTM optimizes the log-likelihood function, and the resulting

probability defines the density in data space.
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TABLE 6. Applications of dimensionality reduction in networking applications.

3) LOCALLY LINEAR EMBEDDING

Locally linear embedding (LLE) [133] is an unsupervised

nonlinear dimensionality reduction algorithm. LLE repre-

sents data in lower dimensions yet preserving the higher

dimensional embedding. LLE depicts data in a single global

coordinate of lower dimensional mapping of input data. LLE

is used to visualize multi-dimensional dimensional manifolds

and feature extraction.

4) PRINCIPAL CURVES

The principal curve is a nonlinear dataset summarizing tech-

nique where non-parametric curves pass through the middle

of multi-dimensional dataset providing the summary of the

dataset [141]. These smooth curves minimize the average

squared orthogonal distance between data points, this process

also resembles the maximum likelihood for nonlinear regres-

sion in the presence of Gaussian noise [142].

5) NONLINEAR MULTI-DIMENSIONAL SCALING

Nonlinear multi-dimensional scaling (NMDS) [143] is a non-

linear latent variable representation scheme. It works as an

alternative scheme for factor analysis. In factor analysis,

a multivariate normal distribution is assumed and similari-

ties between different objects are expressed as a correlation

matrix. Whereas NMDS does not impose such a condition,

and it is designed to reach the optimal low dimensional con-

figuration where similarities and dissimilarities amongmatri-

ces can be observed. NMDS is also used in data visualization

andmining tools for depicting themulti-dimensional data in 3

dimensions based on the similarities in the distance matrix.

6) T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING

t-distributed stochastic neighbor embedding (t-SNE) is

another nonlinear dimensionality reduction scheme. It is used

to represent high dimensional data in 2 or 3 dimensions.

t-SNE constructs a probability distribution in high dimen-

sional space and constructs a similar distribution in lower

dimensions and minimizes the KullbackâĂŞLeibler (KL)

divergence between two distributions (which is a useful

way to measure the difference between two probability

distributions) [144].

Table 6 also provides a tabulated description of dimen-

sionality reduction applications in networking. The applica-

tions of nonlinear dimensionality reduction methods are later

described in detail in Section III-D.

E. OUTLIER DETECTION

Outlier detection is an important application of unsupervised

learning. A sample point that is distant from other samples is

called an outlier. An outlier may occur due to noise, measure-

ment error, heavy tail distributions and a mixture of two dis-

tributions. There are two popular underlying techniques for

unsupervised outlier detection upon which many algorithms

are designed, namely the nearest neighbor based technique

and clustering based method.

1) NEAREST NEIGHBOR BASED OUTLIER DETECTION

The nearest neighbor method works on estimating the

Euclidean distances or average distance of every sample from

all other samples in the dataset. There are many algorithms

based on nearest neighbor based techniques, with the most

famous extension of the nearest neighbor being a k-nearest

neighbor technique in which only k nearest neighbors par-

ticipate in the outlier detection [154]. Local outlier factor is

another outlier detection algorithm, which works as an exten-

sion of the k-nearest neighbor algorithm. Connectivity-based

outlier factors [155], influenced outlierness [156], and local

outlier probability models [157] are few famous examples of

the nearest neighbor based techniques.
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2) CLUSTER BASED OUTLIER DETECTION

Clustering based methods use the conventional K-means

clustering technique to find dense locations in the data and

then perform density estimation on those clusters. After den-

sity estimation, a heuristic is used to classify the formed clus-

ter according to the cluster size. Anomaly score is computed

by calculating the distance between every point and its cluster

head. Local density cluster based outlier factor [158], cluster-

ing basedmultivariate Gaussian outlier score [159], [160] and

histogram based outlier score [161] are the famous cluster

based outlier detection models in literature. SVM and PCA

are also suggested for outlier detection in literature.

3) SIGNIFICANT APPLICATIONS OF OUTLIER

DETECTION IN NETWORKS

Outlier detection algorithms are used in many different appli-

cations such as intrusion detection, fraud detection, data leak-

age prevention, surveillance, energy consumption anomalies,

forensic analysis, critical state detection in designs, elec-

trocardiogram and computed tomography scan for tumor

detection. Unsupervised anomaly detection is performed by

estimating the distances and densities of the provided non-

annotated data [162]. More applications of outlier detection

schemes will be discussed in Section III.

F. LESSONS LEARNT

Key lessons drawn from the review of unsupervised learning

techniques are summarized below.

1) Hierarchical learning techniques are the most pop-

ular schemes in literature for feature detection and

extraction.

2) Learning the joint distribution of a complex distribution

over an expanded variable space is a difficult task.

Latent variable models have been the recommended

and well-established schemes in literature for this prob-

lem. These models are also used for dimensionality

reduction and better representation of data.

3) Visualization of unlabeled multidimensional data is

another unsupervised task. In this research, we have

explored the dimensionality reduction as an underlying

scheme for developing better multidimensional data

visualization tools.

III. APPLICATIONS OF UNSUPERVISED

LEARNING IN NETWORKING

In this section, we will introduce some significant appli-

cations of the unsupervised learning techniques that have

been discussed in Section II in the context of computer net-

works. We highlight the broad spectrum of applications in

networking and emphasize the importance ofML-based tech-

niques, rather than classical hard-coded statistical methods,

for achieving more efficiency, adaptability, and performance

enhancement.

A. INTERNET TRAFFIC CLASSIFICATION

Internet traffic classification is of prime importance in net-

working as it provides a way to understand, develop and

measure the Internet. Internet traffic classification is an

important component for service providers to understand

the characteristics of the service such as quality of service,

quality of experience, user behavior, network security and

many other key factors related to the overall structure of a

network [163]. In this subsection, we will survey the unsuper-

vised learning applications in network traffic classification.

As networks evolve at a rapid pace, malicious intruders are

also evolving their strategies. Numerous novel hacking and

intrusion techniques are being regularly introduced causing

severe financial jolts to companies and headaches to their

administrators. Tackling these unknown intrusions through

accurate traffic classification on the network edge, therefore,

becomes a critical challenge and an important component of

the network security domain. Initially, when networks used

to be small, simple port-based classification technique that

tried to identify the associated application with the corre-

sponding packet based on its port number was used. However,

this approach is now obsolete because recent malicious soft-

ware uses a dynamic port-negotiation mechanism to bypass

firewalls and security applications. A number of contrast-

ing Internet traffic classification techniques have been pro-

posed since then, and some important ones are discussed

next.

Most of the modern traffic classification methods use

different ML and clustering techniques to produce accurate

clusters of packets depending on their applications, thus pro-

ducing efficient packet classification [10]. The main purpose

of classifying network’s traffic is to recognize the destination

application of the corresponding packet and to control the

flow of the traffic when needed such as prioritizing one flow

over others. Another important aspect of traffic classification

is to detect intrusions and malicious attacks or screen out

forbidden applications (packets).

The first step in classifying Internet traffic is selecting

accurate features, which is an extremely important, yet com-

plex task. Accurate feature selection helps ML algorithms

to avoid problems like class imbalance, low efficiency, and

low classification rate. There are three major feature selec-

tion methods in Internet traffic for classification: the fil-

ter method, the wrapper based method, and the embedded

method. These methods are based on different ML and

genetic learning algorithms [164]. Two major concerns in

feature selection for Internet traffic classification are the

large size of data and imbalanced traffic classes. To deal

with these issues and to ensure accurate feature selection,

a min-max ensemble feature selection scheme is proposed

in [165]. A new information-theoretic approach for feature

selection for skewed datasets is described in [166]. This

algorithm has resolved the multi-class imbalance issue but

it does not resolve the issues of feature selection. In 2017,

an unsupervised autoencoder based scheme has outperformed

previous feature learning schemes, autoencoders were used

as a generative model and were trained in a way that the

bottleneck layer learned a latent representation of the feature

set; these features were then used for malware classification
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and anomaly detection to produce results that improved the

state of the art in feature selection [30].

Much work has been done on classifying traffic based on

supervised ML techniques. Initially, in 2004, the concept of

clustering bi-directional flows of packets came out with the

use of EM probabilistic clustering algorithm, which clusters

the flows depending on various attributes such as packet size

statistics, inter-arrival statistics, byte counts, and connection

duration, etc. [67]. Furthermore, clustering is combined with

the above model [172]; this strategy uses Naïve Bayes clus-

tering to classify traffic in an automated fashion. Recently,

unsupervised ML techniques have also been introduced in

the domain of network security for classifying traffic. Major

developments include a hybrid model to classify traffic in

more unsupervised manner [173], which uses both labeled

and unlabeled data to train the classifier making it more

durable and efficient. However, later on, completely unsuper-

vised methods for traffic classification have been proposed,

and still, much work is going on in this area. Initially, a com-

pletely unsupervised approach for traffic classification was

employed using the K-means clustering algorithm combined

with log transformation to classify data into corresponding

clusters. Then, [78] highlighted that using K-means and this

method for traffic classification can improve accuracy by

10% to achieve an overall 90% accuracy.

Another improved and faster approach was proposed

in 2006 [174], which examines the size of the first five

packets and determines the application correctly using unsu-

pervised learning techniques. This approach has shown to

produce better results than the state-of-the-art traffic classi-

fier, and also has removed its drawbacks (such as dealing

with outliers or unknown packets, etc.). Another similar auto-

mated traffic classifier and application identifier can be seen

in [175], and they use the auto-class unsupervised Bayesian

classifier, which automatically learns the inherent natural

classes in a dataset.

In 2013, another novel strategy for traffic classification

known as network traffic classification using correlation was

proposed [167], which uses non-parametric NN combined

with statistical measurement of correlation within data to

efficiently classify traffic. The presented approach addressed

the three major drawbacks of supervised and unsupervised

learning classification models: firstly, they are inappropriate

for sparse complex networks as labeling of training data takes

too much computation and time; secondly, many supervised

schemes such as SVM are not robust to training data size; and

lastly, and most importantly, all supervised and unsupervised

algorithms perform poorly if there are few training samples.

Thus, classifying the traffic using correlations appears to

be more efficient and adapting. [176] compared four ANN

approaches for computer network traffic, and modeled the

Internet traffic like a time series and used mathematical

methods to predict the time series. A greedy layer-wise train-

ing for unsupervised stacked autoencoder produced excellent

classification results, but at the cost of significant system

complexity. Genetic algorithm combined with constraint

clustering process is used for Internet traffic data characteri-

zation [177]. In another work, a two-phased ML approach for

Internet traffic classification using K-means and C5.0 deci-

sion tree is presented in [178] where the average accuracy of

classification was 92.37%.

A new approach for Internet traffic classification has been

introduced in 2017 by [88] in which unidirectional and bidi-

rectional information is extracted from the collected traffic,

andK-means clustering is performed on the basis of statistical

properties of the extracted flows. A supervised classifier then

classifies these clusters. Another unsupervised learning based

algorithm for Internet traffic detection is described in [179]

where a restricted Boltzmann machine based SVM is pro-

posed for traffic detection, this paper model the detection as

a classification problem. Results were compared with ANN

and decision tree algorithms on the basis of precision and

recall. Application of deep learning algorithms in Internet

traffic classification has been discussed in [16], with this work

also outlining the open research challenges in applying deep

learning for Internet traffic classification. These problems

are related to training the models for big data since Internet

data for deep learning falls in big data regime, optimiza-

tion issues of the designed models given the uncertainty in

Internet traffic and scalability of deep learning architectures

in Internet traffic classification. To cope with the challenges

of developing a flexible high-performance platform that can

capture data from a high-speed network operating at more

than 60 Gbps, [180] have introduced a platform for high-

speed packet to tuple sequence conversion which can sig-

nificantly advance the state of the art in real-time network

traffic classification. In another work, [181] used stacked

autoencoders for Internet traffic classification and produced

more than 90% accurate results for the two classes in KDD

99 dataset.

Deep belief network combined with Gaussian model

employed for Internet traffic prediction in wireless mesh

backbone network has been shown to outperform the pre-

vious maximum likelihood estimation technique for traffic

prediction [182]. Given the uncertainty of WLAN channel

traffic classification is very tricky, [169] proposed a new

variant of Gaussian mixture model by incorporating universal

background model and used it for the first time to classify

the WLAN traffic. A brief overview of the different Internet

traffic classification systems, classified on the basis of unsu-

pervised technique and tasks discussed earlier, is presented in

the Table 7.

B. ANOMALY/INTRUSION DETECTION

The increasing use of networks in every domain has increased

the risk of network intrusions, which makes user privacy and

the security of critical data vulnerable to attacks. According

to the annual computer crime and security survey 2005 [199],

conducted by the combined teams of CSI (Computer Security

Institute) and FBI (Federal Bureau of Investigation), total

financial losses faced by companies due to the security attacks

and network intrusions were estimated as US $130 million.

65596 VOLUME 7, 2019



M. Usama et al.: Unsupervised Machine Learning for Networking: Techniques, Applications, and Research Challenges

TABLE 7. Internet traffic classification with respect to unsupervised learning techniques and tasks.

Moreover, according to the Symantec Internet Security

Threat Report [200], approximately 5000 new vulnerabilities

were identified in the year 2015. In addition, more than

400 million new variants of malware programs and 9 major

breaches were detected exposing 10 million identities. There-

fore, insecurity in today’s networking environment has given

rise to the ever-evolving domain of network security and

intrusion/anomaly detection [200].

In general, Intrusion Detection Systems (IDS) recognize

or identify any act of security breach within a computer or a

network; specifically, all requests which could compromise

the confidentiality and availability of data or resources of a

system or a particular network. Generally, intrusion detection

systems can be categorized into three types: (1) signature-

based intrusion detection systems; (2) anomaly detection

systems; and (3) compound/hybrid detection systems, which

include selective attributes of both preceding systems.

Signature detection, also known as misuse detection, is a

technique that was initially used for tracing and identify-

ing misuses of user’s important data, computer resources,

and intrusions in the network based on the previously col-

lected or stored signatures of intrusion attempts. The most

important benefit of a signature-based system is that a com-

puter administrator can exactly identify the type of attack a

computer is currently experiencing based on the sequence

of the packets defined by stored signatures. However, it is

nearly impossible to maintain the signature database of all

evolving possible attacks, thus this pitfall of the signature-

based technique has given rise to anomaly detection systems.

Anomaly Detection System (ADS) is a modern intrusion

and anomaly detection system. Initially, it creates a baseline

image of a system profile, its network and user program

activity. Then, on the basis of this baseline image, ADS classi-

fies any activity deviating from this behavior as an intrusion.

Few benefits of this technique are: firstly, they are capable

of detecting insider attacks such as using system resources

through another user profile; secondly, each ADS is based on

a customized user profile which makes it very difficult for

attackers to ascertain which types of attacks would not set an

alarm; and lastly, it detects unknown behavior in a computer

system rather than detecting intrusions, thus it is capable of

detecting any unknown sophisticated attack which is different

from the users’ usual behavior. However, these benefits come

with a trade-off, in which the process of training a system on

a user’s ‘normal’ profile and maintaining those profiles is a

time consuming and challenging task. If an inappropriate user

profile is created, it can result in poor performance. Since

ADS detects any behavior that does not align with a user’s

normal profile, its false alarm rate can be high. Lastly, another

pitfall of ADS is that amalicious user can trainADS gradually

to accept inappropriate traffic as normal.

As anomaly and intrusion detection have been a popular

research area since the origin of networking and Internet,

numerous supervised as well as unsupervised [201] learning

techniques have been applied to efficiently detect intrusions

and malicious activities. However, latest research focuses on

the application of unsupervised learning techniques in this

area due to the challenge and promise of using big data for

optimizing networks.

Initial work focuses on the application of basic unsu-

pervised clustering algorithms for detecting intrusions and

anomalies. In 2005, an unsupervised approach was proposed

based on density and grid-based clustering to accurately

classify the high-dimensional dataset in a set of clusters;

those points which do not fall in any cluster are marked

as abnormal [71]. This approach has produced good results

but the false positive rate was very high. In follow-up work,

another improved approach that used fuzzy rough C-means

clustering was introduced [85], [195]. K-means clustering is

also another famous approach used for detecting anomalies
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which were later proposed in 2009 [79], which showed great

accuracy and outperformed existing unsupervised methods.

However, later in 2012, an improved method which used

K-means clustering combined with the C4.5 decision tree

algorithm was proposed [192] to produce more efficient

results than prior approaches. [202] combines cluster centers

and nearest neighbors for effective feature representation

which ensures a better intrusion detection, however, a limi-

tation with this approach is that it is not able to detect user to

resource and remote to local attacks. Another scheme using

unsupervised learning approach for anomaly detection is pre-

sented in [203]. The presented scheme combines subspace

clustering and correlation analysis to detect anomalies and

provide protection against unknown anomalies; this exper-

iment used WIDE backbone networks data [204] spanning

over six years and produced better results than previous

K-means based techniques. Work presented in [205] shows

that for different intrusions schemes, there are a small set

of measurements required to differentiate between normal

and anomalous traffic; the authors used two co-clustering

schemes to perform clustering and to determine which

measurement subset contributed the most towards accurate

detection.

Another famous approach for increasing detection accu-

racy is ensemble learning, work presented in [206] employed

many hybrid incremental ML approaches with gradient

boosting and ensemble learning to achieve better detection

performance. Authors in [207] surveyed anomaly detection

research from 2009 to 2014 and find out the unique algo-

rithmic similarity for anomaly detection in Internet traf-

fic: most of the algorithms studied have following sim-

ilarities 1) Removal of redundant information in training

phase to ensure better learning performance 2) Feature selec-

tion usually performed using unsupervised techniques and

increases the accuracy of detection 3) Use ensembles clas-

sifiers or hybrid classifiers rather than baseline algorithms

to get better results. Authors in [208] have developed an

artificial immune system based intrusion detection system

they have used density-based spatial clustering of applica-

tions with noise to develop an immune system against the

network intrusion detection.

The application of unsupervised intrusion detection in

cloud network is presented in [209] where authors have pro-

posed a fuzzy clustering ANN to detect the less frequent

attacks and improve the detection stability in cloud networks.

Another application of unsupervised intrusion detection sys-

tem for clouds is surveyed in [210], where fuzzy logic based

intrusion detection system using supervised and unsupervised

ANN is proposed for intrusion detection; this approach is

used for DOS and DDoS attacks where the scale of the attack

is very large. Network intrusion anomaly detection system

(NIDS) based on K-means clustering are surveyed in [211];

this survey is unique as it provides distance and similarity

measure of the intrusion detection and this perspective has not

been studied before 2015. Unsupervised learning based appli-

cations of anomaly detection schemes for wireless personal

area networks, wireless sensor networks, cyber-physical sys-

tems, and WLANs are surveyed in [212].

Another paper [213] reviewing anomaly detection has pre-

sented the application of unsupervised SVM and clustering

based applications in network intrusion detection systems.

Unsupervised discretization algorithm is used in Bayesian

network classifier for intrusion detection, which is based on

Bayesian model averaging [214]; the authors show that the

proposed algorithm performs better than the Naïve Bayes

classifier in terms of accuracy on the NSL-KDD intru-

sion detection dataset. Border gateway protocol (BGP)—

the core Internet inter-autonomous systems (inter-AS) rout-

ing protocol—is also error prone to intrusions and anoma-

lies. To detect these BGP anomalies, many supervised and

unsupervised ML solutions (such as hidden Markov models

and principal component analysis) have been proposed in

literature [215]. Another problem for anomaly detection is

low volume attacks, which have become a big challenge for

network traffic anomaly detection. While long-range depen-

dencies (LRD) are used to identify these low volume attacks,

LRD usually works on aggregated traffic volume; but since

the volume of traffic is low, the attacks can pass undetected.

To accurately identify low volume abnormalities, [216] pro-

posed the examination of LRD behavior of control plane and

data plane separately to identify low volume attacks.

Other than clustering, another widely used unsupervised

technique for detecting malicious and abnormal behavior in

networks is SOMs. The specialty of SOMs is that they can

automatically organize a variety of inputs and deduce patterns

among themselves, and subsequently determine whether the

new input fits in the deduced pattern or not, thus detecting

abnormal inputs [184], [185]. SOMs have also been used

in host-based intrusion detection systems in which intruders

and abusers are identified at a host system through incom-

ing data traffic [188], later on, a more robust and efficient

technique was proposed to analyze data patterns in TCP

traffic [186]. Furthermore, complex NNs have also been

applied to solve the same problem and remarkable results

have been produced. A few examples include the application

of ART combined with SOM [189]. The use of PCA can also

be seen in detecting intrusions [197]. NMF has also been

used for detecting intruders and abusers [112], and lastly

dimensionality reduction techniques have also been applied

to eradicate intrusions and anomalies in the system [198]. For

more applications, refer to Table 8, which classifies different

network anomaly and intrusion detection systems on the basis

of unsupervised learning techniques discussed earlier.

C. NETWORK OPERATIONS, OPTIMIZATIONS,

AND ANALYTICS

Network management comprises of all the operations

included in initializing, monitoring and managing of a com-

puter network based on its network functions, which are the

primary requirements of the network operations. The general

purpose of network management and monitoring systems

is to ensure that basic network functions are fulfilled, and
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TABLE 8. Anomaly & network intrusion detection systems (A-NIDS) with respect to unsupervised learning techniques.

if there is any malfunctioning in the network, it should be

reported and addressed accordingly. Following is a summary

of different network optimization tasks achieved through

unsupervised learning models.

1) QOS/QOE OPTIMIZATION

QoS and QoE are measures of service performance and end-

user experience, respectively. QoS mainly deals with the

performance as seen by the user being measured quantita-

tively, while QoE is a qualitative measure of subjective met-

rics experienced by the user. QoS/QoE for Internet services

(especially multimedia content delivery services) is crucial in

order to maximize the user experience. With the dynamic and

bursty nature of Internet traffic, computer networks should

be able to adapt to these changes without compromising

end-user experiences. As QoE is quite subjective, it heavily

relies on the underlying QoS which is affected by different

network parameters. References [232] and [233] suggested

different measurable factors to determine the overall approx-

imation of QoS such as error rates, bit rate, throughput, trans-

mission delay, availability, jitters, etc. Furthermore, these

factors are used to correlate QoS with QoE in the perspective

of video streaming where QoE is essential to end-users.

The dynamic nature of the Internet dictates network design

for different applications to maximize QoS/QoE since there

is no predefined adaptive algorithm that can be used to fulfill

all the necessary requirements for prospective application.

Due to this fact, ML approaches are employed in order to

adapt to the real-time network conditions and take measures

to stabilize/maximize the user experience. Reference [234]

employed a hybrid architecture having unsupervised feature

learning with a supervised classification for QoE-based video

admission control and resource management. Unsupervised

feature learning in this system is carried out by using a fully

connected NN comprising RBMs, which capture descriptive

features of video that are later classified by using a supervised
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classifier. Similarly, [235] presents an algorithm to estimate

the Mean Opinion Score, a metric for measuring QoE, for

VoIP services by using SOM to map quality metrics to

features.

Moreover, research has shown that QoE-driven content

optimization leads to the optimal utilization of the network.

Reference [236] showed that 43% of the bit overhead on

average can be reduced per image delivered on the web. This

is achieved by using the quality metric VoQS (Variation of

Quality Signature), which can arbitrarily compare two images

in terms of web delivery performance. By applying this met-

ric for unsupervised clustering of the large image dataset,

multiple coherent groups are formed in device-targeted and

content-dependent manner. In another study [237], deep

learning is used to assess the QoE of 3D images that have

yet to show good results compared with the other determin-

istic algorithms. The outcome is a Reduced Reference QoE

assessment process for automatic image assessment, and it

has a significant potential to be extended to work on 3D video

assessment.

In [238], a unique technique of the model-based RL

approach is applied to improve bandwidth availability, and

hence throughput performance, of a network. The MRL

model is embedded in a node that creates a model of the

operating environment and uses it to generate virtual states

and rewards for the virtual actions taken. As the agent does

not need to wait for the real states and rewards from the

operating environment, it can explore various kinds of actions

on the virtual operating environment within a short period

of time which helps to expedite the learning process, and

hence the convergence rate to the optimal action. In [239],

a MARL approach is applied in which nodes exchange

Q-values among themselves and select their respective next-

hop nodes with the best possible channel conditions while

forwarding packets towards the destination. This helps to

improve throughput performance as nodes in a network

ensure that packets are successfully sent to the destination in

a collaborative manner.

2) TCP OPTIMIZATION

Transmission Control Protocol (TCP) is the core end-to-end

protocol in TCP/IP stack that provides reliable, ordered and

error-free delivery of messages between two communicating

hosts. Due to the fact that TCP provides reliable and in-order

delivery, congestion control is one of the major concerns of

this protocol, which is commonly dealt with the algorithms

defined in RFC 5681. However, classical congestion control

algorithms are sub-optimal in hybrid wired/wireless networks

as they react to packet loss in the same manner in all net-

work situations. In order to overcome this shortcoming of

classical TCP congestion control algorithms, an ML-based

approach is proposed in [240], which employs a supervised

classifier based on features learned for classifying a packet

loss due to congestion or link errors. Other approaches to

this problem currently employed in literature include using

RL that uses fuzzy logic based reward evaluator based on

game theory [241]. Another promising approach, named

Remy [242], uses a modified model of Markov decision pro-

cess based on three factors: 1) prior knowledge about the

network; 2) a traffic model based on user needs (i.e., through-

put and delay); and 3) an objective function that is to be

maximized. By this learning approach, a customized best-

suited congestion control scheme is produced specifically for

that part of the network, adapted to its unique requirements.

However, classifying packet losses using unsupervised learn-

ing methods is still an open research problem and there is a

need for real-time adaptive congestion control mechanism for

multi-modal hybrid networks.

For more applications, refer to Table 9, which classifies

different various network optimization and operation works

on the basis of their network type and the unsupervised

learning technique used.

D. DIMENSIONALITY REDUCTION & VISUALIZATION

Network data usually consists of multiple dimensions.

To apply machine learning techniques effectively the num-

ber of variables is needed to be reduced. Dimensionality

reduction schemes have a number of significant potential

applications in networks. In particular, dimensionality reduc-

tion can be used to facilitate network operations (e.g., for

anomaly/intrusion detection, reliability analysis, or for fault

prediction) and network management (e.g., through visual-

ization of high-dimensional networking data). A tabulated

summary of various research works using dimensionality

reduction techniques for various kinds of networking appli-

cations is provided in Table 10.

Dimensionality reduction techniques have been used to

improve the effectiveness of the anomaly/intrusion detec-

tion system. Reference [255] proposed a DDoS detection

system in SDN where dimensionality reduction is used for

feature extraction and reduction in an unsupervised manner

using stacked sparse autoencoders. Reference [256] proposed

a flow-based anomaly intrusion detection using replicator

neural network. Proposed network is based on an encoder

and decoder where the hidden layer between encoder and

decoder performs the dimensionality reduction in an unsu-

pervised manner, this process also corresponds to PCA.

Similarly, [257] have proposed another anomaly detection

procedure where dimensionality reduction for feature extrac-

tion is performed using multi-scale PCA and then using

wavelet analysis, so that the anomalous traffic is separated

from the flow. Dimensionality reduction using robust PCA

based on minimum covariance determinant estimator for

anomaly detection is presented in [258]. [259] applied PCA

for dimensionality reduction in network intrusion detec-

tion application. To improve the performance of intrusion

detection scheme, another algorithm based on dimensionality

reduction for new feature learning using PCA is presented

in [260], [261]. [262] have reviewed the dimensionality

reduction schemes for intrusion detection in multimedia

traffic and proposed an unsupervised feature selection
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TABLE 9. Unsupervised learning techniques employed for network operations, optimizations and analytics.

scheme based on the dimensionality-reduced multimedia

data.

Dimensionality reduction using autoencoders performs a

vital role in fault prediction and reliability analysis of the

cellular networks, this work also recommends deep belief

networks and autoencoders as logical fault prediction tech-

niques for self-organizing networks [263]. Most of the Inter-

net applications use encrypted traffic for communication,

previously deep packet inspection (DPI) was considered a

standard way of classifying network traffic but with the vary-

ing nature of the network application and randomization of

port numbers and payload size DPI has lost its significance.

Authors in [264] have proposed a hybrid scheme for network

traffic classification. The proposed scheme uses extreme

machine learning, genetic algorithms and dimensionality

reduction for feature selection and traffic classification.

Reference [265] applied fuzzy set theoretic approach for

dimensionality reduction along with fuzzy C-mean clustering

algorithm for the quality of web usage. In another work, [266]

used Shrinking Sparse AutoEncoders (SSAE) for represent-

ing high-dimensional data and utilized SSAE in compressive

sensing settings.

Visualization of high dimensional data in lower dimension

representation is another application of dimensionality reduc-

tion. There are many relevant techniques such as PCA and

t-SNE that can be used to extract the underlying structure of

high-dimensional data, which can then be visualized to aid

human insight seeking and decision making [144]. A num-

ber of researchers have proposed to utilize dimensionality

reduction techniques to aid visualization of networking data.

[252] proposed a manifold learning based visualization tool

for network traffic visualization and anomaly detection.

Reference [267] proposed a PCA-based solution for the

detection and visualization of networking attacks, in which
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TABLE 10. Dimensionality reduction techniques employed for networking applications.

PCA is used for the dimensionality reduction of the feature

vector extracted from KDD network traffic dataset. [268]

used t-SNE for depicting malware fingerprints in their pro-

posed network intrusion detection system. Reference [269]

proposed a rectangular dualization scheme for visualiz-

ing the underlying network topology. Reference [270] used

dimensionality reduction and t-SNE of clustering and visu-

alization of botnet traffic. Finally, a lightweight platform

for home Internet monitoring is presented in [271] where

PCA and t-SNE are used for dimensionality reduction and

visualization of the network traffic. A number of tools

are readily available—e.g., Divvy [272], Weka [273]—that

implement dimensionality reduction and other unsupervised

ML techniques (such as PCA and manifold learning) and

allow exploratory data analysis and visualization of high-

dimensional data.

Dimensionality reduction techniques and tools have been

utilized in all kinds of networks and we present some recent

examples related to self-organizing networks (SONs) and

software-defined radios (SDRs). Reference [274] proposed

a semi-supervised learning scheme for anomaly detection in

SON based on dimensionality reduction and fuzzy classifica-

tion technique. Reference [275] used minor component anal-

ysis (MCA) for dimensionality reduction as a preprocessing

step for user-level statistical data in LTE-A networks to detect

the cell outage. Reference [247] used multi-dimensional scal-

ing (MDS), a dimensionality reduction scheme, as part of the

preprocessing step for cell outage detection in SON. Another

data-driven approach by [276] also uses MDS for getting

a low dimensional embedding of target key point indicator

vector as a preprocessing step to automatically detect cell

outage in SON. Reference [277] used PCA for dimension-

ality reduction of drive test samples to detect cell outages

autonomously in SON. Conventional routing schemes are not

sufficient for the fifth generation of communication systems.

Reference [278] proposed a supervised deep learning based

routing scheme for heterogeneous network traffic control.

Although supervised approach performed well, gathering a

lot of heterogeneous traffic with labels, and then processing

them with a plain ANN is computationally extensive and

prone to errors due to the imbalanced nature of the input

data and the potential for overfitting. In 2017, [279] has

presented a deep learning based approach for routing and

cost-effective packet processing. The proposed model uses

deep belief architecture and benefits from the dimensionality

reduction property of the restricted Boltzmann machine. The

proposed work also provides a novel Graphics Processing

Unit (GPU) based router architecture. The detailed analysis

shows that deep learning based SDR and routing technique

can meet the changing network requirements and massive

network traffic growth. The routing scheme proposed in [279]

outperforms conventional open shortest path first (OSPF)

routing technique in terms of throughput and average delay

per hop.

E. EMERGING NETWORKING APPLICATIONS

OF UNSUPERVISED LEARNING

Next generation network architectures such as Software-

defined Networks (SDN), Self Organizing Networks (SON),

and the Internet of Things (IoT) are expected to be the basis

of future intelligent, adaptive, and dynamic networks [280].

ML techniques will be at the center of this revolution provid-
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ing the aforementioned properties. This subsection covers the

recent applications of unsupervised ML techniques in SDNs,

SONs, and IoTs.

1) SOFTWARE DEFINED NETWORKS

SDN is a disruptive new networking architecture that sim-

plifies network operating and managing tasks and provides

infrastructural support for novel innovations by making the

network programmable [281]. In simple terms, the idea of

programmable networks is to simply decouple the data for-

warding plane and control/decision plane, which is rather

tightly coupled in the current infrastructure. The use of SDN

can also be seen in managing and optimizing networks as

network operators go through a lot of hassle to imple-

ment high-level security policies in term of distributed low-

level system configurations, thus SDN resolves this issue

by decoupling the planes and giving network operators bet-

ter control and visibility over network, enabling them to

make frequent changes to network state and providing sup-

port for high-level specification language for network con-

trol [282]. SDN is applicable in a wide variety of areas

ranging from enterprise networks, data centers, infrastructure

based wireless access networks, optical networks to home

and small businesses, each providing many future research

opportunities [281].

Unsupervised ML techniques are seeing a surging interest

in SDN community as can be seen by a spate of recent work.

A popular application of unsupervised ML techniques in

SDNs relates to the application of intrusion detection andmit-

igation of security attacks [283]. Another approach for detect-

ing anomalies in a cloud environment using unsupervised

learning model has been proposed by [284] that uses SOM to

capture emergent system behavior and predict unknown and

novel anomalies without any prior training or configuration.

A DDoS detection system for SDN is presented in [255]

where stacked autoencoders are used to detect DDoS attacks.

A density peak based clustering algorithm for DDoS attack is

proposed as a new method to review the potentials of using

SDN to develop an efficient anomaly detection method [285].

[286] have recently presented an intelligent threat aware

response system for SDN using reinforcement learning, this

work also recommends using unsupervised feature learning

to improve the threat detection process. Another framework

for anomaly detection, classification, and mitigation for SDN

is presented in [287] where unsupervised learning is used

for traffic feature analysis. Reference [288] have presented

a forensic framework for SDN and recommended K-means

clustering for anomaly detection in SDN. Another work [289]

discusses the potential opportunities for using unsupervised

learning for traffic classification in SDN. Moreover, deep

learning and distributed processing can also be applied to

such models in order to better adapt to evolving networks and

contribute to the future of SDN infrastructure as a service.

2) SELF ORGANIZING NETWORKS

SON is another new and popular research regime in network-

ing, SON is inspired by the biological system which works

in the self-organization and achieves the task by learning

from the surrounding environment. As the connected net-

work devices are growing exponentially, and the communi-

cation cell size has reduced to femtocells, the property of

self-organization is becoming increasingly desirable [290].

Feasibility of SON application in the fifth generation (5G)

of wireless communication is studied in [291] and the study

shows that without (supervised as well as unsupervised)

ML support, SON is not possible. Application of ML tech-

niques in SON has become a very important research area

as it involves learning from the surroundings for intelligent

decision-making and reliable communication [2].

Application of different ML-based SON for heterogeneous

networks is considered in [292], this paper also describes

the unsupervised ANN and hidden Markov models tech-

niques employed for better learning from the surroundings

and adapting accordingly. PCA and clustering are the two

most used unsupervised learning schemes utilized for param-

eter optimization and feature learning in SON [290]. These

ML schemes are used in self-configuration, self-healing, and

self-optimization schemes. Game theory is another unsuper-

vised learning approach used for designing self-optimization

and greedy self-configuration design of SON systems [293].

Authors in [294] proposed an unsupervised ANN for link

quality estimation of SON which outperformed simple mov-

ing average and exponentially weighted moving averages.

3) INTERNET OF THINGS

IoT is an emerging paradigm with a growing academic and

industry interest. IoT is an abstraction of intelligent, phys-

ical and virtual devices with unique identities, connected

together to form a cyber-physical framework. These devices

collect, analyze and transmit data to public or private cloud

for intelligent [295]. IoT is a new networking paradigm and

it is expected to be deployed in health care, smart cities,

home automation, agriculture, and industry. With such a vast

plane of applications, IoT needs ML to collect and analyze

data to make intelligent decisions. The key challenge that

IoT must deal with is the extremely large scale (billions of

devices) of future IoT deployments [296]. Designing, analyz-

ing and predicting are the three major tasks and all involve

ML, a few examples of unsupervised ML are shared next.

Reference [297] recommend using unsupervised ML tech-

niques for feature extraction and supervised learning for

classification and predictions. Given the scale of the IoT,

a large amount of data is expected in the network and there-

fore requires a load balancing method, a load balancing

algorithm based on a restricted Boltzmann machine is pro-

posed in [298]. Online clustering scheme forms dynamic IoT

data streams is described in [299]. Another work describing

an ML application in IoT recommends a combination of

PCA and regression for IoT to get better prediction [300].

Usage of clustering technique in embedded systems for

IoT applications is presented in [301]. An application using

denoising autoencoders for acoustic modeling in IoT is

presented in [302].
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F. LESSONS LEARNT

Key lessons drawn from the review of unsupervised learning

in networking applications are summarized below:
1) A recommended and well-studied method for unsu-

pervised Internet traffic classification in literature is

data clustering combined with the latent representation

learning on traffic feature set by using autoencoders.

Min-max ensemble learning will help to increase the

efficiency of unsupervised learning if required.

2) Semi-supervised learning is also an appropriate method

for Internet traffic classification given some labeled

traffic data and channel characteristics are available for

initial model training.

3) Application of generative models and transfer learn-

ing for the Internet traffic classification has not been

explored properly in literature and can be a potential

research direction.

4) The overwhelming growth in network traffic and

expected surge in traffic with the evolution of 5G and

IoT also elevates the level of threat and anomalies in

network traffic. To deal with these anomalies in Internet

traffic, data clustering, PCA, SOM, and ART are well

explored unsupervised learning techniques in the liter-

ature. Self-taught learning has also been explored as a

potential solution for anomaly detection and remains

a possible research direction for future research in

anomaly detection in network traffic.

5) Current state of the art in dimensionality reduction in

network traffic is based on PCA and multidimensional

scaling. Autoencoders, t-SNE, and manifold learning

are potential areas of research in terms of dimensional-

ity reduction and visualization.

IV. FUTURE WORK: SOME RESEARCH CHALLENGES

AND OPPORTUNITIES

This section provides a discussion on some open directions

for future work and the relevant opportunities in applying

unsupervised ML in the field of networking.

A. SIMPLIFIED NETWORK MANAGEMENT

While new network architectures such as SDN have been

proposed in recent years to simplify network management,

network operators are still expected to know too much,

and to correlate between what they know about how their

network is designed with the current network’s condition

through their monitoring sources. Operators who manage

these requirements by wrestling with complexity manu-

ally will definitely welcome any respite that they can

get from (semi-)automated unsupervised machine learning.

As highlighted in by [303], for ML to become pervasive in

networking, the ‘‘semantic gap’’—which refers to the key

challenge of transferring ML results into actionable insights

and reports for the network operator—must be overcome.

This can facilitate a shift from a reactive interaction style

for network management, where the network manager is

expected to check maps and graphs when things go wrong,

to a proactive one, where automated reports and notifications

are created for different services and network regions. Ideally,

this would be abstract yet informative, such as Google Maps

Directions, e.g. ‘‘there is heavier traffic than usual on your

route’’ as well as suggestions about possible actions. This

could be coupled with an automated correlation of different

reports coming from different parts of the network. This will

require a move beyond mere notifications and visualizations

to more substantial synthesis through which potential sources

of problems can be identified. Another example relates to

making measurements more user-oriented. Most users would

be more interested in QoE instead of QoS, i.e., how the

current condition of the network affects their applications and

services rather than just raw QoS metrics. The development

of measurement objectives should be from a business-eyeball

perspective—and not only through presenting statistics gath-

ered through various tools and protocols such as traceroute,

ping, BGP, etc. with the burden of putting the various pieces

of knowledge together being on the user.

B. SEMI-SUPERVISED LEARNING FOR

COMPUTER NETWORKS

Semi-supervised learning lies between supervised and unsu-

pervised learning. The idea behind semi-supervised learning

is to improve the learning ability by using unlabeled data

incorporation with a small set of labeled examples. In com-

puter networks, semi-supervised learning is partially used

in anomaly detection and traffic classification and has great

potential to be used with deep unsupervised learning archi-

tectures like generative adversarial networks for improving

the state of the art in anomaly detection and traffic classi-

fication. Similarly, user behavior learning for cybersecurity

can also be tackled in a semi-supervised fashion. A semi-

supervised learning based anomaly detection approach is pre-

sented in [304]. The presented approach used large amounts

of unlabeled samples together with labeled samples to build

a better intrusion detection classifier. In particular, a single

hidden layer feed-forward NN has trained to output a

fuzzy membership vector. The results show that using unla-

beled samples help significantly improve the classifier’s

performance. In another work, [305] have proposed semi-

supervised learning with 97% accuracy to filter out non-

malicious data in millions of queries that Domain Name

Service (DNS) servers receive.

C. TRANSFER LEARNING IN COMPUTER NETWORKS

Transfer learning is an emerging ML technique in which

knowledge learned from one problem is applied to a different

but related problem [306]. Although it is often thought that

for ML algorithms, the training and future data must be in

the same feature space and must have the same distribution,

this is not necessarily the case in many real-world applica-

tions. In such cases, it is desirable to have transfer learn-

ing or knowledge transfer between the different task domains.

Transfer learning has been successfully applied in computer

vision and NLP applications but its implementation for net-

working has not been witnessed—even though in principle,

this can be useful in networking as well due to the similar
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nature of Internet traffic and enterprise network traffic in

many respects. Reference [307] used transfer learning based

caching procedure for wireless networks providing backhaul

offloading in 5G networks.

D. FEDERATED LEARNING IN COMPUTER NETWORKS

Federated learning is a collaborative ML technique, which

does not make use of centralized training data, and works

by distributing the processing on different machines. Feder-

ated learning is considered to be the next big thing in cloud

networks as they ensure the privacy of the user data and less

computation on the cloud to reduce the cost and energy [308].

System and method for network address management in the

federated cloud are presented in [309] and the application

of federated IoT and cloud computing for health care is

presented in [310]. An end-to-end security architecture for

federated cloud and IoT is presented in [311].

E. GENERATIVE ADVERSARIAL NETWORKS (GANS)

IN COMPUTER NETWORKS

Adversarial networks—based on generative adversarial net-

work (GAN) training originally proposed by Goodfellow

and colleagues at the University of Montreal [312]—have

recently emerged as a new technique using which machines

can be trained to predict outcomes by only the observing

the world (without necessarily being provided labeled data).

An adversarial network has two NN models: a generator

which is responsible for generating some type of data from

some random input and a discriminator, which has the task of

distinguishing between input from the generator or a real data

set. The two NNs optimize themselves together resulting in a

more realistic generation of data by the generator, and a better

sense of what is plausible in the real world for the discrimina-

tor. Reference [313] proposed a GAN for generating malware

examples to attack a malware classifier and then proposes a

defense against it. Another adversarial perturbation attack on

malware classifier is proposed in [314]. The use of GANs for

ML in networking can improve the performance ofML-based

networking applications such as anomaly detection in which

malicious users have an incentive to adversarial craft new

attacks to avoid detection by network managers.

V. PITFALLS AND CAVEATS OF USING UNSUPERVISED

ML IN NETWORKING

With the benefits and intriguing results of unsupervised learn-

ing, there also exist many shortcomings that are not addressed

widely in the literature. Some potential pitfalls and caveats

related to unsupervised learning are discussed next.

A. INAPPROPRIATE TECHNIQUE SELECTION

To start with, the first potential pitfall could be the selection

of technique. Different unsupervised learning and predicting

techniques may have excellent results on some applications

while performing poorly on others—it is important to choose

the best technique for the task at hand. Another reason could

be a poor selection of features or parameters on which basis

predictions are made—thus parameter optimization is also

important for unsupervised algorithms.

B. LACK OF INTERPRETABILITY OF SOME

UNSUPERVISED ML ALGORITHMS

Some unsupervised algorithms such as deep NNs operate as

a black box, which makes it difficult to explain and interpret

the working of such models. This makes the use of such

techniques unsuitable for applications in which interpretabil-

ity is important. As pointed out in [303], understandability

of the semantics of the decisions made by ML is especially

important for the operational success of ML in large-scale

operational networks and its acceptance by operators, net-

work managers, and users. But prediction accuracy and sim-

plicity are often in conflict [315]. As an example, the greater

accuracy of NNs accrues from its complex nature in which

input variables are combined in a nonlinear fashion to build

a complicated hard-to-explain model; with NNs it may not

be possible to get interpretability as well since they make

a tradeoff in which they sacrifice interpretability to achieve

high accuracy. There are various ongoing research efforts

that are focused on making techniques such as NNs less

opaque [316]. Apart from the focus on NNs, there is a gen-

eral interest in making AI and ML more explainable and

interpretable—e.g., the Defense Advanced Research Projects

Agency or DARPA’s explainable AI project2 is aiming to

develop explainable AI models (leveraging various design

options spanning the performance-vs-explainability trade-

off space) that can explain the rationale of their decision-

making so that users are able to appropriately trust these

models particularly for new envisioned control applications

in which optimization decisions are made autonomously by

algorithms.

C. LACK OF OPERATIONAL SUCCESS

OF ML IN NETWORKING

In literature, researchers have noted that despite substantial

academic research, and practical applications of unsupervised

learning in other fields, we see that there is a dearth of prac-

tical applications of ML solutions in operational networks—

particular for applications such as network intrusion detec-

tion [303], which are challenging problems for a number of

reasons including 1) the very high cost of errors; 2) the lack

of training data; 3) the semantic gap between results and their

operational interpretation; 4) enormous variability in input

data; and finally, 5) fundamental difficulties in conducting

sound performance evaluations. Even for other applications,

the success of ML and its wide adoption in practical systems

at scale lags the success of ML solutions in many other

domains.

D. IGNORING SIMPLE NON-MACHINE-LEARNING

BASED TOOLS

One should also keep in mind a common pitfall that aca-

demic researchers may suffer from which is not realizing that

2https://www.darpa.mil/program/explainable-artificial-intelligence
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FIGURE 8. Intuitively, we expect the ML model’s performance to improve with more data but to
deteriorate in performance if the model becomes overly complex for the data. Figure adapted from [317].

network operators may have simpler non-machine learning

based solutions that may work as well as naïve ML-based

solutions in practical settings. Failure to examine the ground

realities of operational networks will undermine the effec-

tiveness of ML-based solutions. We should expect ML-based

solutions to augment and supplement rather than replace

other non-machine-learning based solutions—at least for the

foreseeable future.

E. OVERFITTING

Another potential issue with unsupervised models is overfit-

ting; it corresponds to a model representing the noise or ran-

dom error rather than learning the actual pattern in data.

While commonly associated with supervised ML, the prob-

lem of overfitting lurks whenever we learn from data and

thus is applicable to unsupervised ML as well. As illustrated

in Figure 8, ideally speaking, we expect ML algorithms to

provide improved performance with more data; but with

increasing model complexity, performance starts to deterio-

rate after a certain point—although, it is possible to get poorer

results empirically with increasing data when working with

unoptimized out-of-the-boxML algorithms [317]. According

to the Occam Razor principle, the model complexity should

be commensurate with the amount of data available, and with

overly complex models, the ability to predict and generalize

diminishes. Two major reasons for overfitting could be the

overly large size of the learning model and fewer sample data

used for training purposes. Generally, data is divided into

two portions (actual data and stochastic noise); due to the

unavailability of labels or related information, unsupervised

learning model can overfit the data, which causes issues in

testing and deployment phase. Cross-validation, regulariza-

tion, and Chi-squared testing are highly recommended for

designing or tweaking an unsupervised learning algorithm to

avoid overfitting [318].

F. DATA QUALITY ISSUES

It should be noted that all ML is data dependent, and the per-

formance of ML algorithms is affected largely by the nature,

volume, quality, and representation of data. In the case of

unsupervised ML data quality issues must be carefully con-

sidered since any problem with the data quality will seriously

mar the performance of ML algorithms. A potential prob-

lem is that dataset may be imbalanced if the samples size

from one class is very much smaller or larger than the other

classes [319]. In such imbalanced datasets, the algorithm

must be careful not to ignore the rare class by assuming

it to be noise. Although imbalanced datasets are more of a

nuisance for supervised learning techniques, they may also

pose problems for unsupervised and semi-supervised learn-

ing techniques.

G. INACCURATE MODEL BUILDING

It is difficult to build accurate and generic models since

each model is optimized for certain kind of applications.

Unsupervised ML models should be applied after carefully

studying the application and the suitability of the algorithm in

such settings [320]. For example, we highlight certain issues

related to the unsupervised task of clustering: 1) random

initialization in K-means is not recommended; 2) number of

clusters is not known before the clustering operation as we do

not have labels; 3) in the case of hierarchical clustering, we do

not know when to stop and this can cause increase in the time

complexity of the process, and 4) evaluating the clustering

result is very tricky since the ground truth is mostly unknown.

H. MACHINE LEARNING IN

ADVERSARIAL ENVIRONMENTS

Many networking problems, such as anomaly detection, are

adversarial problems in which the malicious intruder is con-

tinually trying to outwit the network administrators (and the

tools used by the network administrators). In such settings,

machine learning that learns from historical data may not

perform due to clever crafting of attacks specifically for

circumventing any schemes based on previous data.

Due to these challenges, pitfalls, and weaknesses, due

care must be exercised while using unsupervised and semi-

supervised ML. These pitfalls can be avoided in part by using

various best practices [321], such as end-to-end learning

pipeline testing, visualization of the learning algorithm, regu-

larization, proper feature engineering, dropout, sanity checks

through human inspection—whichever is appropriate for the

problem’s context.
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VI. CONCLUSIONS

We have provided a comprehensive survey of machine learn-

ing tasks, latest unsupervised learning techniques, and trends,

along with a detailed discussion of the applications of these

techniques in networking related tasks. Despite the recent

wave of success of unsupervised learning, there is a scarcity

of unsupervised learning literature for computer networking

applications, which this survey aims to address. The few

previously published survey papers differ from our work in

their focus, scope, and breadth; we have written this paper

in a manner that carefully synthesizes the insights from these

survey papers while also providing contemporary coverage of

recent advances. Due to the versatility and evolving nature of

computer networks, it was impossible to cover each and every

application; however, an attempt has been made to cover all

the major networking applications of unsupervised learning

and the relevant techniques. We have also presented concise

future work and open research areas in the field of network-

ing, which is related to unsupervised learning, coupled with a

brief discussion of significant pitfalls and challenges in using

unsupervised machine learning in networks.
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