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ABSTRACT

Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number

of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly

detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering

technique and the ASTRONOMALY package. As proof of concept, we evaluate 85 553 min-cadenced light curves collected over two

∼1.5 h periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the

clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of ASTRONOMALY,

we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across

a range of catalogues from within the fields, and find a further seven uncatalogued variables and two stellar flare events, including

a rarely observed ultrafast flare (∼5 min) from a likely M-dwarf.

Key words: methods: data analysis – methods: observational – techniques: photometric.

1 IN T RO D U C T I O N

In the era of large time-domain surveys, classification and discovery

of transient sources is becoming reliant on machine classification

to handle the associated large amounts of data. Current ground

based surveys such as the Zwicky Transient Facility (ZTF; Bellm

et al. 2019; Graham et al. 2019), Dark Energy Survey (Dark Energy

Survey Collaboration 2016), and the All Sky Automated Survey

for Supernovae (Shappee et al. 2014) are able to scan thousands

of square degrees continuously, which amounts to petabytes of

data annually, and recently the Panoramic Survey Telescope and

Rapid Response System Survey (Stubbs et al. 2010; Chambers et al.

2016) delivered the first petabyte scale optical data release. Space-

based time-domain missions have provided unprecedented volumes

of photometry, light curves, and proper motions for Galactic sources,

with Kepler (Borucki et al. 2010) and K2 (Howell et al. 2014)

targeting ∼400 000+ individual stars, TESS (Stassun et al. 2018) is

expected to target at least 200 000 sources producing light curves for

each source, and Gaia has already released almost 2 billion sources.

Overcoming the mining challenges of these increasing amounts of

data to not only identify and catalogue the multitude of known

⋆ E-mail: webb.sara.a@gmail.com

transient types but to make discoveries of new or anomalous sources

is paramount to the success of future large transient surveys and

time-domain science.

1.1 Supervised learning

Supervised machine learning has already been utilized extensively

by several surveys and teams in astronomy for identification of

variable stars and quasi-stellar objects from light curves via mul-

tivariate Gaussian mixture models, random forest classifiers, support

vector machines, or Bayesian neural networks (Debosscher et al.

2007; Kim et al. 2011; Richards et al. 2011; Bloom et al. 2012;

Pichara et al. 2012; Pichara & Protopapas 2013; Kim & Bailer-

Jones 2016; Mackenzie, Pichara & Protopapas 2016). The litera-

ture aforementioned successfully shows the robustness of source

classification while using the combination of supervised algorithms

trained on extracted features. Features represent a set of measurable

properties/characteristics of the light curves being studied (discussed

in further detail in 4.1). The most common features used in earlier

works are available within the python package FATS by Nun et al.

(2015).

Classification of non-folded light curves of extragalactic transient

sources has also been explored, moving away from selecting the
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class of the object by fitting analytical templates built from a set of

known sources (Richards et al. 2011; Karpenka, Feroz & Hobson

2012; Lochner et al. 2016; Möller et al. 2016; Narayan et al. 2018).

While these techniques work well for catalogues of light curves, they

cannot easily be applied to real-time data.

Real-time classification of supernovae by Muthukrishna et al.

(2019) and Möller & de Boissière (2020) has shown the effectiveness

of deep recurrent neural networks, without the need to rely on

extracting computationally expensive features of the input data.

1.2 Unsupervised learning

Even with machine learning advances in astronomy, mining data

for unknown or anomalous events is relatively unexplored, as the

majority of current algorithms require training data sets of known

events. Mackenzie et al. (2016) developed an unsupervised feature

learning algorithm that takes subsections of variable star light curves

to cluster and use as features to train a linear support vector machine.

This work eliminates the need for traditional feature extraction,

limiting the computing time and biases associated with feature

selection. Only limited work into actual transient classification or

anomaly detection via unsupervised means has been performed

within time domain astronomy.

Valenzuela & Pichara (2018) performed unsupervised clustering

of variable star light curves by creating variability trees using the

k-medoids clustering algorithm of fragmented light curves. This

method offers a novel and computationally fast approach to data

exploration but is again limited by the need for known light curve

examples for similarity searches. To identify Kepler data outliers for

visual inspection, Giles & Walkowicz (2019) performed light-curve

clustering using Density-Based Spatial Clustering of Applications

with Noise (DBSCAN). They report the successful extraction of the

known anomalous Boyajian’s star via their method; however they

identified that the DBSCAN assumption of constant density clusters

is a limitation. It should be noted that the overwhelming majority

of work performed to date on light-curve classification by machine

learning has used 30 min to several day cadence, including folded

light curves.

Mahabal et al. (2017) presents another approach to light-curve

classification, by reducing the time series data to 2D representation

in order to classify them using deep learning techniques. This

approach maps the change and magnitude over time to create a

visual representation of the light curve as an image to be used in the

deep learning process. This method presents an alternate approach of

unsupervised learning for time-series classification without the need

for feature extraction.

1.3 Anomaly detection in fast cadenced surveys

Currently, the majority of wide field optical surveys explore a limited

region of the luminosity-time-scale phase space, with an average

cadence of hours to days between visits to fields, with only a few

programs exploring the phase space shorter than 1-h cadence (see

Lipunov et al. 2004, 2007; Roykoff et al. 2005; Rau et al. 2009;

Berger et al. 2014; Burdge et al. 2019; Richmond et al. 2020).

What is largely unexplored by these surveys is the phase space

of transient events occurring on seconds-to-minutes time-scales.

There are several events expected to occur on these time-scales,

and understanding both the events and the general nature of the

fastest transients in the Universe is crucial for understanding the

transient Universe as a whole. For example, the upcoming Rubin

Observatory Legacy Survey of Space and Time (LSST) is predicted

to generate nearly 10 million transient alerts each night. As such, it

will be invaluable to quickly and meaningfully quantify the expected

large volume of short time-scale events to help assist in follow-up

priority assignment (LSST Science Collaboration 2009). To do so,

the astronomical community will rely heavily on the use of brokers

and their integrated algorithms serving alert streams. Current brokers,

which include ALERCE,1 ANTARES,2 LASAIR,3 and MARS4 are already

in use on the nightly ZTF stream, successfully identifying known

extragalactic and galactic transient and variable events. However

identifying anomalous events can prove challenging with pre-trained

algorithms, especially within the rarely explored fast time-scales

(seconds-to-minutes).

The multiwavelength Deeper, Wider, Faster (DWF) program offers

the ability to explore optical transient events with the depth and

cadence required to enable the quantification and characterization of

Galactic and extragalactic variable and fast transient rates for current

and upcoming large-area searches and surveys and to similar depths

as 4m–8m class telescopes. Such as gravitational wave counterpart

searches, the Rubin Observatory LSST survey, and others. This

work presents our effort to explore the DWF optical data for

anomalous light curves without the restrictions of prior assumptions

or expectations.

As our literature review highlights, the vast majority of work to

date on machine learning for transient classification and identification

has relied on pre-existing understanding of longer duration variable

and transient time-series behaviour. In this work, we demonstrate

an unsupervised method to aid in the discovery of both known

and poorly understood transients on the time-scales of seconds-to-

minutes.

The paper is organized as follows: A brief introduction to the

DWF program is presented in Section 2, two DWF data gathering

strategies and the data in Section 3. We present our multifaceted

anomaly detection approach in Section 4 and our proof of concept

results in Section 5. We conclude by presenting our overall outcomes

in Section 6.

2 TH E D E E P E R , W I D E R , FA S T E R PRO G R A M

Several new and exciting astronomical fast transient events have been

discovered in recent decades and the progenitors and physical mech-

anisms behind many of them are still poorly known (e.g. Fast Radio

Bursts, FRBs), supernova shock breakouts, Fast-Evolving Luminous

Transients (FELTs), and other rapidly evolving extragalactic events

(for example: Lorimer et al. 2007; Garnavich et al. 2016; Perley et al.

2018; Prentice et al. 2018; Rest et al. 2018). What has limited our

ability to detect and understand these events is the capability to gather

data in short, regular time intervals before, during and after the events;

as well as over a range of wavelengths. The DWF program (Andreoni

et al. 2017a, b; Meade et al. 2017; Vohl et al. 2017; Andreoni &

Cooke 2018) has been designed with these challenges specifically in

mind, constructing an all wavelength and simultaneous observational

program of over 70 facilities to date. DWF takes a ‘proactive’

approach to transient astronomy, with coordinated simultaneous

wide-field fast-cadenced multiwavelength observations of target

fields taken continuously over 1–3 h periods, capturing data before,

during, and after the transient events. The optical data collected

1https://github.com/alercebroker
2https://antares.noao.edu
3https://lasair.roe.ac.uk
4https://mars.lco.global
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during the simultaneous observations is processed in near real-time

to quickly identify candidates requiring the use of rapid Target of

Opportunity (ToO) observations.

DWF unites the worlds most sensitive facilities with large fields

of view in the optical – the Dark Energy Camera (DECam; Flaugher

et al. 2015) on the Cerro Tololo Inter-American Observatory (CTIO)

Blanco 4-m telescope in Chile and Hyper-SuprimeCam (HSC;

Miyazaki et al. 2017) on the Subaru 8-m telescope in Hawaii –

taking continuous 20–30 s exposures. Using this strategy, DWF is

able to explore a region of luminosity phase space rarely explored

by many traditional surveys (see Andreoni et al. 2020). From the

real-time data processing, DWF can quickly identify candidates and

coordinate rapid-response and long-term follow-up observations of

transient candidates. DWF began in 2014 and since its inception has

had two pilot runs and seven operational runs (see Andreoni & Cooke

2018; Cooke et al., in preparation).

The unique design of DWF allows exploration of transients on

the seconds-to-hours time-scales, providing further understanding

into known classes of fast transients, events theorized to occur on

these time-scales, and very early detections of slower evolving events

(see Section 3 for observation specifics). Using either DECam or

HSC, the deep optical component of DWF can explore a region

of parameter space not yet reached by previous transient surveys.

Note that, although DWF collects simultaneous fast-cadenced data

across all wavelengths, radio through gamma-ray, from multiple

facilities, we will only focus on DECam optical data here. Work by

Andreoni et al. (2020) utilized the unique DWF data and ‘Mary’, our

transient difference image discovery pipeline, to detect both galactic

and extragalactic transients on the minute time-scales. In this paper,

we examine light curves generated purely from science images (i.e.

without image subtraction) for all sources in our chosen fields, and

explore the ability to identify known and unknown transient and

variable sources through the use of unsupervised machine learning.

By examining every source light curve through an unsupervised

algorithm, we aim to not only distinguish clear source separations

in feature space, but identify and classify unknown and outlying

sources to comprehensively explore fast transient events and source

variability on the seconds-to-hours time-scales.

3 DATA

We use fast cadenced data collected during DWF runs using DECam.

We collect 20 s, continuous imaging of targeted fields, acquired in a

single band, the ‘g’ filter. We choose the continuous use of the ‘g’

filter to maximize depth with DECam, reaching ∼0.5 magnitudes

deeper in comparison to the other filters in dark time. The expected

limiting magnitude in ‘g’ band is m(AB) ∼23, for an average

seeing of 1.0 arcsec and airmass of 1.5 (relatively high airmass due

to the field constraints of observing simultaneously with multiple

facilities). For this work, the DECam images are post-processed

through the NOAO High-Performance Pipeline System (Scott et al.

2007; Swaters & Valdes 2007; Valdes & Swaters 2007) and then

transferred to the OzSTAR supercomputer at Swinburne University

of Technology for our data analysis. The DECam 62 CCD mosaic is

separated into individual fits files for each extension. Each CCD is

processed separately for source extraction using SExtractor (Bertin &

Arnouts 1996) and all source magnitudes are corrected for exposure

time and magnitude offsets against the SkyMapper Data Release 2

catalogue (Bertin & Arnouts 2010; Onken et al. 2019). A master list

is compiled by cross-matching all extracted sources from each CCD,

over all exposures within 0.5 arcsec radius between source centroids

into one catalogue of source positions. This master catalogue is used

to create light curves for each source, replacing any non-detections

per single exposure with the CCD exposure detection upper limit

represented in the light curve.

To date, DWF has targeted 20 separate fields, each observed

typically for six consecutive nights, and has accumulated over 1

million source detections. In this work, we analyse light curves

from two separate fields for only one night each, observed using

two different observing strategies. In Section 5.1, we analyse data

collected from the DWF ‘J04-55 field’ on 2015 December 18,

using a field centre of RA:04:10:00.0 and DEC: −55:00:00.0. The

continuous 20 s exposures were collected over a 90 min period, using

a stare’ observational strategy (i.e. pointing at the same coordinates

with no small field dithering between exposures). In Section 5.2,

we analyse data gathered over an 80 min period of continuous 20 s

exposures centred on the ‘Antlia field’ RA: 10:30:00.0 and DEC:

−35:20:00.0 on the Antlia cluster of galaxies. These data were

collected on 2017 February 6 and utilized a five point dithering

strategy at the beginning, middle, and end of the observation, while

staring in between. In these data, we explore the contribution of

telescope dithering to the false positive rate of anomaly detection in

Section 5.2.

4 M E T H O D O L O G Y

We use the following methodology: (1) feature extraction, (2)

clustering, (3) t-SNE visual representation, (4) anomaly ranking and

visualization with ASTRONOMALY. We use feature extraction to find

a low dimensional representation of the data, clustering to eliminate

large clusters of ordinary objects and instrumental effects and isolate

possible interesting transients, anomaly detection to rank these

remaining objects by ‘abnormality’ and finally ASTRONOMALY to

visually explore the detected anomalies. Note that all stages are per-

formed on nightly light curves with an average cadence of ∼60–68 s

between light-curve points, accounting for both the 20 s exposure and

40 s CCD readout time, CCD clear and rest. We utilize python for all

stages, using the following packages SCIKIT-LEARN, HDBSCAN, FATS,

ASTROPY, NUMPY, PANDAS, and MATPLOTLIB (Hunter 2007; McKin-

ney et al. 2010; Pedregosa et al. 2011; Nun et al. 2015; Oliphant

2015; McInnes, Healy & Astels 2017; Price-Whelan et al. 2018).

4.1 Features

As the number of data points differ for different light curves, we

extract a uniform set of features to (i) reduce the dimensionality, and

(ii) allow for direct comparison between light curves that may be on

different time-scales with different sampling properties. To represent

our unique fast-cadenced data, we use a mixture of normalized fea-

tures developed and used primarily for the identification of variable

stars and quasi-stellar objects. We performed principle component

analysis on the features and selected those that corresponded to large

eigenvalues. The majority of our features are taken from work by

Richards et al. (2011), which were used to classify variable stars

from sparse and noisy time-series data. We use only the features not

restricted explicitly to folded light curves or periodic sources. Some

examples of the features used are amplitudes, standard deviation,

linear trend, maximum slope, etc. In addition to these, we used the

stellar variability detection features, H1 (amplitudes), R21 (the 2nd

to 1st amplitude ratio), and R31 (the 3rd to 1st amplitude ratio)

which are focused around Fourier decomposition. The remaining

features were taken from work in quasi-stellar object selection, these

being autocorrelation length, consecutive points, variability index,

and Stetson KAC as used by Kim et al. (2011) and mean, σ and

MNRAS 498, 3077–3094 (2020)
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τ taken from a continuous autoregressive model fitted to our data

from Pichara et al. (2012). We extract 25 unique features from each

light curve using mostly using FATS and some in-house routines. Full

details and sources for the features used are shown in Appendix A1.

In this work, we run feature extraction in parallel on the OzSTAR

supercomputer at Swinburne University. We utilize the Intel Gold

6140 18-core processors on OzSTAR, achieving a feature extraction

speed of ∼110 s per 1000 light curves when processed serially.

4.2 HDBSCAN

The focus of this paper is to use machine learning to analyse and

cluster our light curves. We choose to use Hierarchical Density-

Based Spatial Clustering of Applications with Noise (HDBSCAN5;

McInnes et al. 2017). The theoretical method behind this algo-

rithm was first proposed by Campello, Moulavi & Sander (2013).

HDBSCAN takes the approach of Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) and converts it into a

hierarchical clustering algorithm by varying the value of epsilon

(ǫ) to identify clusters of varying densities (for further details see

McInnes et al. 2017).

To better understand how HDBSCAN works, we first outline

the original DBSCAN algorithm by Ester et al. (1996). DBSCAN

performs nearest neighbour searches in a given feature space to

determine clusters of overdensities, points closely related in distance,

and identify outlier points that exist in low density regions as noise.

DBSCAN requires two parameters, ǫ, which represents the radius of

the neighbourhood search and a minimum number of points (minPts),

which must exist in a neighbourhood to constitute a dense region.

What has limited the use of DBSCAN in the past is the inability to

vary ǫ in a given data set, requiring clusters to have similar densities.

However, HDBSCAN can take in a minimum cluster size parameter

which eliminates the need for a single value of ǫ when determining

clusters from a dendrogram, adjusting of ǫ as it explores clusters of

varying densities.

After several preliminary tests combining the different distance

metrics and varying minimum cluster sizes to evaluate cluster purity

and uniformity, we opted to require a minimum cluster size of 5

and to use a Euclidean distance metric for its intrinsic ability to

calculate the shortest distance between points. We aim to create as

many distinct clusters in our feature space as the algorithm will allow

to limit the outliers to very low density regions.

4.3 t-SNE

To help visualize the clustering of objects in our high dimensional

feature space, we use the t-distributed Stochastic Neighbor Embed-

ding (t-SNE) algorithm developed by van der Maaten & Hinton

(2008). The t-SNE algorithm uses the same Euclidean distance

metric to measure the proximity of all features in higher-dimensional

space. It converts these distances to probabilities using a Gaussian

distribution. A similarity matrix of the probabilities is stored for

the higher-dimensional space, and the feature space is then collapsed

down to 2 or 3 dimensions, depending on the user’s choice, where the

Euclidean distance is calculated once again using a t-distribution to

assign probabilities and saved as a second similarity matrix. The two

distributions are then minimized using the sum of Kullback–Leibler

divergence of all data points using a gradient descent method to return

a 2D representation of the distance of data in our feature space. It is

5https://hdbscan.readthedocs.io/en/latest

important to note that due to the stochastic nature of t-SNE, it is used

here only for visualization and not cluster identification. We note here

that t-SNE was performed for the entirety of our data sets, using the

OzSTAR6 computing nodes as well as on a personal machine with

8 GB ram and a 4.0 GHz quad-core Intel Core i7. We acknowledge

that for future work the use of Uniform Manifold Approximation

and Projection for Dimension Reduction (UMAP; McInnes, Healy &

Melville 2018) is a promising method for dimensionality reduction,

however in this work we were unable to use UMAP due to compu-

tational issues and we deemed t-SNE to be sufficient.

4.4 ASTRONOMALY

To find the most anomalous light curves, in each cluster, we use the

python package ASTRONOMALY
7 (Lochner & Bassett, in preparation)

which is comprised of a python back end and JavaScript front end to

easily explore the data via a locally hosted web interface (for further

details see Appendix B1). ASTRONOMALY is a flexible framework,

designed to detect anomalies within astronomical images or light

curves using any of a variety of anomaly detection algorithms. Here

we use the scikit-learn implementation of isolation forest (Ting,

Liu & Zhou 2008) available in ASTRONOMALY. Each cluster of light

curves identified by HDBSCAN was saved in individual data frames

containing each light curve’s features.

Using ASTRONOMALY, each cluster’s light curve’s were evaluated

independently, feeding both their features and original light-curve

file into the back end of the package.

The isolation forest then works to isolate each light curve by

recursively generating partitions, creating a tree structure ultimately

segregating each light-curve point into nodes. Each node either

contains one individual data point, or several data points all with

the same feature value.

The web interface GUI allows the user to visually inspect the

highest ranking anomalous light curves (as measured by the isolation

forest algorithm), as well as explore the interactive t-SNE plot to

probe the lower dimensional cluster space. To enable more rapid

visualization, for this work we limit ASTRONOMALY to present only

the 2000 most anomalously ranked light curves in the GUI interface.

ASTRONOMALY serves two purposes in this work. The first is easy

visualization of the data in the clusters. Each cluster is analysed

individually and the interactive t-SNE plot allows the user to quickly

determine if the objects in the cluster do indeed look similar. The

data can then be further vetted using the ranked anomaly system.

The most anomalous objects within the cluster will appear first and

hence should be the objects that are least likely to actually belong to

that cluster. Thus, the effectiveness of the clustering can be quickly

evaluated without the need for exhaustive study of every single light

curve in the cluster.

The second reason we use ASTRONOMALY is to identify anomalous

sources in the ‘unclustered’ group. With the same ranking system, the

most interesting sources (and also instrumental effects) should appear

early in the list allowing quick identification. It is critical to note that

while this data set is still small enough to manually investigate every

object (especially with ASTRONOMALY’s visual interface), for data

sets consisting of millions of light curves, this would simply not be

possible and the automated ranking becomes much more important

to allow rapid discovery of anomalous sources.

6https://supercomputing.swin.edu.au/ozstar/
7https://github.com/MichelleLochner/astronomaly

MNRAS 498, 3077–3094 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
8
/3

/3
0
7
7
/5

9
0
3
2
8
5
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

3
 D

e
c
e
m

b
e
r 2

0
2
0

https://hdbscan.readthedocs.io/en/latest
https://supercomputing.swin.edu.au/ozstar/
https://github.com/MichelleLochner/astronomaly


Unsupervised methods for transient discovery 3081

Table 1. The details of each of the three clusters identified by the HDBSCAN

algorithm. The description of the light curves refers to both the light curve

and information gathered from individual cutouts of the detection images.

Unclustered represents light curves unable to be identified to a cluster.

Description of Cluster # of Per cent of

light curves ID Light curves Sources

Faint sources Cluster 0 8 0.03 per cent

at detection – – –

threshold – – –

Sources near Cluster 1 144 0.62 per cent

CCD edge – – –

Steady light curves Cluster 2 22 909 > 98.7 per cent

Real and Unclustered 138 <0.59 per cent

photometrically – – –

affected light curves – – –

5 R ESULTS

5.1 DWF J04-55 field – no dithering observational strategy

We present the results of our unsupervised method applied to light

curves over a 90-min observation of the DWF ‘J04-55 field’ using

DECam in stare mode (the telescope tracked the same field centre

coordinates for the duration of the observations). It is important

to acknowledge that small movements of the telescope may still

be present due to telescope guiding, shutter movements, and small

pointing shifts. A total of 89 images were acquired, with 23 199

sources, as identified in the J04-55 field from the 5-night master

source list, as having greater than three detections (Ndet > 3) for

feature extraction.

5.1.1 Clusters

A total of three clusters were identified using HDBSCAN, as shown

in Table 1. Cluster 2 dominates, containing 98.7 per cent of light

curves in the field. Inspection showed that this cluster overwhelm-

ingly contained sources which were unchanging in magnitude,

consisting of both stars and galaxies. In such a short time-scale

observation, we expect that the majority of sources will be assigned

to a single cluster in this manner. The two remaining clusters identify

faint sources only breaching the detection threshold a few times

during the 90 min, and sources near, or on, the edges of CCDs which

have caused unusual/anomalous light curves. A visual representation

of the clusters in feature space can be seen in Fig. 1.

5.1.2 Variable/transient sources

A total of 138 light curves remained unclustered (referred to as

noise by HDBSCAN, shown in black on Fig. 1). The unclustered

light curves represent those which have a significant distance from

identified clusters and represent the outliers in the data. It is these

outliers which are variable and transient sources in the field. The

light curve of each was visually inspected (in order of anomaly score)

using the ASTRONOMALY package and variable sources were cross-

matched to existing catalogs to check for known variability (mainly

the International Variable Star Index (VSX) catalogue (Watson,

Henden & Price 2006), identified RR lyrae stars from the Dark

Energy Survey (DES) Stringer et al. (2019), and the Catalina Surveys

Southern Periodic Variable Star Catalogue (Drake et al. 2017)).

For newly discovered sources showing variability, locations on a

Colour–Magnitude Diagram (CMD) were calculated using Gaia data

release 2 parallax and photometric information (Evans et al. 2018;

Luri et al. 2018). The CMD positions were then overlaid on the

variability CMDs presented in work by Gaia Collaboration (2019)

and shown in Appendix C1 as green triangles. After evaluation with

ASTRONOMALY, it was determined that the majority of the light curves

were indeed anomalous in structure, however caused by instrumental

and observational effects. The false positives represented sources on

the edges of CCDs or those teetering on the detection threshold.

However we did identify six sources of continuous variability, five of

which have been previously catalogued, with the remaining variable

source discovered by this work. In addition to the variable stars, a

stochastic classical flare event was also identified. Source IDs, name,

coordinates, known catalogue ID (if available) and period are shown

in Table 2, and the light curves are shown in Fig. 2.

5.1.3 Validating the completeness for J04-55 field

To confirm the effectiveness of our unsupervised clustering, we used

several methods to verify that all variable sources in the field were

identified. First we retrieved all known variable sources from the

VSX catalogue. We found 13 catalogued variable sources within

DECam’s CCD footprint. Five of the known variable sources were

recovered as anomalies in this work (see Table 2), and three were

below our detection threshold for the vast majority of exposures. The

remaining five did not show significant variability over the ∼90 min

period and were subsequently clustered in the grouping of steady

light curves. These four sources have catalogued periodicities much

longer than 90 min (See Appendix D1 for their details.) Secondly,

ASTRONOMALY was used to display the 2000 light curves ranked

most anomalous via the isolation forest algorithm over the identified

clusters. After visual inspection, no additional variable light curves

were found. Through these evaluations, we confirm that our methods

successfully retrieve most, if not all, varying or transient sources

present in the field during our observations.

5.2 DWF J10-35 (or Antlia) field – Dithering observational

strategy

Through the uniqueness of the DWF program, novel and non-

traditional observing strategies have been implemented dependent on

the strategies of the facilities performing simultaneous observations

and the overall goals of the observing program. Here we confirm

that our unsupervised analysis is able to successfully identify and

quantify both real astrophysical anomalies, and those caused due

to an observing strategy with relatively large dithers (∼60 arcsec)

designed to move the telescope sufficiently to fill the DECam

CCD gaps evenly with five dithers. We chose a DWF field where

observations were a mixture of five point dithers, and continuous

stares over an ∼80 min period. Dithering within surveys is often

crucial to fill CCD chip gaps and gather photometric information of

all sources in the field. Dithering in this manner results in partial light

curves for sources in the chip gaps that are missed during the stare

mode observations. Here we evaluate the ‘J10-35’ field, which we

will refer to as the Antlia field, as the 3 deg2 field is centred on the

Antlia galaxy cluster. The observations contained three, five point

dithers during the beginning, middle, and end of the observations.

Using observations taken on the 2017 February 6, a total of 70 348

sources were identified in the Antlia field from the 5-night master

source list. Of these, 62 354 light curves met our pipeline criterion

of having Ndet > 3 over the ∼80 min observation period.
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3082 S. Webb et al.

Figure 1. Feature space of the 25 features of the 23 199 light curves of the ‘J04-55 field’ collapsed down to 2 dimensions using t-SNE with the clusters labelled

in Table 1 and coloured accordingly. It is important to note (1) that the axis values within a t-SNE are not physically meaningful and hence not labelled, and (2)

that the t-SNE algorithm works by adapting its own notion of distance to regional density variations in the higher dimensional data. As a result, t-SNE naturally

expands dense clusters and contracts sparse ones when collapsed as shown, and this can make some structure within the t-SNE plot appear more significant than

it is.

Table 2. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field DWF ID Catalogued ID Typea Period (d)b

J04-55 DWF040449.509-552715.863 ASASSN-V J040449.48-552715.9 W Ursae Majoris 0.27

J04-55 DWF040807.980-541827.191 ASASSN-V J040807.97-541827.2 W Ursae Majoris 0.35

J04-55 DWF041109.879-544851.201 SSS J041109.9-544851 W Ursae Majoris 0.32

J04-55 DWF041435.853-544157.278 ASAS J041436-5441.9 Contact Binary 0.45

J04-55 DWF040636.176-543322.433 DES 11110400160736 RR Lyrae 0.59

J04-55 DWF041006.862-553303.224 Discovered in this work Slow pulsating B. –

J04-55 DWF040657.647-541626.051 Discovered in this work Flare event on RR Lyrae 0.86

aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
bFor previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not known.
cAbsolute G-Band magnitude as calculated using GAIA parallax information.

The same 25 features chosen previously were extracted from

each of the 62 354 light curves and a total of 37 clusters were

identified through the HDBSCAN clustering algorithm, as well as

a group of unclustered light curves that did not satisfy the distance

requirements to join the identified clusters (see Appendix E1 for

individual cluster information). It is immediately apparent that a

significantly higher number of clusters were identified throughout

these data in comparison to the previous J04-55 field results in

Section 5.1, for which we only find four clusters. The increase in

clusters is due to characteristics introduced into the light curves

from photometric issues caused mainly by the dithering strategy and

the tip/tilt motion when using the hexapod8 on DECam. Below, we

outline the usefulness of these clusters in identifying and quantifying

transient classifications.

8The hexapod mechanism is a set of six pneumatically driven pistons that

actuate to precisely align the optical elements between exposures.
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Unsupervised methods for transient discovery 3083

Figure 2. Four previously known and two newly discovered variable/transient sources present in the unclustered noise within the J04-55 field analysis.

Table 3. The nine sub-groupings of light-curve types as identified in the Antlia field.

Sub Description of light curves Cluster IDs # of Per cent of colour in

Group Light Curves Sources t-SNE

G1 Steady light curves 36 58279 93.5 per cent Grey

G2 Variable sources 1 6 <0.01 per cent Cyan

G3 Faint sources at detection threshold 33, 34, 35 23 <0.01 per cent Red

G4 Only detected on five point dithers 0, 3, 4, 21, 22, 23, 27, 28, 32 111 <0.2 per cent Orange

G5 Photometric correction issues on first 5 dither points 5, 6, 7, 9, 10, 11, 12, 13, 18 266 <0.45 per cent Blue

G6 Sources near edge of CCD resulting in dimming and brightening 2, 14, 17, 24,26, 29 1176 1.88 per cent Purple

G7 One or more detections affected by cosmic rays, pixel faults, etc 31 5 <0.01 per cent Green

G8 Other photometric correction issues e.g. Blended sources. 8, 15, 16, 19,20, 25, 30 319 <0.6 per cent Pink

UC Contains a mixture of real variables and light curves affected – – – –

by many of the identified photometric concerns outlined above −1 / unclustered 2169 3.48 per cent Black

5.2.1 Cluster sub-groupings

The 37 clusters can be broken down into eight sub-groups of

clusters, including the unclustered grouping, shown in Table 3.

Visual inspection of randomly selected, if not all for the smaller

groupings, source fits images over time were used to determine the

sub-groupings. The majority of clusters fall into the sub-groups of

photometric anomalies caused by telescope dithering, photometric

correction issues or, less frequently, by CCD artifacts/cosmic rays.

However two sub-groupings are of interest, variable sources (G2),

and the light curves that were unable to be clustered with HDBSCAN

(UC within Fig. 3 and Table 3). The variable sources identified in G2

are discussed further in Section 5.2.2.

Representation of the clusters in feature space can been seen in

Fig. 3 where the feature space has been reduced into 2 dimensions

using t-SNE. The figure clearly shows the feature space dominated by

one main cluster of non-varying light curves (number 36, sub group

G1), which is unsurprising, as we expect the majority of sources

in the field to be unchanging over the minutes-to-hours time-scales.

Fig. 3 further illustrates the grouping of clusters with related light

curves by highlighting the sub-groups of light-curve properties and
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3084 S. Webb et al.

Figure 3. Feature space of the 25 features of the 62 354 light curves of the Antlia field collapsed down to 2 dimensions using t-SNE. The sub-groupings as

outlined in Table 3 are coloured accordingly. It is important to note that t-SNE algorithm works by adapting its known notion of distance to regional density

variations in the higher dimensional data, as a result t-SNE naturally expands dense clusters and contracts sparse ones when collapsed.

their causes as outlined in Table 3. Example light curves of each of

the sub-groups are shown in Fig. 4.

From the sub-grouping of clusters, we are able to meaningfully

quantify the light curves for this field: finding that 93.5 per cent are

grouped into one cluster, of steady light curves, while ∼2.0 per cent

of light curves were affected by telescope dithering and/or the use

of the hexapod on the DECam instrument, and 0.39 per cent of light

curves had photometric correction issues over the first five exposures

(of the 80) due to the initial five point dither pattern and change in

standard stars used for correction on certain CCDs.

5.2.2 Sub-groups identifying variable sources

The algorithm identified one cluster containing sources of true

astrophysical variability, described in sub-grouping G2 in Table 3.

These sources were cross-matched to several catalogues to check

for known variability, as outlined in Section 5.1.2. In this group, we

identified six variable sources, three of which have been previously

catalogued and three sources discovered by this work. Source IDs,

name, coordinates, known catalogue ID (if available), and period are

shown in Table 4.

Of the three newly discovered sources in this sub-grouping, we

are unable to unambiguously identify the variable types of two

sources using the CMD in Appendix C1. The CMD location of

the reamining source was calculated using Gaia data release 2

parallax and photometric information (Evans et al. 2018; Luri et al.

2018). The CMD position is overlaid on the variability CMDs

presented in work by Gaia Collaboration (2019) and subsequently

used for likely type identification in 3. We are unable to confidently

classify DWF103240.961-344522.875 in the CMD because of its

large Gaia parallax uncertainty and, thus, absolute magnitude. On

the other hand, DWF103147.030-354553.653 sits in an area where

few pulsating objects are found, between main sequence stars and

white dwarfs but where cataclysmic variables are common. A source

MNRAS 498, 3077–3094 (2020)
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Unsupervised methods for transient discovery 3085

Figure 4. Antlia field examples of typical light curves present in each of the sub-groupings. The blue points represent source detections, the red triangles

represent the limiting magnitudes of the exposures and are only present in the light curves when sources are not detected.

Table 4. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this

work.

Field DWF ID Catalogued ID Probable typea Period (d)b

Antlia DWF102919.102-355133.303 SSS J102919.0-355133 Spotted Star 0.34

Antlia DWF102938.901-345415.969 SSS J102938.8-345416 W Ursae Majoris 0.27

Antlia DWF103105.927-360744.003 SSS J103105.8-360742 W Ursae Majoris 0.44

Antlia DWF102552.421-354418.436 Discovered in this work δ Scuti or γ Doradus –

Antlia DWF103240.961-344522.875 Discovered in this work – –

Antlia DWF103147.030-354553.653 Discovered in this work – –

aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD

position (see Appendix C1).
bFor previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not

known.
cAbsolute G-Band magnitude as calculated using Gaia parallax information.

in this region was shown by Gaia Collaboration (2019) to be likely

a cataclysmic variable (CV). The light curves for all six sources are

presented in Fig. 5.

5.2.3 Variable/transient sources

A total of 2169 light curves were unclustered by HDBSCAN and

not assigned to a specific cluster in our analysis of the Antlia field.

These light curves can be seen to sit along the outskirts of the main

grouping of G1 in Fig. 3, as well as occupying similar feature space

to other identified clusters. It is these light curves which are of

particular interest for rare transient and variable events, as we expect

any unusual and unique light curves in comparison to the majority

to be identified as noise via HDBSCAN.

Two independent approaches were used to evaluate the unclustered

light curves. The first was manual inspection of all 2169 light curves

and the second was anomaly detection and ranking using ASTRONO-

MALY. This dual approach was taken to comparatively quantify the

successful extraction of interesting anomalous light curves using

ASTRONOMALY’s inbuilt isolation forest anomaly ranking. Here,

ASTRONOMALY was used to explore groupings of similar light curves

through its inbuilt interactive t-SNE plot.
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3086 S. Webb et al.

Figure 5. Three previously known and three newly discovered variable sources as identified in sub-group G2.

Table 5. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field DWF ID Catalogued ID Typea Period (d)b

Antlia DWF102641.723-355131.230 SSS J102641.7-355130 W Ursae Majoris 0.29

Antlia DWF102742.474-343932.754 SSS J102742.4-343933 W Ursae Majoris 0.27

Antlia DWF103120.961-354209.063 SSS J103120.8-3542094 W Ursae Majoris 0.27

Antlia DWF103037.999-355800.839 ASAS J103038-3558.0 β Persei 0.72

Antlia DWF103047.592-354046.884 SSS J103047.5-354047 RR Lyrae 0.31

Antlia DWF103114.718-343832.907 SSS J103114.5-343834. RR Lyrae 0.33

Antlia DWF102606.360-354249.252 Discovered in this work UV Ceti or T Tauri –

Antlia DWF103355.245-352124.241 Discovered in this work T Tauri –

Antlia DWF103325.535-353259.289 Discovered in this work γ Doradus –

Antlia DWF102955.559-360035.170 Discovered in this work Ultrafast flare –

aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
bFor previously catalogued sources, the period is taken from the discovery survey, if newly discovered source period is not known.
cAbsolute G-Band magnitude as calculated using Gaia parallax information.

During our evaluation, sources within the unclustered grouping,

were again cross-matched to VSX, DES, and the Catalina Surveys

Southern Periodic Variable Star Catalogue, to identify previous

detections and classifications. The majority of the unclustered light

curves were false positives caused by dithering affects on sources.

However, amongst the false positives we identify nine variable

sources, six of which were previously catalogued by surveys, with the

remaining three sources discovered in this work. We further discover

an ultrafast flaring source, with positioning on the CMD suggesting

the source is consistent with M dwarf flares. Optical flare events

evolving on very short time-scales (seconds-to-minutes) such as this

have previously only been identified using 10 s cadence of NUV

GALAX data by Brasseur, Osten & Fleming (2019), uncovering a

previously unexplored population of short duration of stellar flares.

Source IDs, name, coordinates, known catalogue ID (if available)

and period are shown in Table 5. The light curves for each of

the sources are presented in Fig. 6. The newly discovered sources

showing variability are overlaid on the CMD in Appendix C1 as

purple triangles.

5.2.4 ASTRONOMALY performance

We utilized the large set of unclustered light curves identified in the

Antlia field to test the abilities of ASTRONOMALY to present only

the most astrophysically anomalous light curves to astronomers in

a timely manner. ASTRONOMALY takes less than 2 min to process

the features through the isolation forest algorithm and launch the

interactive web GUI.

Using the ASTRONOMALY front end GUI to visually inspect each

light curve in ranked order, we identified the nine variable sources

within the top 280 of 2000 highest ranking anomalous light curves

taken from the grouping of unclustered sources and the ultrafast flare

event was identified within the first 600. By using both clustering

and ASTRONOMALY we were able to find all the anomalies in the

first 0.9 per cent of the over all Antlia data. This result highlights

the possibility to significantly reduce the amount of time needed for

light-curve evaluation of anomalous events by astronomers, and will

be continued to be utilized in the future analysis of DWF light curves.

A more recent version of ASTRONOMALY contains human-in-the-

loop learning, designed specifically to deal with finding objects that

MNRAS 498, 3077–3094 (2020)
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Unsupervised methods for transient discovery 3087

Figure 6. Size previously known and four newly discovered variable sources as identified in the grouping of unclustered light curves. The blue points represent

source detections, while the red triangles represent the limiting magnitudes of the exposures and are only present in the light curves when sources are not

detected.

are swamped by more anomalous points (according to the machine

learning) but are actually more mundane objects.

5.2.5 Validating the completeness for Antlia field

Similar to Section 5.1.3, we took several steps to verify all variable

sources which were identified. Within a 1.5 degree radius of the field

centre, 22 catalogued variable sources (with periods less than 1 d)

existed in the VSX catalogue and within DECam’s CCD footprint.

Nine of the known variable sources were recovered as anomalies

in this work, both being identified in the cluster of variables and

within the unclustered grouping of most anomalous light curves, as

explained in detail in Sections 5.2.1 and 5.2.2. Of the remaining

sources, six did not show significant variability over the ∼80 min

period and were subsequently clustered in the grouping of steady

light curves, consistent with their longer recorded periods (see

Appendix D2 for full details). The remaining seven were either

below detection threshold, at saturation limits, or photometrically

affected by dithering and were clustered accordingly. ASTRONOMALY

was used to display the top 2000 light curves (limited to 2000 light

curves by ASTRONOMALY for the handling of the interactive t-SNE

plot) ranked most anomalous via the isolated forest algorithm over the

identified clusters. After visual inspection, no additional interesting

light curves were found.

6 C O N C L U S I O N

Existing and future astronomical surveys are continuously pushing

the bounds of the known transient universe, and the ability to

efficiently probe a large number of light curves in a timely manner

MNRAS 498, 3077–3094 (2020)
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3088 S. Webb et al.

will become vital in the exploration of regions of previously known

and unknown classes of events. In this work, we have successfully

shown the capability of unsupervised machine learning methods

to rapidly and thoroughly explore fast cadenced data collected by

transient surveys, using the DWF program as an example. By taking

a two-step approach of both clustering and anomaly/outlier detection,

we were able to identify seven previously unidentified variable stars.

We also identified two classes of stellar flares, one classical flare and

one rapidly evolving flare, further demonstrating the effectiveness

of our unsupervised methods and the unique capability of the DWF

program. Notable is the speed of which this method can be performed.

Feature extraction takes ∼110 s per 1000 light curves and when run

in parallel (on the OzSTAR supercomputer) can complete a set of

70 000 light curves in less than 15 min. The HDBSCAN clustering

takes a further ∼2 min, and in total, a set of 70 000 light curves

can be ready for human evaluation using ASTRONOMALY within

20 min. Both the speed and ease of use our method demonstrates

the ability of unsupervised methods in meaningfully evaluating light

curves to identify source variability. This method is well suited for

the use on current and upcoming surveys for anomaly detection,

for which hundreds of millions of light curves will inevitably be

produced.

Finally, we stress that this work explores a small fraction of the

full DWF data set, only two fields for 80–90 min each. Future work

will involve the evaluation of 250+ h of data for 17 fields. Moreover,

as DWF runs typically occur over six consecutive nights, additional

variable sources will be found over a range of phase durations when

the data is analysed over the full run duration for the two fields

explored here. Furthermore, we plan to use this unsupervised method

on light curves combined over multiple nights to search for long

period variables, which would otherwise appear steady in single

night light curves.
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APPENDIX A : FEATURES

Table A1. Features used in this work and the properties of the light curves they represent.

Feature Description Inputs Refs

Amplitudes Half the difference between Magnitude Richards et al. (2011)

the median of the maximum 5 percent and the median

of the minimum 5 percent magnitude.

Autocorrelation length Length of linear dependence of a signal with Magnitude Kim et al. (2011)

itself at two points in time

Beyond1Std Percentage of points beyond one Magnitude & Error Richards et al. (2011)

standard deviation from the weighted mean

CARmean The mean of a continuous time autoregressive Magnitude, Time & Error Pichara et al. (2012)

model using a stochastic differential equation

CARσ The variability of the time series on Magnitude, Time & Error Pichara et al. (2012)

time-scales shorter than τ

CARτ The variability amplitude of the Magnitude, Time & Error Pichara et al. (2012)

time series

H1 Amplitude derived using the Fourier Magnitude Kim & Bailer-Jones (2016)

decomposition

Con The number of three consecutive Magnitude Kim et al. (2011)

data points that are brighter or fainter then 2σ

and normalized by N −2

Linear trend Slope of a linear fit to the light curve Magnitude & Time Richards et al. (2011)

MaxSlope Maximum absolute magnitude slope between two Magnitude & Time Richards et al. (2011)

consecutive observations

Mean The mean magnitude Magnitude Kim et al. (2014)

Mean variance the ratio of the standard deviation Magnitude Kim et al. (2011)

to the mean magnitude

Median absolute deviation The median discrepancy of the data Magnitude Richards et al. (2011)

from the median data

Median buffer range percentage Fraction of photometric points Magnitude Richards et al. (2011)

with amplitude/10 of the median magnitude

Pair slope trend The fraction of increasing first differences Magnitude Richards et al. (2011)

minus the fraction of decreasing

first differences

Q31 The difference between the 3rd Magnitude Kim et al. (2014)

and 1st quarterlies

R21 2nd to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)

Using the Fourier decomposition

R31 3rd to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)

using the Fourier decomposition

Rcs Range of cumulative sum Magnitude Richards et al. (2011)

Skew The skewness of the sample Magnitude Richards et al. (2011)

Slotted autocorrelation Slotted autocorrelation length Magnitude & Time Protopapas et al. (2015)

Function length

Small Kurtosis Small sample Kurtosis of magnitudes Magnitude Richards et al. (2011)

Standard deviation Standard deviation of the magnitudes Magnitude Richards et al. (2011)

Stetson KAC Stetson K applied to the slotted Magnitude Stetson (1996), Kim et al. (2011)

autocorrelation function of the light curve

Variability index Ratio of the mean of the square of successive differences Magntiude Kim et al. (2011)

to the variance of data points

MNRAS 498, 3077–3094 (2020)
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APP ENDIX B: ASTRONOMALY W E B IN T E R FAC E

Figure B1. Top) ASTRONOMALY web interface ‘Anomaly Scoring’ tab, where light curves can be visually assessed in order of anomaly ranking as determined

by the isolation forest algorithm. Bottom) ASTRONOMALY web interface ‘Clustering’ tab, displaying an interactive t-SNE plot produced from the input data. The

points within the t-SNE can be clicked and then the corresponding light curve will be displayed to the right of the screen. This feature is extremely useful for

searching similar light curves based on their features.

MNRAS 498, 3077–3094 (2020)
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APPENDIX C : C OLOUR MAG NITUDE PLOT – N EWLY DI SCOV ERED TRANSI ENTS/ VARI ABLE S

F RO M T H I S WO R K

Figure C1. Known pulsating (top panel), eruptive (centre panel), and cataclysmic (bottom panel) variables are shown on the CMDs taken from the Gaia

Collaboration (2019), with the newly discovered variable and flaring sources (large symbols) overlaid. The green triangles represented sources found in the

J04-55 field, the orange represent newly discovered sources from G2 in the Antlia field, and the purple represent the newly discovered sources, which HDBSCAN

was not able to cluster. Schlafly & Finkbeiner (2011) was used to correct Gaia BP-RP for galactic reddening.

MNRAS 498, 3077–3094 (2020)
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APP ENDIX D : PREVIOUSLY C ATALOGUED SOURCES

Table D1. Variable star index (VSX) catalogued variable sources within the DWF J04-55.

Field Catalogue name Type Period (d) Notes

DWF J04-55 SSS J041109.9-544851 W Ursae Majoris eclipsing binary 0.31 Identified in this work as anomalous

DWF J04-55 ASAS J040958-5520.2 Cepheid 9.20 Below detection threshold most exposures

DWF J04-55 ASAS J041436-5441.9 Contact binary 0.45 Identified in this work as anomalous

DWF J04-55 ASASSN-V J040807.97-541827.2 W Ursae Majoris eclipsing binary 0.55 Identified in this work as anomalous

DWF J04-55 ASASSN-V J040449.48-552715.9 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous

DWF J04-55 SSS J041229.7-543444 Asymmetric RR Lyrae 0.55 Below detection threshold most exposures

DWF J04-55 SSS J040348.1-552845 W Ursae Majoris eclipsing binary 0.39 Below detection threshold most exposures

DWF J04-55 SSS J040421.3-551639 β Persei eclipsing binary 1.15 Flat light curve, unchanging over observations

DWF J04-55 ASAS J040237-5502.5 Detached eclipsing binary 1.93 Flat light curve, unchanging over observations

DWF J04-55 WISE J041127.4-543854 β Persei eclipsing binary 0.68 Flat light curve, unchanging over observations

DWF J04-55 ASASSN-V J041337.83-554819.5 Variable star of unspecified type unknown Flat light curve, unchanging over observations

DWF J04-55 ASASSN-V J040350.67-545214.6 Spotted stars that weren’t 0.49 Flat light curve, unchanging over observations

classified into a particular class

Table D2. Variable star index (VSX) catalogued variable sources within the DWF Antlia field.

Field Catalogue Name Type Period (d) Notes

DWF Antlia SSS J103047.5-354047 RR Lyrae 0.31 Identified in this work as anomalous

DWF Antlia SSS J102938.8-345416 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous

DWF Antlia SSS J103120.8-354209 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous

DWF Antlia ASAS J103038-3558.0 β Persei-type eclipsing binary 0.72 Identified in this work as anomalous

DWF Antlia SSS J103114.5-343834 RR Lyrae 0.33 Identified in this work as anomalous

DWF Antlia SSS J102742.4-343933 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous

DWF Antlia SSS J103105.8-360742 W Ursae Majoris eclipsing binary 0.44 Identified in this work as anomalous

DWF Antlia SSS J102641.7-355130 W Ursae Majoris eclipsing binary 0.29 Identified in this work as anomalous

DWF Antlia SSS J102919.0-355133 Spotted stars that weren’t 0.34 Identified in this work as anomalous

classified into a particular class

DWF Antlia SSS J102615.2-351023 RR Lyrae 0.50 Below detection threshold most exposures

DWF Antlia SSS 110101:103109-350150 Dwarf novae unknown Flat light curve, unchanging over observation

DWF Antlia SSS J102933.7-354152 W Ursae Majoris eclipsing binary 0.29 Flat light curve, unchanging over observation

DWF Antlia SSS J103200.4-353401 W Ursae Majoris eclipsing binary 0.44 Flat light curve, unchanging over observation

DWF Antlia SSS J102734.7-353154 W Ursae Majoris eclipsing binary 0.40 Flat light curve, unchanging over observation

DWF Antlia SSS J102717.6-353645 β Persei-type eclipsing binary 0.89 Flat light curve, unchanging over observation

DWF Antlia SSS J103425.0-350405 W Ursae Majoris eclipsing binary 0.41 Flat light curve, unchanging over observation

DWF Antlia SSS J102712.4-353219 RR Lyrae 0.63 At saturation limit with photometry affected,

DWF Antlia SSS J103237.3-345913 Spotted stars that weren’t 0.30 At saturation limit with photometry affected,

classified into a particular class

DWF Antlia SSS J103436.8-352812 W Ursae Majoris eclipsing binary 0.35 At saturation limit with photometry affected

DWF Antlia SSS J103157.1-351718 W Ursae Majoris eclipsing binary 0.32 Light curve photometricly affected.

DWF Antlia SSS J103440.2-351511 W Ursae Majoris eclipsing binary 0.31 Affected photometry from CCD edge

identified as such in G6.

DWF Antlia SSS J102906.8-360355 W Ursae Majoris eclipsing binary 0.32 Affected photometry from CCD edge,

identified as such in G6.
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A P P E N D I X E: L I G H T- C U RV E T R A I T S

Table E1. Clusters identified from Antlia field light curves using HDBSCAN.

Cluster Number of Notes

light

unclustered 2169 Light curves with majority non-detections as well as possible variable sources and photometry affected by telescope dithering.

0 6 Only detected on five point dithers, either beginning, middle or end of observations.

1 6 Variable sources.

2 20 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

3 30 Only detected on five point dithers, either beginning, middle or end of observations.

4 23 Only detected on five point dithers, either beginning, middle or end of observations.

5 7 First five point dither detections correction issues of 0.1–0.2 mag.

6 19 First five point dither detections correction issues of 0.1–0.2 mag.

7 58 First five point dither detections correction issues of 0.1–0.2 mag.

8 16 Bright Sources on ccd extension 30, Issues with correction over the night.

9 10 First five point dither detections correction issues of 0.1–0.2 mag.

10 17 First five point dither detections correction issues of 0.1–0.2 mag.

11 107 First five point dither detections correction issues of 0.1–0.2 mag.

12 23 One or more detections affected by Cosmic Rays, pixel faults, etc.

13 5 First five point dither detections correction issues of 0.1–0.2 mag.

14 14 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

15 11 Bright Sources on ccd extension 30, issues with correction over the night.

16 22 Bright Sources on ccd extension 30, issues with correction over the night.

17 23 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

18 20 First five point dither detections correction issues of 0.1–0.2 mag.

19 8 Sources on ccd extension 30, Issues with correction over the night.

20 226 One or more detections affected by cosmic rays, pixel faults, etc and faint sources at detection threshold.

21 12 Only detected on five point dithers, either beginning, middle or end of observations.

22 6 Only detected on five point dithers, either beginning, middle or end of observations.

23 7 Only detected on five point dithers, either beginning, middle or end of observations.

24 12 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

25 17 Defuse or blended sources.

26 156 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

27 11 Only detected on five point dithers, either beginning, middle or end of observations.

28 11 Only detected on five point dithers, either beginning, middle or end of observations.

29 951 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.

30 19 Faint sources behind defuse galaxies/ blended point sources

31 5 One or more detections affected by cosmic rays, pixel faults, etc.

32 5 Only detected on five point dithers, either beginning, middle or end of observations.

33 12 Faint sources at detection threshold.

34 6 Faint sources at detection threshold.

35 5 Faint sources at detection threshold.

36 58 279 Steady light curves.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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