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(Top Left) A visualization of the first two principal components of the i-vectors in a three-speaker conversation. The rest of the plots show
the result of VBEM-GMM clustering after a single iteration (top right), three iterations (bottom right), and the final results (bottom left).
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Abstract—In speaker diarization, standard approaches typically
perform speaker clustering on some initial segmentation before
refining the segment boundaries in a re-segmentation step to
obtain a final diarization hypothesis. In this paper, we integrate
an improved clustering method with an existing re-segmentation
algorithm and, in iterative fashion, optimize both speaker cluster
assignments and segmentation boundaries jointly. For clustering,
we extend our previous research using factor analysis for speaker
modeling. In continuing to take advantage of the effectiveness
of factor analysis as a front-end for extracting speaker-specific
features (i.e., i-vectors), we develop a probabilistic approach to
speaker clustering by applying a Bayesian Gaussian Mixture
Model (GMM) to principal component analysis (PCA)-processed
i-vectors. We then utilize information at different temporal res-
olutions to arrive at an iterative optimization scheme that, in
alternating between clustering and re-segmentation steps, demon-
strates the ability to improve both speaker cluster assignments
and segmentation boundaries in an unsupervised manner. Our
proposed methods attain results that are comparable to those of
a state-of-the-art benchmark set on the multi-speaker CallHome
telephone corpus. We further compare our system with a Bayesian
nonparametric approach to diarization and attempt to reconcile
their differences in both methodology and performance.

Index Terms—Bayesian nonparametric inference, factor anal-
ysis, HDP-HMM, i-vectors, principal component analysis, speaker
clustering, speaker diarization, spectral clustering, variational
Bayes.

I. INTRODUCTION

A UDIO diarization is defined as the task of marking

and categorizing the different audio sources within an

unmarked audio sequence. The types and details of the audio

sources are application specific, but can include particular

speakers, music, background noise sources, et cetera. This

paper concerns speaker diarization, or “who spoke when,”

the problem of annotating an unlabeled audio file where

speaker changes occur (segmentation) and then associating the

different segments of speech belonging to the same speaker

(clustering) [1].
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There exists a large amount of previous work on the diariza-

tion problem, much of which is reviewed in [1]–[3]. Because

of its relative simplicity, the Bayesian Information Criterion

(BIC) has served as a backbone and an inspiration for the de-

velopment of a number of initial approaches involving speaker

change detection and bottom-up hierarchical clustering [4], [5].

Bottom-up approaches in general, where a number of clusters or

models are trained and successively merged until only one re-

mains for each speaker, are easily the most popular in the com-

munity and consistently tend to achieve the state-of-the-art [6],

[7]. A more integrated, top-down method that has achieved suc-

cess is based on an evolutive Hidden Markov Model (HMM),

where detected speakers help influence the detection of other

speakers as well as their transitions and boundaries [8], [9]. An-

other approach was developed based on the “Infinite HMM,”

where a Hierarchical Dirichlet Process (HDP) was introduced

on top of an HMM (hence, an HDP-HMM), thus allowing for

up to a countably infinite number of HMM states (i.e., speakers)

[10], [11]. The authors of [10] enhanced the modeling ability of

the HDP-HMM by introducing a sticky parameter, which allows

for more robust learning of smoothly varying dynamics. Subse-

quently, the work in [11] further extends the model to allow for

explicit modeling of speaker duration.

In one sense, HDPs have become well-known in field of

Bayesian nonparametric statistics, and the use of Markov Chain

Monte Carlo (MCMC) sampling methods have enabled the

practical application of these methods to a variety of problems

[12], including diarization. However, variational inference

is another useful technique for approximate inference that

was first applied to the diarization problem in [5] and further

extended in [13]. These methods, alongside the successful

application of factor analysis as a front-end for extracting

speaker-specific features [13], [14], serve as a basis for much

of the work discussed in this paper.

Our previous work in [15] developed an approach to diariza-

tion based on the successes of factor analysis-based methods

in speaker recognition [16], as well as diarization [13], [14].

Inspired by the ability of the Total Variability subspace to ex-

tract speaker-specific features on short segments of speech [16],

[17], we proposed a method for performing speaker clustering

directly in the low-dimensional Total Variability subspace. By

evaluating the performance of our system on the same summed-

channel telephone data from the 2008 NIST Speaker Recogni-

tion Evaluation (SRE), we showed that our resulting work is not

only simpler than the Variational Bayes system formulated pre-

viously in [13], but can also achieve the same state-of-the-art

performance.

1558-7916/$31.00 © 2013 IEEE
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The success achieved in [15], however, was limited to the

task in which we knew there were exactly two speakers in the

given conversation. To solve the diarization problem in gen-

eral, we must address the setting in which the number of par-

ticipating speakers is unknown a priori. Our work in [18] ap-

proached this problem in incremental fashion. First, we moti-

vated the use of a spectral clustering algorithm as an alternative

to the previous approach involving K-means clustering based

on the cosine distance. More importantly, we adapted a heuristic

from previous work applying spectral clustering to diarization

and used it to determine the number of clusters (i.e., speakers)

[19]. Second, we verified that there exists a symbiotic relation-

ship between clustering and segmentation; that is, better ini-

tial segmentations yield better speaker clusters, and conversely,

better speaker clusters aid in providing cleaner speaker seg-

ments. Ultimately, our system performed competitively against

the state-of-the-art benchmark set by [14] on a corpus of multi-

speaker telephone conversations.

This paper continues the story of [15], [18] and extends upon

a number of explorations put forth in [20]. We posit that every

method considered—by us and others—for speaker diarization

has its advantages and disadvantages; as such, it becomes our

goal to design a system that can effectively combine the advan-

tages of different approaches and let them benefit each other

with minimal supervision. To be sure, this is not a method about

the combination or fusion of independently-operating systems.

Rather, we extend the algorithm proposed in [18], which it-

eratively refines its diarization hypotheses until some form of

convergence is obtained, to complement our consideration for a

more probabilistic approach to speaker clustering.

There exist a number of attempts at using factor anal-

ysis-based methods for speaker diarization. The inspirations

for our current saga, [13] and [14], also independently led to

the work presented in [21], which uses PCA and K-means for

two-speaker diarization in a way similar to our methods in [15].

Factor analysis-based features are used in [22] alongside the

Cross Likelihood Ratio as a criterion for hierarchical clustering,

while [23] performs clustering using PLDA as inspired by its

recent success in speaker verification. Moreover, the work in

[24] defines the assignment of speech segments—each repre-

sented using a factor analysis-based feature vector—to speaker

clusters in terms of an Integer Linear Program. And along the

lines of nonparametric methods for statistical inference, use

of the mean-shift algorithm for clustering these vectors was

explored in [25].

Although more detailed explanations can be found

throughout the rest of this paper, we first summarize the

novel contributions presented in our work below:

1) Demonstrate how applying principal component analysis

(PCA) on length-normalized (i.e., cosine similarity-based)

i-vectors renders them appropriate for analysis in a Eu-

clidean space (Section IV-B-1).

2) Utilize variational inference on a Bayesian Gaussian

Mixture Model (GMM) and an iterative component-death

process (Section IV-B-2) to simultaneously cluster and

detect the number of speakers in a given conversation.

3) Follow up on the work in [18] to further demonstrate and

explain the effectiveness of iteratively optimizing segment

boundaries and cluster assignments, thus taking advantage

of multiple levels of information (i.e., at different temporal

scales) to improve diarization hypotheses in unsupervised

fashion. (Section V-B).

4) Introduce a technique to utilize the uncertainty—that is,

the covariance—of an i-vector estimate, which involves

drawing a number of samples from each segment’s i-vector

posterior distribution that is proportional to the length of

the segment used to extract that i-vector (Section V-C).

In addition to presenting our proposed system in its entirety,

we hope this paper can also serve to establish the notion that

a factor analysis-based front-end is effective for extracting

speaker-specific features from a given speech segment regard-

less of its length. And lastly, we hope this work can serve

as an initial, though certainly not final, comparison between

our proposed clustering approach using variational inference

and the HDP-HMM approach using Bayesian nonparametric

methods [10].

The rest of this paper is organized as follows. Section II pro-

vides some background on the Total Variability approach as

a factor analysis-based front-end for extracting i-vectors, and

Section III outlines the basic setup of our diarization system.

At the theoretical heart of the paper, Section IV motivates a

speaker clustering approach based on the use of PCA and a

Bayesian GMM. In Section V, we outline a number of possible

refinements that can be made to the system, including an exten-

sion to the iterative re-segmentation/clustering algorithm that

was originally proposed in [18] and a concept known as dura-

tion-proportional sampling of the i-vector posterior distribution.

The results of our experiments are analyzed and explained in

Section VI, while Sections VII and VIII conclude our discus-

sion of this work and look ahead to future possibilities.

II. FRONT-END FACTOR ANALYSIS

At the heart of speaker diarization lies the problem of speaker

modeling; logically, successful techniques in speaker modeling

should also be capable of producing good results in diariza-

tion [13]. In recent years, methods in factor analysis, where a

low-dimensional space of “factors” is used to statistically model

a higher dimensional “feature space,” have proven to be very

effective in speaker recognition, the task of verifying whether

two utterances are spoken by the same speaker [16]. We pro-

vide some intuition on how factor analysis serves as a front-end

to extract relevant information from an audio sequence; more

technical expositions can be found at [16], [20], [26], [27].

A. Acoustic Features

We first assume that the incoming audio has been transformed

into a sequence of acoustic feature vectors. Specifically, we use

raw Mel-Frequency Cepstral Coefficients (MFCCs) extracted

every 10 ms over a 25 ms window. These MFCCs are 20-di-

mensional vectors and are the basis for our subsequent mod-

eling. In practice, a number of variants can be used; for example,

many speaker recognition systems also include first and second

derivatives into their feature vector, cepstral mean subtraction,

as well as a Gaussianization feature warping step that can nor-

malize for short-term channel effects [28]. However, in order to
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follow the footsteps of previous work as closely as possible, we

limit our consideration to just the use of raw cepstral features,

as that provided the best results in [13]. The rest of this paper

assumes that all audio has been transformed into a sequence of

acoustic feature vectors.

B. The Total Variability Approach

To enhance the classical method of modeling speakers using

Gaussian Mixture Models (GMMs) [29], recently developed

methods apply factor analysis to supervectors—a vector con-

sisting of stacked mean vectors from a GMM—in order to better

represent speaker variabilities and compensate for channel (or

session) inconsistencies [16]. One such approach is Total Vari-

ability, which decomposes a speaker- and session-dependent su-

pervector as

(1)

where is still the speaker- and session-independent super-

vector taken from the Universal Background Model (UBM),

which is a large GMM trained to represent the speaker-inde-

pendent distribution of acoustic features [29]. is a rectan-

gular matrix of low rank that defines the new total variability

space and is a low-dimensional random vector with a nor-

mally distributed prior . The remaining variabilities not

captured by are accounted for in a diagonal covariance ma-

trix, . The vector can be referred to as a “total

factor vector” or an i-vector, short for “Intermediate Vectors”

for their intermediate representation between an acoustic fea-

ture vector and a supervector.

One way to interpret (1) is to see the columns of as a limited

set of directions from which can deviate from , the latter

of which is a starting point, or bias, taken from the UBM. Ul-

timately, for some utterance , its associated i-vector can

be seen as a low-dimensional summary of the speaker’s distri-

bution of acoustic features with respect to the UBM.

To avoid getting bogged down in the mathematics, we omit

the details regarding the training and estimation of and

via an Expectation-Maximization (EM) algorithm. A thorough

treatment can be found in Subsection 3.3.1 of [20] as well as

in [26]. For convenience throughout the rest of this paper, we

use the term “i-vector extraction” to denote estimation of the

posterior distribution of (mean and covariance). Moreover,

the term “i-vector” refers specifically to the posterior mean of ,

while “i-vector covariance”will refer to its posterior covariance.

Lastly, the cosine similarity metric has been applied success-

fully in the Total Variability subspace to compare two speaker

i-vectors [16]. Given any two i-vectors and , the cosine

similarity score is given as

(2)

Equivalently, this means we can normalize the i-vectors by their

respective magnitudes such that they all live on the unit hyper-

sphere and the measure of the distance between two i-vectors is

given by their angle.

III. SYSTEM SETUP

We set up the various components of our diarization system

to be consistent with those of our previous work in [15], [18].

The rest of this section outlines the various parts of the system.

A. Evaluation Protocol

Before diving into the specifics, it is helpful to better un-

derstand how our system will be evaluated. Set up by NIST

[30], the Diarization Error Rate (DER) is the primary perfor-

mance measure for the evaluation of diarization systems and

is given as the time-weighted sum of the following three error

types: Miss (M)—classifying speech as non-speech, False

Alarm (FA)—classifying non-speech as speech, and Confusion

(C)—confusing one speaker’s speech as from another [30]. The

reference segmentation is a transcript of speech and speaker

boundaries as given by the corpus. Following the conventions

for evaluating diarization performance, the evaluation code

ignores intervals containing overlapped speech as well as errors

of less than 250 ms in the locations of segment boundaries

[30]. Although overlapped speech intervals do not count in

evaluating DER’s, the diarization systems do have to contend

with overlapped speech in performing the speaker segmentation

and clustering.

B. Segmentation

In order to focus solely on the speaker confusion portion of

the Diarization Error Rate (DER) and not be misled by mis-

matches between the reference speech/non-speech detector and

our own (i.e., miss and false alarm errors), we follow the con-

vention of previous works [13], [14] and use the provided refer-

ence boundaries to define our initial speech/non-speech bound-

aries. Within these boundaries, we restrict each speech segment

to a maximum length of one second, and an i-vector is extracted

from each. It should be noted that this rather crude initial seg-

mentation may result in segments that contain speech frommore

than one speaker.

C. Clustering

The clustering stage involves grouping the previously-ex-

tracted segment i-vectors together in such a way that one cluster

contains all the segments spoken by a particular speaker. And

unless given a priori, the number of speakers (clusters)

must also be determined at this stage. Because it is known that

we are strictly diarizing conversations (involving two or more

participants), we require that , where is our estimate

of . There exist many different ways to perform clustering;

Section IV provides an in-depth look at our choice of clustering

method.

D. Re-Segmentation

Given a set of segments with associated cluster labels, we

use the exact same re-segmentation algorithm discussed in both

[13], [15] to refine our initial segmentation boundaries. At the

acoustic feature level, this stage initializes a 32-mixture GMM

for each of the clusters (Speakers and non-

speech NS) defined by the previous clustering. Posterior proba-

bilities for each cluster are then calculated given each feature

vector (i.e., ). Pooling
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these across the entire conversation provides a set of weighted

Baum-Welch statistics from which we can re-estimate each re-

spective speaker’s GMM. To prevent this unsupervised proce-

dure from going out of control, the non-speech GMM is never

re-trained. During the Viterbi stage, each frame is assigned to

the speaker/non-speech model with the highest posterior prob-

ability. This algorithm runs until convergence but is capped

at 20 Viterbi iterations, each of which involves 5 iterations of

Baum-Welch re-estimation.

E. Final Pass Refinements

As in [15], we can further refine the diarization output by ex-

tracting a single i-vector for each respective speaker using the

(newly-defined) segmentation assignments. The i-vector corre-

sponding to each segment (also newly extracted) is then re-as-

signed to the speaker whose i-vector is closer in cosine simi-

larity. We iterate this procedure until convergence—when the

segment assignments no longer change. This can be seen as a

variant of K-means clustering, where the “means” are computed

according to the process of i-vector estimation detailed in [16].

IV. SPEAKER CLUSTERING

Our previous work has shown that K-means clustering using

the cosine distance is capable of achieving good clustering re-

sults on conversations containing any number of speakers [15],

[18], [20]. Unfortunately, K-means requires as input the number

of clusters to find. In [18], we adapted the use of a heuristic to

estimate the number of speakers in a conversation by using a

spectral clustering method, which analyzes the eigen-structure

of an affinity matrix. This technique gave reasonable perfor-

mance; however, its success as a heuristic only served to further

inspire the development of a more principled approach.

The explorations of [20] touched upon the use of Bayesian

model selection as an analog for determining the number of

speakers in a conversation. Bayesian methods have the advan-

tage of naturally preferring simpler models for explaining data.

At least in theory, they are not subject to the overfitting prob-

lems which maximum likelihood methods are prone to [13].

A. The Bayesian GMM and Its Variational Approximation

Let us consider the graphical model of a Bayesian GMM

as depicted in Fig. 1. Suppose each observed i-vector ,

, is generated by some latent speaker , which is

drawn according to some Dirichlet distribution (parametrized

by a vector ) over the mixing coefficients . By symmetry, we

choose the same parameter for each component of ; and as

we will further discuss in Section VI-D, a small value of will

cause the resulting posterior distribution of to be influenced

primarily by the observed data rather than by the prior [31].

We also introduce a Gaussian-Wishart prior to govern the

mean and covariance of the th Gaussian component.

Specifically, we assume , thus illustrating

the dependence of on . We typically choose ; a

more in-depth discussion of this model can be found in [31].

In applying this model, we ignore the time indices by which

the i-vectors are created and treat each as an independent and

identically distributed (i.i.d.) observation generated by some un-

known (latent) speaker and attempt to identify the number of

Fig. 1. A directed acyclic graphical model representing a Bayesian GMM.
The dotted plate representation denotes a set of repeated occurrences, while
the shaded node denotes an observation. For the parameters, represents

and represents , while the hyperparameters are
shown in boxes.

clusters (i.e., speakers) in addition to associating each i-vector

(i.e., segment) with a cluster. The number of clusters can be seen

as the number of mixing coefficients in that are numerically

non-trivial, though we also consider an iterative re-initializa-

tion heuristic in Section IV-B-2. And lastly, we can simply as-

sociate each i-vector to the cluster that has the highest posterior

probability.

Unfortunately, the richness of Bayesian theory often renders

exact probabilistic inference computationally intractable. To

that end, we drew upon previous work on variational inference

and applied it to the speaker clustering problem [5]. The basic

idea of variational inference is to formulate the computation

of a marginal or conditional probability distribution in terms

of an optimization problem [12], [31]. This (generally still

intractable) problem is then “relaxed,” yielding a simplified

optimization of a lower bound to the marginal log-likelihood1

known as the free energy. To maximize this free energy, it is

possible to derive an iterative Expectation-Maximization (EM)

algorithm known as Variational Bayesian EM (VBEM). For

the exact algorithmic details, we refer the interested reader to

[5], [31], [32] for a more complete treatment of this topic.

B. VBEM-GMM Clustering

We turn to VBEM to perform tractable, albeit approximate,

inference on a Bayesian GMM. The derivation is straight-

forward, and the exact parameter updates for this resulting

VBEM-GMM algorithm can be found in Section 6.3 of [20] as

well as in [5], [31]. Yet upon rote application of VBEM-GMM

to a “bag” of i-vectors extracted from an utterance, it was clear

that Gaussians are not an adequate representation for data that

live on the unit hypersphere. We subsequently applied varia-

tional inference to mixtures of von Mises-Fisher distributions

(Mix-vMF), but its performance did not provide sufficient gains

to justify its increased complexity over the use of VBEM-GMM

[20]. Ideally, there would exist some way to map our data from

the unit hypersphere into a reasonable Euclidean space in which

a rote application of VBEM-GMM would yield good results.

1) Dimensionality Reduction: A typical five-minute conver-

sation is segmented into approximately 300 i-vectors, each of

which lives on a 100-dimensional hypersphere. However, we

should also note that each conversation in our evaluation set

1i.e., , where is the data and is some
given model.
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Fig. 2. (Top left) A visualization of the first two principal components of the
i-vectors in a three-speaker conversation. The rest of the plots show the result
of VBEM-GMM clustering after a single iteration (top right), three iterations
(bottom right), and the final results (bottom left). After iterations 1 and 3, we
can see that the Gaussians that do not model any significant amount of data
have collapsed to the origin (i.e., their prior distribution). The clustering of the
i-vectors in this utterance ultimately resulted in a DER of 6%.

contains nomore than seven speakers,2 so clustering these i-vec-

tors by speaker should not require that our data be represented

in such a high dimensional space. The plot on the top left of

Fig. 2 shows the first two principal components of the i-vectors

in a three-speaker conversation after applying Principal Com-

ponent Analysis (PCA). These points no longer lie on a unit

hypersphere; rather, the Euclidean distance is now a reasonable

metric for our data. Lastly, we can see that the clusters are in-

deed distinct despite such a limited representation, thus further

supporting the validity of applying VBEM-GMM as previously

mentioned.

2) An Iterative Component-Death Process: Ultimately,

we would like the output of VBEM-GMM to attribute the

responsibility of each i-vector to a single Gaussian; thus, how

we determine the exact number of Gaussians necessary for

our VBEM-GMM warrants consideration. In a so-called “birth

process,” we might begin with a single Gaussian and continu-

ally split components along some direction of maximal variance

until the free energy is maximized [32]. Another possibility is

to consider the entire range of possible cluster numbers, run

VBEM on each of them, and select the result that achieves

the largest free energy [31]. Empirically, we obtained our best

results using a “component-death process,” where we over-ini-

tialized the number of cluster components (e.g., ,

although another initialization heuristic will be discussed in

Section V-A) and ran VBEM. Often upon convergence of our

free energy optimization, only a strict subset of those clusters

will actually model any reasonable portion of the

variability within the data. As such, we subsequently remove

the Gaussians that are not responsible for modeling any data

and randomly re-initialize VBEM with clusters. To be

2To be sure, this fact is not used as an input to our diarization system.

sure, this means we completely restart the VBEM clustering

procedure as though this were the first time we have ever

seen the data; the only difference is that we initialize with

clusters instead of . This process continues until

for some , at which point the number of clusters has

converged and we have the result of our clustering.3

Viewed clockwise from the top right, Fig. 2 shows the

intermediate results of this clustering on the first three prin-

cipal components of the same three-speaker conversation as

mentioned in the preceding section. After the first iteration

of VBEM-GMM (top right), seven Gaussian components

remain. After the third iteration (bottom right), four compo-

nents remain. At the end, we see that iterative VBEM-GMM

correctly detects and clusters the three-speaker conversation

accordingly (bottom left). The intermediate iterations (top

and bottom right) show how the VBEM-GMM clustering free

energy can get stuck in local optima, a feat not uncommon

in many approximate inference methods. For this reason, the

random re-initializations give the clustering method additional

opportunities to find a global optimum.

V. SYSTEM REFINEMENTS

The previous section explained our proposed method for

speaker clustering; however, there also exist many areas in

which a speaker diarization system can refine and optimize its

performance. In this section, we consider a number of other

possible techniques for improving our performance at the

system level, the feature representation level, and the initializa-

tion level.

A. Initialization With Spectral Clustering

For our baseline experiment, the VBEM-GMM clustering

method is initialized using K-means clustering (standard Eu-

clidean distance) with . This value of was chosen

arbitrarily so as to significantly over-initialize the number of

clusters without being unreasonably large. A better initializa-

tion, however, would allow the algorithm to converge faster. In

[18], we obtained reasonable estimates of speaker number by

adapting the use of a heuristic based on a spectral clustering al-

gorithm [19]. The details of the algorithm itself as well as an

intuitive explanation for why it works is given in [18]; here, we

simply outline the steps of the algorithm needed to estimate the

number of clusters.

Assume we are given i-vectors (each

corresponding to a speech segment 1 sec in length).

Form the affinity matrix , where

when and . Here,

, where is

given by (2). For reasons explained in Section 4.1 of [18], the

scaling factor is set to be 0.5. Define to be the diagonal

matrix whose -element is the sum of ’s -th row, and

construct the matrix [33].

3We should admit that this is not at all a fully Bayesian solution, nor did
we intend for it to be. We chose to use a Bayesian GMM and, hence, efficient
variational inference, because in contrast to maximum likelihood, such methods
are less likely to overfit the data when presented with an over-initialization of
the number of clusters.
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It was seen experimentally that the sorted eigenvalues of

, say , exhibit exponential decay and that

the number of speakers in a conversation correspond consis-

tently to when the gradient of these eigenvalues exceeds some

threshold . As such, to determine the number of clusters, we

can fit, in a way that minimizes the mean squared error, a smooth

exponential to , where and

. We then take to be the smallest value whose deriva-

tive [18].

Because of the non-increasing nature of our iterative

VBEM-GMM clustering (i.e., ), we need to en-

sure that the spectral clustering-based initialization is, with

high probability, greater than the actual number of speakers

in the conversation . Indeed, we want a more informed

initialization than , but it would be far worse to

initialize the clustering with an underestimate that forces some

clusters to model speech from more than one speaker, thereby

irreversibly corrupting our speaker models. Upon looking at

the error distribution of —the number of speakers estimated

via spectral clustering—over development data, we introduce a

bias such that our initialization , where

is the standard deviation of the error distribution of and the

ceiling function ensures that is an integer.

B. Iterative Optimization

It was shown in [18] that when the number of speakers needs

to be estimated, improved results are obtained via an iterative

optimization procedure, which alternates between clustering

and re-segmentation until the diarization hypothesis converges.

Similar to the notion of giving the iterative VBEM-GMM

clustering method more opportunities to find a global optimum,

the iterative optimization procedure gives the system more

opportunities to re-estimate the number of speakers using

(hopefully) cleaner and more refined speech segments. We

follow the explanation provided in [18] to reiterate the intuition

behind this idea.

The use of factor analysis for speaker diarization allows us to

take advantage of multiple levels of speaker information. I-vec-

tors are designed to provide information specific to speaker (and

channel) identity, which is important for clustering; however,

the effectiveness of an i-vector is proportional to the length of

the speech segment from which it is extracted, thus it is not as

well-suited for issues requiring finer temporal resolution (e.g.,

speaker change detection). By contrast, lower-level acoustic

features such as MFCCs are not quite as good for discerning

speaker identities, but can provide sufficient temporal resolu-

tion to witness local speaker changes and segment boundaries.

To that end, we formulate an algorithm that optimizes both

segmentation boundaries and segment cluster assignments

in iterative fashion. More specifically, we can alternate be-

tween VBEM-GMM clustering (done at the i-vector level) as

described in Section IV-B and applying the re-segmentation

method (done at the acoustic feature level) as described in

Section III-D until successive diarization hypotheses “con-

verge.” In general, this iterative concept was proposed initially

in [34] and then adopted by other systems in practice [6], [9].

Our exact approach was inspired by the work in [13]—they

began with a crude initial segmentation and ran factor anal-

ysis-based clustering followed by Viterbi re-segmentation and

then a second pass of the clustering (using the new segmenta-

tion) to obtain a final diarization hypothesis—we have simply

formalized this idea and introduced the notion of convergence.

Let us approximate a “distance” between two diarization

hypotheses and by running it through a diarization

evaluation script as provided by NIST [30]. Then we can define

a “convergence” to be when this error rate (i.e., )

between the hypotheses from the previous two iterations is

below some threshold . In our experiments, we set

and allow a maximum of 20 total iterations.4 These values were

set to optimize a combination of both system performance and

run-time on the development set. Ultimately, our test results

required an average of 3.7 iterations per conversation; the

numbers varied widely by conversation,5 however, and were

independent of both the number of speakers present and the

resulting DER.

It should be noted that the re-segmentation output from

Section III-D includes both segment boundaries and cor-

responding cluster assignments. During this iterative opti-

mization process, however, the assignment labels from the

re-segmentation output are not provided as input to the clus-

tering stage—only the segment boundaries are considered.

Lastly, the number of speakers is also re-estimated at the

start of each clustering stage. By requiring that the clustering

and re-segmentation steps are run in this completely disjoint

fashion, we ensure that information from different temporal

resolutions is used only for its designed purpose; that is, only

information at the i-vector level will be used for the clustering

of segments, and only information at the acoustic feature level

will be used to determine segment boundaries.

C. Duration-Proportional Sampling

Our discussion thus far has been restricted to the use of

i-vectors as point estimates. During clustering, all i-vectors are

treated as independent, identically distributed i.i.d. samples

from some underlying distribution. This assumption, however,

is not necessarily true. For example, a segment that is five

seconds long gives a much better representation of the speaker

than a segment 0.5 s in length; yet, both segments yield i-vec-

tors of the same dimensionality and are treated equally during

clustering.

Recall from Section II-B that the “i-vector” is merely the pos-

terior mean of as given by (1). There is also an associated

posterior covariance of , which we termed “i-vector covari-

ance,” whose determinant (i.e., “volume”) is actually inversely

proportional to the number of acoustic frames used to estimate

the posterior distribution [20], [26]. Thus, the longer the seg-

ment used to obtain an i-vector, the smaller its posterior covari-

ance (uncertainty), and the more robust the speaker estimate.

To make use of durational and covariance information, we

consider the following sampling scheme. For a given i-vector

4Setting tighter convergence threshold, i.e., smaller values of , brought little
improvement to overall performance at the expense of significantly increased
computation time.

5Standard deviation iterations, and 4% of diarization hypotheses did
not converge after 20 iterations.
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TABLE I
SUMMARY OF CALLHOME CORPUS BROKEN DOWN BY NUMBER OF
PARTICIPATING SPEAKERS AND LANGUAGE SPOKEN. THE NUMBERS IN
PARENTHESES REPRESENT THOSE IN THE DEVELOPMENT SET, WHILE THE

VALUES NOT ENCLOSED IN PARENTHESES REPRESENT THOSE IN THE TEST SET

and its covariance , we draw a number of samples

from this distribution proportional to the time duration of the

segment used to estimate . This technique makes

use of durational information in two ways: (a) a shorter segment

results in relatively fewer i-vector samples, and (b) a shorter

segment results in a covariance that is relatively large,

thus its samples will range more widely. Conversely, a long seg-

ment will have a lot of samples concentrated in a small part of

the space. This takes advantage of the difference in uncertainty

between segments of different length by increasing the relative

importance of longer, more reliable segments for the estimation

of our respective speaker clusters.

In our experiments, we sample from our i-vectors at a rate

of four samples per second of conversation; our original ap-

proach using one-second segments resulted in approximately

one i-vector per second. Similar to the convergence criterion

in Section V-B, this sample rate was chosen to optimize be-

tween increased system performance and run-time, as a higher

sampling rate requires more computation for the clustering al-

gorithm. Given these samples, we apply PCA and put them

through the VBEM-GMMclustering as usual, resulting in an as-

signment of each sample to some corresponding GMM cluster.

We then assign a cluster to the respective i-vector from which

each of these samples was drawn by picking the GMM cluster

that represents the majority of its samples.

VI. EXPERIMENTS

In order to use the same telephone-based Total Variability

framework from [15], [18] and utilize the state-of-the-art re-

sults from [14] as a benchmark for comparison, we evaluate our

system on the 2000 NIST SRE subset of the multilingual Call-

Home data, a corpus of multi-speaker telephone conversations.

This amounts to 500 recordings, each 2–5 minutes in length,

containing between two and seven participants [35]. Also as-

sociated with this test set is a development set,6 which consists

of 42 conversations, each at least five minutes in length, fea-

turing between two and four speakers. With the exception of

Japanese, all the languages present in the CallHome test set are

also represented in the development set. Table I provides a sum-

mary of the CallHome corpus, including both the development

set (in parentheses) and the test set, broken down by number of

6We would like to thank Craig Greenberg of NIST for making this available.

speakers and language spoken. We will break down our results

to show diarization performance on conversations involving the

different numbers of speakers.

A. Implementation Details

We obtain our i-vectors using the same Total Variability ma-

trix of rank 100 that achieved the best reported results in both

[15] and [18]. This matrix was trained from a gender-indepen-

dent UBM of 1024 Gaussians built on 20-dimensional MFCC

feature vectors without derivatives. Both the UBM and were

built using the Switchboard (English) and Mixer (multilingual)

Corpora; the latter was used during the 2004, 2005, and 2006

NIST SREs. Overall, these data include over 1000 hours of

speech from a variety of different languages and, for the most

part, match the data used to train the models in [13].

A primary goal of designing this system was to require the

tuning of as few parameters as possible. Of course, some were

unavoidable—for example, defining the threshold for diariza-

tion hypothesis convergence (Section V-B), or estimating the

bias term in the spectral clustering initialization of the number

of speakers (Section V-A)—but even those required only coarse

adjustments. The Bayesian structure of our speaker clustering

method further limited the number of hyperparameters that re-

quire consideration; in fact, the only exception was choosing the

Dirichlet concentration parameter on the distribution of mixture

weights for VBEM-GMM.

There exist a number of methods for choosing hyperparam-

eter values. To obtain an empirical prior, Section 3.1.3 of [5]

outlines an EM-like algorithm that converges on values of the

hyperparameters which maximize the variational free energy.

An even more principled way to approach this would be to as-

sume a prior distribution on the hyperparameters and sample

them accordingly [10]. For simplicity, we chose to use the hy-

perparameters that achieve the best result (in the DER sense) on

the associated development set. We should note immediately,

however, that there is a significant mismatch between the devel-

opment set and the test dataset; in particular, test conversations

feature up to seven speakers and can be as short as two minutes.

We demonstrate in Section VI-D that our proposed methods are

relatively robust to this mismatch; the subsequent results we re-

port in Sections VI-B and VI-C are based on the parameters that

achieve the best DER performance on the development dataset.

We make use of an existing MATLAB implementation of

VBEM-GMM provided in [36] and build our VBEM-GMM

clustering as described in Section IV-B.We run PCA on a per-ut-

terance basis using our length-normalized i-vectors and keep

only the first three principal components to perform clustering

in the manner depicted by Fig. 2. There exist many ways to re-

fine this method of dimensionality reduction; however, that is

beyond the scope of this paper, and we postpone further discus-

sion of this topic until Section VIII.

B. System Comparisons

The plot at the top of Fig. 3 shows the results of our

VBEM-GMM clustering in comparison with our proposed

system refinements as well as the state-of-the-art benchmark

set on this task in 2008 by Castaldo, et al. [14], which we show

in black. Shown in magenta are the results of our initial baseline
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Fig. 3. (Top) results comparing the baseline initialization of VBEM-GMM
using , in magenta, with an initialization using the spectral clustering
heuristic described in Section V-A, in blue. (Middle) results obtained after in-
corporating the various system refinements proposed in Section V. In blue is
our baseline that initializes VBEM-GMM using the spectral clustering heuristic
(same as the plot on top). We show the state-of-the-art benchmark results from
[14] in black. (Bottom) for each of the systems whose DER results we show
above, we also show its Average Cluster Purity (ACP) using the same line color
coordination and similar marker type.

system, in which we implement the VBEM-GMM clustering

on 3-dimensional, PCA-projected, and length-nor-

malized i-vectors. After clustering, we run a single iteration

of the re-segmentation algorithm discussed in Section III-D

and finish with a set of final pass refinements (Section III-E).

We can see from the plot that our baseline achieves results

similar to that of [14] on conversations involving four or more

speakers. However, our system does not perform as well on

conversations containing only two or three speakers, which

make up the overwhelming majority of the dataset. A similar

story unfolds when we initialize using the spectral clustering

heuristic discussed in both Section V-A and [18]. Shown in

blue, this method of initialization provides slightly better results

in the two-speaker case and similar results otherwise compared

to the initial baseline system .

1) Regarding Diarization Error: One of the reasons that can

be attributed to this large error deviation is that of over-esti-

mating the number of speakers. This effect is most prominent

in the case of two-speaker conversations. For example, suppose

a two-speaker conversation is segmented such that all the seg-

ments attributed to speaker A are assigned to cluster I, but the

segments attributed to speaker B are assigned arbitrarily to clus-

ters II and III. On one hand, our diarization system has done a

reasonable job of distinguishing between two speakers; on the

other, it has failed to realize that two separate clusters (II and

III) actually belong to one speaker. Such an error is forgivable

and, in fact, can be easily remedied in a post-processing step

by the use of a more powerful speaker recognition system, such

as in [16]; conversely, it would have been much worse to com-

bine two different speakers into a single cluster. Unfortunately,

the less-forgiving Diarization Error Rate (DER) penalizes both

types of errors equally heavily: If cluster I represents half of

the conversation time and each of clusters II and III represent a

quarter of the conversation time, then the DER would be 25%,

which is a bit unreasonable given that each of these clusters are

nevertheless pure representations of exactly one speaker.

In light of this, it might be reasonable in subsequent work to

consider another performance metric for judging our methods,

such as Average Cluster Purity (ACP) [5]. This, of course, has

yet its own set of advantages and disadvantages—namely that

we can obtain perfect cluster purity (i.e., 100%) by letting each

segment be its own cluster—but for the sake of providing ad-

ditional perspective in contrast to DER, we display the ACP of

our diarization results at the bottom of Fig. 3. In general, if a

particular cluster represents the speech of different speakers

speaking seconds of speech, then its purity is the proportion

of corresponding to the speaker that speaks the most in that

cluster. Whereas a one-to-one mapping is required in the com-

putation of DER, cluster purity allows for many clusters to rep-

resent a single speaker. We compute ACP by taking a time-

weighted average of each cluster’s purity such that a cluster rep-

resenting a larger proportion of the conversation will contribute

more to the ACP.

2) Evaluating System Refinements: Confirming our hypoth-

esis from Section V-A, the spectral clustering initialization

gives slightly better results than the baseline initialization

with speakers. Its most prominent effect was on

two-speaker conversations, where a more informed initial-

ization gives the VBEM-GMM clustering a better chance of

properly detecting two speakers, thus driving down the DER.

Our subsequent experiments use the spectral initialization as

the new starting point (baseline).

The two lower plots on Fig. 3 show the results obtained

after incorporating the various system refinements proposed in

Section V. We can see that the iterative re-segmentation/clus-

tering optimization (Section V-B) has a mostly positive effect

on both DER and ACP, as does the duration-proportional

sampling (Section V-C), which we implemented at a rate of

four (i-vector) samples per second. Incorporating all of these

system refinements gives our best overall performance.

C. Final System

To facilitate understanding, a block diagram of our final

system is shown in Fig. 4. Given some initial speech/non-speech

segmentation, this system extracts length-normalized i-vectors
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Fig. 4. Final system diagram.

and then, in parallel with estimating the number of clusters

using our modified spectral clustering heuristic, performs both

duration-proportional sampling and a PCA-projection to three

dimensions. At this point, we run VBEM-GMM clustering and

Viterbi re-segmentation. This process iterates until successive

diarization hypotheses meet our convergence criterion, after

which we run the hypothesis through a final pass of refinements

as discussed in Section III-E to obtain our final result.

We also compare this final system to the system proposed in

[18], where the setup is analogous to the one proposed in this

paper; the difference is that our previous method used only the

spectral clustering heuristic to determine the number of speakers

and K-means (based on the cosine distance) to obtain the ac-

tual cluster assignments without the need for dimensionality re-

duction via PCA. Otherwise, the iterative re-segmentation/clus-

tering optimization and final pass refinements are common to

both approaches. Fig. 5 shows this comparison, and we can see

that our current system in question (shown in red) provides a

noticeable improvement from our previous approach in [18] (in

blue) on conversations involving four or more speakers while

displaying no substantial difference in performance on conver-

sations involving two or three speakers. Similarly, our current

system performs better than the state-of-the-art benchmark (in

black) in all settings except for conversations involving just two

speakers.7

Table II summarizes the hyperparameters that were used to

generate our final results, while the bottom of Fig. 5 shows the

resultingACP of these final systems. The green-dashed line with

inverted triangular markers labeled “Interspeech 2011” corre-

sponds to the case in which the number of speakers is given,

and we can see that our final system (red line, circular markers)

also provides the purest clusters overall. Across all the conver-

sations in the CallHome test set, our Interspeech 2011 system

provides an ACP of 89.8%, the Interspeech 2012 system pro-

vides an ACP of 90.8%, and the system we propose in this paper

gives an overall ACP of 91.2%.

With regard to computational requirements, we did not run

a controlled benchmark test on the amount of time it took to

complete an evaluation, nor did we take any measure to opti-

mize the performance of our implementation to ensure its effi-

ciency. As such, our mix of MATLAB, Perl, and Bash scripts

required around 60 hours to evaluate the CallHome test set (500

recordings, 2–5 minutes each 30 hours) on a single quad-core

7We discuss the results obtained using “Interspeech 2011 ” (dashed
light blue line, upright triangular markers) as well as “Interspeech 2011
(K=given)” (dashed green line, inverted triangular markers) in Section VI-E.

Fig. 5. (Top) final results comparison between our current final system (in red),
the system from our previous work in [18] (in blue), and the state-of-the-art
benchmark system proposed in [14] (in black). Also shown are results from the
initial system in [15] that always assumes the presence of only two speakers

from our initial work (in light blue) as well as results from the same
system where we provide the number of speakers, i.e., is given (in green).
(Bottom) we also provide a comparison between the resulting average cluster
purity of these systems. Note that the points labeled “Interspeech 2011” corre-
spond to the case in which the number of speakers is given.

TABLE II
SYSTEM PARAMETERS AND THEIR VALUES USED TO OBTAIN THE RESULTS
SHOWN THROUGHOUT THIS PAPER. UNLESS EXPLICITLY STATED, NONE
OF THESE VALUES WERE OPTIMIZED ON THE CALLHOME TEST SET;

THEY WERE EITHER INHERITED FROM PREVIOUS WORKS [13], [15], [18]
OR OPTIMIZED ON THE CALLHOME DEVELOPMENT SET

machine. We should note, however, that while the methods dis-

cussed here are designed more for optimal performance than to
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Fig. 6. Results on CallHome test set using different values for the Dirichlet
concentration parameter, .

obtain a lightweight diarization system, they can be tuned and

modified to work much more quickly. For example, the main

computational bottleneck lies in the convergence of our iterative

optimization scheme, which can—and in 4% of conversations,

did—require up to 20 as long as a one-pass, sequential diariza-

tion system. For each subsequent iteration, new i-vectors need to

be extracted for each segment of speech; a pairwise affinity ma-

trix and its eigenvalues need to be computed for spectral anal-

ysis; then VBEM-GMM clustering is run followed by the entire

Viterbi re-segmentation process on acoustic features. In general,

each of these individual steps can run reasonably quickly, but the

fact that iterative optimization may require these steps to repeat

a variable number of times inevitably increases the computation

time significantly.We reserve for future analysis the effect of re-

laxing our DER convergence threshold, (Section V-B), on the

resulting system performance.

D. Parameter Robustness

To evaluate the robustness of our system, we explore the sen-

sitivity of our test results to different values of the Dirichlet con-

centration parameter, . This parameter quantifies a prior be-

lief of how evenly the responsibility should be shared amongst

the various components of our mixture model. In particular, let-

ting will yield clustering solutions in which more and

more of the mixing coefficients are zero; that is, more and more

mixture components will not model any data. This makes sense

for our purposes, as we deliberately over-initialize the number

of clusters in order to prune them away via an iterative compo-

nent-death process as described in Section IV-B-2.

To arrive at the results shown in Figs. 3 and 5, we picked

the value of that achieved best results (in the DER sense) on

the CallHome development set. Upon experimenting with dif-

ferent values of , however, we observed that the resulting dif-

ferences in performance on the CallHome test set were mostly

minor and insignificant. Fig. 6 shows these results, which sug-

gest that our proposed system is not terribly prone to overfitting

on development data and can potentially generalize well to other

test sets, though further experimentation would be required be-

fore we can formalize this claim.

E. Discussion

Admittedly, it is rather frustrating that we are unable to

do better on two-speaker conversations. Incidentally, our

final system is based off of the same setup that obtained

state-of-the-art results in the task of two-speaker diarization on

2008 NIST SRE data, where the number of speakers is given.

In [15], our system performed at least as well as each of the

systems described in [13], one of which was actually the same

system (Castaldo 2008 [14]) that we use as our benchmark in

this paper.

There is no easy way to reconcile the inability of our final

system to match the performance of our two-speaker diariza-

tion system in [15]. One possible explanation is that even de-

spite sweeping across different Dirichlet concentration param-

eter values on the test set, we seem prone to over-estimating the

number of speakers when diarizing two-speaker conversations.

We discussed previously in Section VI-B-1 the harshness of the

DER metric on over-estimating the number of speakers. Further

analysis shows that on the 136 out of 303 two-speaker conver-

sations in which we correctly detected two speakers, our DER

is in fact lower than the DER reported in [14] (6.5% vs. 8.7%).8

Andwhen the system is given that there are exactly two speakers

in the conversation, the DER drops even further to 4.3% [18].

These are, of course, unfair comparisons; however, they do pro-

vide some measure of consolation for the seeming inconsisten-

cies that we see in our final results.

This brings to bear the question of what results we would ob-

tain if our system were to simply assume that every conversa-

tion contained exactly two speakers. Judging by the distribu-

tion of speakers per conversation on the last row of Table I, it

is clear that two-speaker conversations make up the majority

of this test set. Just to get a better sense of the baseline stan-

dard for our proposed techniques, we run the exact system from

[15], which obtained state-of-the-art diarization results on two-

speaker conversations, on the CallHome data and show their re-

sults (in light blue) in Fig. 5. To be sure, this system extracts

an i-vector for each speech segment, runs K-means clustering

using the cosine distance, and then undergoes a single pass of the

Viterbi re-segmentation algorithm (without iterative optimiza-

tion) before going through a set of final pass refinements. Not

surprisingly, this method achieves results on two-speaker con-

versations (5.1% DER) that approach the 4.3% DER attained

after incorporating the iterative optimization of segmentation

and clustering [18]. What is more interesting, however, is that

this system also attains reasonable results on conversations in-

volving more than two speakers. This could be evidence that

telephone conversations are often dominated by only two par-

ticipants. For good measure, we also show the results (in green)

obtained by the same system from [15], but in which the pro-

vided value of corresponds to the actual number of speakers

in the conversation (i.e. an “oracle” experiment). We can see

that our proposed methods—both from [18] and those in this

8Within this subset of two-speaker conversations, we detected three speakers
97 times, four speaker 52 times, five speakers 12 times, and six or more speakers
6 times.
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paper—do significantly better than the two-speaker assumption,

and in particular, the techniques described in this paper also out-

perform the “oracle” system.

VII. FURTHER ANALYSIS

The diarization task in which we are given the number of par-

ticipating speakers is wholly different from the task in which

the number of participating speakers needs to be estimated. Our

state-of-the-art performance on two-speaker diarization in [15]

really only served to further validate that factor analysis, and

i-vectors in particular, is a viable front-end for extracting utter-

ance-specific features from the short speech segments featured

in diarization. From there, it is in the way that these features are

processed that truly defines the effectiveness of the diarization

system.

A. Towards Temporal Modeling

We pointed out in [18] that the benchmark system in [14] is,

whether intentional or incidental, actually designed to take ad-

vantage of the structure of telephone conversations. In partic-

ular, most speaker turns over the telephone involve nomore than

two participants at any given time. The system in [14] processes

these calls in causal fashion, working on 60-second slices and

assuming that each slice contains no more than three speakers.

Given the nature of the data, this makes sense; except for the

rare use of speakerphones, only during these relatively infre-

quent “hand-off” scenarios would a third speaker even exist in

any particular slice of the conversation.

By contrast, our algorithm sees and processes an entire

utterance at once and performs clustering without any regard

to the potentially restrictive temporal dynamics of a telephone

conversation. This so-called “bag of i-vectors” approach may

be slightly more general in its ability to handle scenarios in

which four or more speakers appear in any 60-second slice of

the conversation (a hypothesis not tested for in [14]); however,

it also has the inherent disadvantage that it is more prone to

missing speakers that, say, only participate in a very short

snippet of the conversation. This refers back to the problem

of data sparsity, or inadequate cluster representation, as men-

tioned in Section V-C. One way to overcome this might be

to modify our approach to process the data incrementally,

where clustering is run on shorter, say 60-second, slices of

conversation before linking clustered slices across an entire

utterance. For speakers that only participate in a limited portion

of the conversation, the shorter slice-based processing gives

them the opportunity to be better-represented when we cluster

the slice in which they are (relatively) more active. Yet another,

possibly more principled, way to approach this issue might be

to model temporal dynamics—including the entrance and exit

of a particular speaker—directly from the conversation.

B. A Sticky HDP-HMM

The sticky HDP-HMM is a Bayesian nonparametric method

for statistical inference that achieved state-of-the-art results

in meetings diarization on the NIST Rich Transcription (RT)

2004–2007 database [10]. The authors leverage the “impor-

tance of temporal dynamics captured by the HMM” as a way

to improve their baseline results obtained from a “Dirichlet

Process mixture-of-Gaussians model (ignoring the time indices

associated with the observations),” which is analogous to our

Bayesian GMM [10]. Because our work utilizes improved

speaker modeling using a factor analysis-based front-end

(instead of smoothed acoustic features; i.e., MFCCs averaged

over 250 ms [10]), we were interested to see what further gains

could be obtained by incorporating temporal modeling with

i-vectors. Moreover, one of the fundamental limitations of an

HMM in general is that observations are assumed conditionally

i.i.d. given the state sequence [10]. Even though i-vectors still

violate this property somewhat, we believe that they are better

suited than acoustic features (i.e. less temporally correlated) to

the conditional independencies assumed by the HMM genera-

tive model. The details of the HDP-HMM model itself as well

as a method to perform efficient blocked Gibbs sampling are

thoroughly explained in [10].

Using the implementation provided by [37], we explore

the performance of the sticky HDP-HMM on i-vectors ex-

tracted from the CallHome evaluation set by replacing the

VBEM-GMM module from our system depicted in Fig. 4 with

the sticky HDP-HMM. For proper and comprehensive compar-

ison with our current and previous results, we optimized the

associated hyperparameters over both the development set and

the test set in the same manner as described in Section VI-A.

Fig. 7 shows the results in terms of both DER and ACP.

The sticky HDP-HMM seems to provide a significant im-

provement over both our VBEM-GMM and Castaldo’s [14]

systems on two-speaker conversations. Such an outcome, how-

ever, is also attributed to the fact that we enforce a minimum

of two detected speakers, as mentioned in Section III-C. If

the sticky HDP-HMM clustering (or, similarly, VBEM-GMM

clustering) returns just one speaker, the system backs off to

K-means clustering where . Out of 303 two-speaker

conversations, the initial sticky HDP-HMM clustering returned

one speaker for 106 of them and returned two speakers for

143 conversations. That said, because this back-off technique

is common to both the HDP-HMM and VBEM-GMM ap-

proaches, it seems that—in spite of choosing hyperparameters

for optimal DER—the VBEM-GMM approach is prone to

overestimate the number of speakers, while the HDP-HMM

approach tends to underestimate.

As for conversations involving other numbers of speakers,

the sticky HDP-HMM is competitive, in the DER sense, with

the VBEM-GMM on conversations involving exactly three

speakers, but results start to deteriorate for both DER and

ACP as the number of speakers increases. Lastly, there seems

to be a discrepancy in test performance between the different

hyperparameters that optimize the development set and those

that optimize the test set. Because this difference involves only

a small subset of the evaluation, however, it should be consid-

ered minor. Nevertheless, this once again highlights a funda-

mental mismatch between the development set and the test

set, and perhaps the hyperparameters of the sticky HDP-HMM

are more sensitive to the mismatch than our VBEM-GMM

parameters.

Further exploration on the topic of Dirichlet processes

suggests that the dependent Dirichlet process (DDP) might

be an appropriate way to model the temporal constraints of
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Fig. 7. (Top) a comparison between our dev- and test-best VBEM-GMM sys-
tems (in red and magenta, respectively), the state-of-the-art benchmark system
proposed in [14] (in black), and the dev- and test-best sticky HDP-HMM sys-
tems proposed in [10] (in blue and green, respectively). (Bottom) corresponding
results in terms of average cluster purity.

the CallHome telephone data [38]. In this method, a DDP

changes according to a Markov chain, where the Dirichlet

process drawn at any particular time interval is dependent on

the Dirichlet process of the previous interval. In this way, each

Dirichlet process models only a local or limited portion (i.e.,

slice) of the conversation. From one slice to the next, the par-

ticipation of speakers can be introduced, removed, or modified

(e.g., the transition from a monologue to an open discussion).

Thus, if a telephone conversation were processed in slice-based

fashion [14] as described in Section VII-A, the DDP provides

an elegant framework that allows for the modeling of handset

“hand-offs” and conversation dynamics. We believe this could

be a potential avenue for future work.

VIII. CONCLUSION

In this paper, we have continued the story of our previous

work in developing a system for speaker diarization based on a

factor analysis-based front end [15], [18], [20]. Our final system

contains traces of inspiration from pioneering works in diariza-

tion using factor analysis [14], variational Bayesian inference

[5], and both in combination [13]. We have obtained results

that are comparable to the current state of the art, and more

importantly, we have demonstrated such performance with the

use of well-known, off-the-shelf machine learning techniques.

From the i-vector and its cosine similarity metric to PCA and

VBEM-GMM clustering to the use of a spectral initialization

and an iterative optimization process, each of our methods were

chosen not only to exploit various properties of the data, but also

to complement each other in the spirit of the diarization task it-

self. What results is a system that is mostly unsupervised and

reasonably robust.

We also compared our approach to a Bayesian nonparametric

method that incorporates temporal modeling in the form of a

sticky HDP-HMM [10]. This was an initial and exploratory at-

tempt at replacing smoothed acoustic features with i-vectors

and modeling the temporal dynamics explicitly. Despite the ten-

dency to underestimate the number of participating speakers,

this approach achieved very competitive performance on con-

versations involving small numbers of speakers. Nevertheless,

this warrants a more in-depth analysis to better compare these

methods.

We realized, for all systems, that the diarization hypothesis

that attains the best DER is not always the one that correctly de-

tects the number of speakers. That is, forcing the system to de-

tect an exact number of clusters would often have a detrimental

effect on the DER (except, apparently, in the case where there

are only two speakers!). One reason for this goes back to the

problem of inadequate cluster representation, where a speaker’s

contribution might be so limited that enforcing an exact number

of clusters ends up splitting another speaker into two clusters.

Because the relative amount of participation amongst present

speakers in each test conversation lacked the sort of uniformity

or predictability that would have made for an appropriate eval-

uation of accuracy in detecting the number of speakers, we in-

stead focused the efforts of this paper towards optimizing our

system for minimal DER.

There are still many ways in which we can improve and refine

the steps to our approach. For one, we do all our VBEM-GMM

clustering using just the first three principal components of our

i-vectors. This initial choice of dimensionality was primarily for

purposes of visualization; however, using a different number

of dimensions did not change results significantly. Further in-

vestigation on dimensionality choice as well as other poten-

tial methods for dimensionality reduction should yield a more

insightful understanding and, hopefully, more fruitful results

[39]–[41]. Second, our hyperparameters were determined by

trying a number of different values and observing the resulting

performance on some development set. It would be nice to see

the result of following a more principled and “Bayesian” ap-

proach to setting our prior hyperparameters as mentioned in

Section VI-A and more thoroughly discussed in [5], [10], [31].

Finally, our evaluation was restricted to the diarization of

telephone conversations. Much of the current work in diariza-

tion has moved into the realm of broadcast news and meet-

ings, such as those of the NIST RT database [4], [10]. The

reason we limited ourselves to telephone data was to fully ex-

ploit the effectiveness of our data-driven factor analysis-based

front-end, which requires ample background data to build. But

as our ability to model microphone data approaches the current
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standard of telephone data modeling [42], we look forward to

extending our methods to the diarization of meetings and seeing

whether the proposed approaches discussed in this paper can

achieve equally good performance.
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