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ABSTRACT Eye and systemic diseases are known to manifest themselves in retinal vasculature. Segmenta-

tion of retinal vessel is one of the important steps in retinal image analysis. A simple unsupervised method

based on Gabor wavelet and Multiscale Line Detector is proposed for retinal vessel segmentation. Vessels

are enhanced by linear superposition of first scale Gabor wavelet image and complemented Green channel.

Multiscale Line Detector is used to segment the blood vessels. Finally, a simple post processing scheme

based on median filtering is deployed to remove false positives. The proposed scheme was evaluated with

publicly available datasets called DRIVE, STARE and HRF, obtaining an accuracy of 0.9470, 0.9472, and

0.9559, and a sensitivity of 0.7421, 0.8004, and 0.7207, respectively. These results are comparable to the

state-of-the-art methods, albeit with a simpler approach.

INDEX TERMS Blood vessel segmentation, color retinal images, Gabor wavelet, line detector, image

processing, unsupervised method, image preprocessing.

I. INTRODUCTION

One of the important tasks in diagnosing different medi-

cal conditions such as diabetic retinopathy, cardiovascular

diseases, and stroke is the segmentation of blood vessels

in color medical images. To this end, different strategies

have been devised. The strategies can be roughly grouped

into i) multiscale, ii) matched filtering, iii) mathematical

morphology, iv) hierarchical, v) model and vi) deep learning

approach [1]. Furthermore, they can also be categorized

into supervised and unsupervised algorithm. The prominent

strategies based on multiscale are [2], [3]. Soares et al. [2]

used Gabor wavelet transform with four scales (2,3,4,5)

to account for different width sizes of blood vessel, and

supervised classification. Nyugen et al. [4] proposed blood

vessel segmentation using a multi-scale line detection based

technique. The approach is an extension of the scheme based

on single scale line detector and support vector machine [5].

Examples of filter based approach are [6]–[8] and
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mathematical morphology based are [9]–[11]. Retinal vessel

segmentations based on hierarchical detections are [12], [13],

model based approaches [14]–[16], and deep learning based

schemes [13], [17]–[21].

One major challenge in retinal image analysis especially

for accurate vessel detection is low and varying contrast.

A method based on Gabor wavelet and multi-scale line detec-

tor is being proposed here. The Gabor wavelet transform

presents high frequency precision in low frequencies and

high spatial precision in high frequencies. In other words,

the transform is suitable for detecting edges and other singu-

larities in the image [22], [23]. By tuning its elongation and

frequency parameters, Gabor wavelet transform can be used

to detect elongated objects such as blood vessels (details can

be found in [24]). However, detecting the edges in such way

might result into central reflex type problem in the case of

medium and fat vessels. Fig. 1 (a) and Fig. 1(b) describes

the example of central reflex in colored and green chan-

nel, respectively. As the line-detection based approaches are

shown to be effective in dealingwith vessel central line reflex.

Hence, using Gabor wavelet transform for edge enhancement
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FIGURE 1. Central reflex in colored and green channel.

followed by application of line detector on enhanced image

might overcome the central reflex problem and subsequently

improve the vessel detection. Therefore, an unsupervised

blood vessel segmentation method is proposed, which is

based on image enhancement built on Gabor wavelet and line

detector.

After image enhancement, the proposed approach uses

multiple scale line detector and post-processing to overcome

the central reflect problem and to remove false posi-

tives respectively. The proposed method obtains sensitiv-

ity of 0.7421, 0.8004 and 0.7207, and accuracy of 0.9470,

0.9472 and 0.9559 respectively on DRIVE, STARE and HRF

datasets, which is comparable to the state-of-the-art methods.

While on the DRIVE dataset, it takes less than 20 seconds on

average per image, based on unoptimized Matlab scripts.

This paper is organized into five sections as follows:

Section I, describes the introduction and literature review.

Section II presents Gabor wavelet and Line Detector.

Section III presents the materials and methods, while

Section IV reports the results and discussion of the proposed

methodology. Section V gives the conclusion of this work.

II. GABOR WAVELET AND LINE DETECTOR

The 2-D Gabor wavelet is defined as [2]:

ψG(x) = e(jk0x)e(−
1
2 |Ax|2) (1)

where A is 2 by 2 diagonal matrix and A = [ε−1/2, 1],

ε ≥ 1, its elongation in any desired direction. The parameter

k0 defines the frequency of the complex exponential. The

filter is made elongated [24] by setting ε = 4 and k0 is

set to [0, 3], a low-frequency complex exponential with few

significant oscillations perpendicular to the large axis of the

wavelet. These two characteristics are especially suited for

the detection of directional features and have been chosen in

order to enable the transform to present stronger responses

to pixels associated with the blood vessels. The other two

key parameters of Gabor wavelet, after frequency and elonga-

tion, are scale and orientation. Scale selects the width of the

elongated object while orientation is used for orientation of

the objects. Vessels in the retinal image have different widths

and can be in difference orientations. To accommodate all the

sizes of vessel, [2] used four scales i.e. 2, 3, 4 and 5. They used

18 different orientations and the highest response from all the

orientations was kept [2].

Line Operator proposed by [5] was modified by [4] to

include multiple scales by changing length of basic Line

Detector/Operator and called it Multiscale Line Detector.

The vessel central light reflex can be effectively dealt by

the line detector. It is based on the logic that in inverted

green channel, for vessel pixel, response will be high whereas

for background it will be low (Eq. 2). In inverted green

channel, when there is central light reflex, the pixels in the

centre of vessel have comparatively lower intensities. Hence,

they often give rise to misclassification. But in the case of

line detector, they are recognized as vessel because winning

line includes only a small number of ‘central reflex’ pix-

els. In inverted green channel, a window of size W × W

pixels centered at each pixel position is used and average

intensity (IWmean) is calculated. Lines with width of W and

at angular resolution of 15◦ (12 lines in different directions)

are passed through the centred pixels and the mean values

of each line are calculated. The line with maximum value

(IWmax) is the winning line. Response at a pixel is computed

as [4]:

RW = IWmax − IWmean (2)

Line detectors at multiple scales are achieved by

RW = ILmax − IWmean (3)

where 1≤ L≤ W . By changing the values of L, line detectors

at different scales are obtained. In [4], angular resolution

of 15◦ (12 different orientations), W equals to 15 pixels and

line responses at 8 scales (from 1 to 15 with increment size

of 2) are linearly combined.

III. MATERIAL AND METHODS

The proposed algorithm is assessed with publicly available

color retinal images datasets called DRIVE [25], STARE [6]

and HRF [26]. The DRIVE dataset consists of 40 images

which is equally divided into training (20 images) and testing

(20 images). The images are taken with three CCD cameras

using 45-degree field of view (FOV). Each image is 768 by

584 pixels using 24 bits RGB color (8 bits per color plane).

All images have FOV of around 540 pixels diameter, and

each of them is accompanied by its mask image to delineate

the FOV. The DRIVE dataset also provides the manually

segmented images as the ground truth. Training images have

single manual segmentation while for the test images there

are two manual segmentations. Most of the researchers (as

summarized in Table 1) use first manual segmentation to

evaluate the performance of their algorithms. In this paper

we use the first manual segmentations same as the other

researchers do. STARE dataset on the other hand consists

of 20 images with resolution of 700 × 605. The images are

captured at 35o FOV and fifty percent of the images contain

pathologies. Two different manual segmentations are pro-

vided for each image. However, the STARE dataset does not
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TABLE 1. Results comparison.

provide separate training and test set unlike DRIVE dataset.

In our evaluations we have used the first manual segmentation

as the ground truth.

The third dataset, High-Resolution Fundus (HRF) Image

Database, is also adopted to evaluate the performance of

the proposed algorithm. This dataset consists of 45 images

and are grouped into three subcategories of each contains

15 images of healthy, diabetic retinopathy and glaucoma. The

images have a resolution of 3504 × 2336 and FOV of 60◦.
The dataset is also provided with single manual segmentation

and mask for each image. The parameter values were esti-

mated using the training images provided by DRIVE dataset.

In case of STARE dataset, there is no standardized procedure

available in the literature for dividing the images into train

and test dataset [32], so we used five images for param-

eter estimation. For HRF dataset similar to [32], the first

five images from each group were utilized for parameter

estimation.

Fig. 2 describes the flow diagram of the proposed vessel

segmentation technique. The proposed methodology consists

of: a). image preprocessing based on Gabor wavelet, b).

candidate blood vessel extraction based on Multiscale Line

Detector, and c). Post processing.

a. Image Preprocessing: Blood vessels appear as dark

objects in green channel. They have the highest contrast in

green channel. However, color retinal images suffer from low

and varying contrast, which makes it difficult to extract blood

vessel based on intensity alone. To overcome this problem,

we propose the linear superposition of Gabor wavelet-based

scheme at single scale (first scale only) and complemented

green channel.We set the elongation and frequency parameter

values respectively to ǫ = 4 and k0 = [0, 3], so as to detect

the elongated objects and filter out the other objects and noise.

Gabor wavelet using first scale only enhanced the fine vessels

and the edges of the wide vessels. From 0◦ to 170◦ in the steps
of 10, Gabor wavelet was taken, and the maximum response

was kept among 18 different orientations. The image contain-

ing the maximum responses out of 18 different orientations

was added with the complemented green channel to obtain

the preprocessed image. This resulted in better contrast for

elongated objects such as vessels. Fig. 2, top row second

image is the green channel and the one on the right is resulting
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FIGURE 2. Flow diagram of the proposed system.

image after Gabor wavelet taken in the described way. The

image on the right in bottom row of Fig. 1 shows the described

preprocessed mage.

b. Candidate blood vessel extraction based on Multiscale

Line Detector: During the preprocessing, we took Gabor

wavelet response at first scale only, thus the wide vessel might

suffer from the central reflex type situation. To overcome this

issue, we proposed to use Multiscale Line Detector, an effec-

tive technique in central light reflex situation. We used

W = 13, 17 and 45 pixels and line responses at 7, 9 and

23 scales were linearly combined respectively for DRIVE,

STARE and HRF dataset. The angular resolution was 15◦

(12 lines in different directions). After the application of

Multiscale Line Detector, images were thresholded to obtain

the binarized images. After threshold, filling was applied to

fill the one-pixel gap. The resulting image is shown in Fig. 2,

in the middle of the bottom row.

c. Post-processing: After application of Multiscale Line

Detector, there were false positives around the Region of

Interest (ROI) boundary, in the optic disc (OD) region and

at the edges of the medium and fine vessels. To remove

these false positives, we proposed a postprocessing scheme

in which background was calculated using a median filter

of the size of 15 × 15, 17 × 17 and 45 × 45, respectively

for DRIVE, STARE and HRF datasets and removed from

the green channel. The background removed image was fur-

ther median filtered using a 3x3 array to obtain a smoothed

background removed image denoted by GrnSBKRMImg.

In the GrnSBKRMImg, pixels were bright both for the OD

region and ROI boundary while blood vessels and other dark

objects such as hemorrhages appear dark, as could be clearly

observed in Fig. 3. Even most of the blood vessels inside OD

became dark, as shown in Fig. 3. Therefore, to remove such

false positives, we presumed that vessels having width equal

to greater than 2 pixels had lower intensity values than those

falsely detected objects such as from ROI and OD region.

Thus, using intensity values inGrnSBKRMImg all the vessels

having width 2 pixels or more were checked and classified

into non-vessels if their intensity values were higher than

the specified threshold. Finally, all those objects which were

100 pixels or less in case of DRIVE dataset and 500 pixels

for STARE dataset and 2500 pixels for HRF dataset, and

having intensity greater than specified threshold than the

mean intensity in GrnSBKRMImg are also removed. In this

way, we were able to get rid from most of the false positives

contributed by ROI and OD region. Shown in Fig. 2, the first

image from left side in bottom row is the final image obtained

after postprocessing.
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FIGURE 3. Pre-processing to obtain GrnSBKRMImg.

To evaluate the performance of the proposed system,

the following parameters are used:
i. True Positive Rate (TPR) or Sensitivity.

ii. False Positive Rate (FPR).

iii. Accuracy (ACC).

iv. Receiver Operating Characteristics Curve (ROC), for

DRIVE dataset only.

v. Matthews Correlation Coefficient (MCC).
These parameters are mathematically defined using

Eq. 4-7 except ROC which is a curve, obtained by plotting

sensitivity along y-axis and FPR on x-axis. These parameters

were calculated for each pixel inside the ROI region using the

first manual segmentation as a gold standard, which was used

by the authors in comparison Table 1. Definitions:

TP is true positive, if a pixel detected by our proposed sys-

tem as blood vessel and be consistent with its identification

by the ground truth.

FP is false positive, if the proposed system determines non-

vessel pixels as vessel pixels.

TN is true negative, if the proposed system detects a pixel

as non-blood and ground truth also indicates it as a non-vessel

pixel.

FN is false negative, if a pixel recognised by the proposed

system is a non-blood pixel whereas ground truth identifies it

as a vessel pixel.

MCC was introduced by [21] which measures the quality

of binary classification. It is also good for the case where

the two classes are imbalance as is the case of retinal vessel

segmentation. Its value will be +1 when the system does

not make any mistake i.e. ideal system no false positive and

no false negative. Similarly, its value will be −1, if all the

values are false positives and false negatives and no true

positive and true negative. As a result, the MCC value closer

FIGURE 4. ROC curve on DRIVE dataset.

to +1 indicates a better classification system.

TPR = TP/(TP + FN) (4)

FPR = 1 − TN/(FP + TN) (5)

ACC = (TP + TN)/(TP + TN + FP + FN) (6)

MCC = (TP × TN − FP × FN)/
√
((TP + FP)(TP + FN)(TN+FP)(TN+FN)) (7)

IV. RESULTS AND DISCUSSION

The results of the proposed system using DRIVE, STARE

and HRF datasets are described in Table 1. Fig. 4 shows

the ROC of the proposed blood vessel segmentation scheme

using DRIVE dataset. We achieved an accuracy of 0.9470,

sensitivity of 0.7421, false positive rate of 0.0227, and MCC

of 0.7525 on DRIVE dataset. As described in the previous

section that the MCC value indicates quality of binary clas-

sifier such as blood vessel segmentation system and for the

ideal system it will be +1. The proposed system achieved

MCC value of 0.7525 which is better than all the unsuper-

vised methods presented in Table 1 and very near to the 2nd

Observer (0.7601). The scheme was very effective for wide

vessel detection and we have negligible false positives around

the wide blood vessels. Although the proposed scheme is

good at detectingmediumwide and fine vessels, it still suffers

from over segmentation in the case of fine and medium wide

vessels.

The proposed system could detect blood vessels in OD

region and produced very few false positives in optic region

and ROI region. Fig. 5 shows the two extreme cases of results

of the proposed system. The upper row in Fig. 5 shows

a case where it achieved the best accuracy while bottom

row presents the case where it achieved the worst accuracy.

In Fig. 5, the first column is colored image, second column

is the ground truth, third column is segmented blood vessels

while in fourth column the same segmented image as in

column three where black pixels are true negative (TN), white

are the true positives (TP), red pixels are false positives (FP)
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FIGURE 5. Results of proposed system on DRIVE dataset describing best (top row) and worst (bottom row) case accuracies respectively. Colored in
red are the FP pixels while green are the FN pixels.

FIGURE 6. (a) and (b) shows in color and green channel the central reflex while (c) is obtained after image preprocessing and image (d) is the blood
vessel segmented image.

and green are the missed vessel pixels ( FN). It can be noticed

that in both of the images shown in Fig. 5, the proposed

system was able to detect most of the blood vessels inside

OD region. The false positives were mostly from over seg-

mentation of medium and fine vessels and those from lesions

both bright and dark. Fig. 6 shows the central reflex problem,

(a) and (b) shows a patch containing central reflex in color

and green channel respectively. While shown in Fig. 6 (c) is

the same patch but after image preprocessing, it is quite clear

that now the fat vessels have additional central reflex type

problems due to using the Gabor wavelet at single scale. This

additional central reflex as well as the one already presents

in the patch are well dealt by the Multiscale line detector

as shown in Fig. 6 (d), which describes the blood vessel

extracted from the patch. It is quite clear that the central

reflex issue was solved by the Multiscale Line Detector. The

performance comparison of the proposed method in terms of

execution time for DRIVE dataset is presented in Table 2. The

proposed method processes an image in less than 20 seconds

on average on unoptimized matlab code using core i5 with

6 GB RAM.

The proposed system achieved high sensitivity on

STARE dataset with comparable accuracy as described

in Table 1. The accuracy and MCC values were, respec-

tively, 0.9472 and 0.7294 which were higher than the human

observer. Fig. 7 shows the best case and the worst-case accu-

racies achieved by the proposed system on STARE dataset.

Similarly, onHRF dataset, the proposed system achieved very

167226 VOLUME 7, 2019



S. A. A. Shah et al.: Unsupervised Method for Retinal Vessel Segmentation

FIGURE 7. Results of proposed system on STARE dataset describing best (top row) and worst (bottom row) case accuracies respectively.
Colored in red are the FP pixels while green are the FN pixels.

FIGURE 8. Results of proposed system on HRF dataset describing best (top row) and worst (bottom row) case accuracies respectively. Colored
in red are the FP pixels while green are the FN pixels.

TABLE 2. Performance of segmentation in terms of execution time for
DRIVE dataset.

high accuracy and specificity reflecting the strength of the

technique. It achieved overall mean accuracy of 0.9559 and

overall mean MCC value of 0.7244. Fig. 8 shows the best

case and the worst-case accuracies achieved by the proposed

TABLE 3. HRF dataset.

system on HRF dataset. It is clear from the Fig.7 and 8 that

the proposed technique was not effective in dealing with

pathological images which are detected as false positives.

The mean values on individual groups i.e. DR, Glaucoma and

Healthy images are presented in Table 3. It can be seen that

the proposed technique achieved the highest mean accuracy
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and mean sensitivity on Glaucoma group while it achieved

the highest mean specificity of 0.9898 on healthy images of

HRF dataset. In general, the proposed system demonstrated

that it could detect the thick vessels with high accuracy and

negligible false positives in all the three datasets, while in case

of fine vessels the proposed system had a lower sensitivity

and many fine vessels were missed.

V. CONCLUSION

In this paper, a novel unsupervised method for blood vessel

segmentation was proposed. Single scale Gabor wavelet and

Multiscale Line Detector were utilized to extract the blood

vessel. A post processing scheme was devised based on

intensity feature to differentiate between wide blood vessels

and false positives due to the OD boundary and ROI bound-

ary. The effectiveness of the proposed technique was tested

on the datasets of DRIVE, STARE and HRF. The results

showed that the proposed technique was equally effective

on comparatively low-resolution dataset such as DRIVE,

on a challenging dataset STARE and on a high resolution

dataset (HRF). The proposed scheme is better in terms of

both accuracy and sensitivity than the supervised method of

Soares et al. [2] on DRIVE dataset. It can be noticed from

the Table 2 that the proposed method took less time than [2].

Overall, it achieved 0.9470 at a similar accuracy level as the

state-of-the-art methods while on average it took less than

20 seconds per image using unoptimized Matlab scripts.
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