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Abstract

This paper presents results on age-group identification (Age-

ID) for children’s speech, using the OGI Kids corpus and

GMM-UBM, GMM-SVM and i-vector systems. Regions of

the spectrum containing important age information for children

are identified by conducting Age-ID experiments over 21 fre-

quency sub-bands. Results show that the frequencies above 5.5

kHz are least useful for Age-ID. The effect of using gender-

independent and gender-dependent age-group modelling is ex-

plored. The GMM-UBM and i-vector systems considerably

outperform the GMM-SVM system. The best Age-ID perfor-

mance of 85.77% is obtained by the i-vector system applied to

band-limited speech to 5.5 kHz. Experiments on human Age-

ID were also conducted and the results show that the humans do

not achieve the performance of the machine.

Index Terms: paralinguistic speech processing, age identifica-

tion, child speech, gaussian mixture model, support vector ma-

chine, i-vector, frequency band

1. Introduction

In addition to its linguistic content, the acoustic speech signal

also contains paralinguistic information, such as the speaker’s

identity, accent, gender, age, or emotional state. Automatic

recognition of such paralinguistic information for children can

be beneficial in many application areas. It could be employed to

adapt speech models, to guide a child computer interaction sys-

tem to automatically adapt content, to enhance child security

and protection or in wide range of educational applications. For

instance, some social networking sites are designed specifically

for children, (for example, “Club Penguin”1). As such systems

evolve to include speech, an automatic system that recognises

the age, gender, or identity of a person from his or her voice

could be a valuable safeguard for a child engaged in social net-

working, for example to provide protection from an adult mas-

querading as a child. In education, an interactive educational

tutor could recognise the age of a child and adapt its content

appropriately.

Research in paralinguistic speech processing has grown

considerably over the last two decades. It was initially focused

on adults speech (for example, [1]), but more recently it has

expanded to include children’s speech [2] [3]. The task of age

and gender recognition from adults’ speech is a particular area

of paralinguistic speech technology that has received attention

[4, 5, 6, 7]. Research focused on exploring the use of features

capturing different types of information from the speech sig-

nal and the use of different machine learning algorithm. Most

studies employed mel-frequency cepstral coefficients (MFCCs).

The use of TempoRAl PatternS (TRAPS) as features to capture

1http://www.clubpenguin.com/company/about

longer temporal context was explored in [6]. Several studies

also considered the use of glottal and prosodic features. These

were typically calculated on the whole utterance and included

features such as the fundamental frequency, jitter/shimmer, ar-

ticulation rate, and harmonic-to-noise ratio [4, 5, 6].

Previous research [8] has demonstrated that the information

that is most useful for, say, speaker-identification lies in differ-

ent frequency bands to that which is most useful for accent-

identification. Similarly, it seems likely that the information

that is useful for age detection will not be uniformly distributed

across the spectrum.

Recent advances based on the principle of factor analysis

(for example [9]), have improved classification accuracy. In this

method i-vectors, which are a compact representation of an ut-

terance in the form of a low-dimensional feature vector, are used

as a new feature set instead of high dimensional supervectors.

These i-vectors determine the principal components of the total

variability space. In [10] the use of i-vectors as features, and a

SVM classifier as the decision maker, was studied for age recog-

nition from adults’ speech. The same idea was also applied by

[11] for spoken language recognition. During this research the

effects of using different machine learning algorithms and scor-

ing techniques were also investigated.

The Age-ID task is to predict the age of a speaker from a

sample of speech from that speaker. This can be carried out

in a classification scenario [12] using age groups, or by us-

ing regression [13], i.e., predicting the age in years. As the

OGI Kids speech corpus only provides the information about

the school grade of each child and not the actual age, we fo-

cus on age group identification from children’s speech. In this

paper the results of experiments on Age-ID from children’s

speech are presented. In addition to investigating the use of

conventional GMM-UBM and GMM-SVM systems, we re-

placed GMM mean-supervectors by low-dimensional i-vectors

to model utterances in a total variability space and we use these

vectors as a new feature sets for identifying the age-group of

each test speaker.

2. The OGI kids’ speech corpus and data
description

The OGI Kids Speech corpus [14] is a collection of spontaneous

and read speech recorded at the Northwest Regional School

District near Portland, Oregon. As described in [14] the toolkit

form Center for Spoken Language Understanding (CSLU) is

used for data collection. A gender-balanced group of approxi-

mately 100 children per grade from Kindergarten (5-6 year olds)

through to grade 10 (15-16 year olds) participated in the collec-

tion. For each utterance, the text of the prompt was displayed

on a screen, and a recording of a person speaking the prompt



Table 1: The Center Frequencies for 24 Mel-spaced Band-Pass

Filters

FILTER CENTER FILTER CENTER

NUMBER FREQ. (Hz) NUMBER FREQ. (Hz)

1 156 13 1843

2 281 14 2062

3 406 15 2343

4 500 16 2656

5 625 17 3000

6 750 18 3375

7 875 19 3812

8 1000 20 4312

9 1125 21 4906

10 1281 22 5531

11 1437 23 6281

12 1625 24 7093

was played, in synchrony with facial animation using the an-

imated 3D character “Baldi”. The subject then repeated the

prompt, which was recorded via a head-mounted microphone

and digitized at 16 bits and 16 kHz. In total the corpus com-

prises recordings of words and sentences from 1100 speakers.

In this study, 766 speakers were chosen randomly for testing

and the remaining 334 for training. For age-group identifica-

tion, the age groups are specified as:

AG1: kindergarten to 3rd grade (5-9 year olds),

AG2: 4th to 7th grade (9-13 year olds), and

AG3: 8th to 10th grade (13-16 year olds).

The individual age groups AG1, AG2, and AG3 contained 290,

285 and 191 test speakers, respectively.

3. Age identification systems

3.1. Signal analysis

Feature extraction was performed as follows. Periods of silence

were discarded using an energy-based Speech Activity Detec-

tor. The speech was then segmented into 20 ms frames (10 ms

overlap) and a Hamming window was applied. The short-time

magnitude spectrum, obtained by applying an FFT, is passed to

a bank of 24 Mel-spaced triangular bandpass filters, spanning

the frequency region from 0 Hz to 8000 Hz. Table 1 shows the

center frequency of each filter (the cut-off frequencies of a filter

are the centre frequencies of the adjacent filters). To investi-

gate the effect of different frequency regions on Age-ID per-

formance, experiments were conducted using frequency band

limited speech data comprising the outputs of groups of 4 ad-

jacent filters. We considered 21 overlapping sub-bands, where

the N th sub-band comprises the outputs of filters N to N + 3
(N=1 to 21). Each set of 4 filter outputs was transformed to 4

Mel Frequency cepstral coefficients (MFCCs) plus 4 delta and

4 delta-delta MFCCs, and feature warping [15], using short-

time gaussianization was applied. For the full bandwidth ex-

periments the outputs of all 24 filters were transformed into 19

static plus 19 delta and 19 delta-delta MFCCs.

3.2. Modelling

Our Age-ID systems are based on the GMM-UBM [16, 17],

GMM-SVM [17] and factor analysis (using i-vectors as fea-

tures) [11] methods.

In the GMM-UBM approach, a UBM is built using all ut-

terances from 334 speakers. The gender-independent age group

models are obtained by MAP adaptation (adapting the means

only) of the UBM, using the age-group-specific training data.

The result is one UBM and 3 age-group GMMs. To investi-

gate the effect of using gender-dependent age-group models on

Age-ID performance, gender-dependent models are obtained by

MAP adaptation of the UBM, using the gender and age-group-

specific training data.

In our GMM-SVM system, the mean vectors of MAP-

adapted GMMs of each age-group (obtained as described

above) were concatenated into a supervector [17]. The age-

group classes are assumed to be linearly separable in the su-

pervector space. The supervectors are used to build one SVM

for each age-group, by treating that age-group as the target class

and the others as the background classes.

In the related field of speaker recognition, the combina-

tion of generative (GMM-UBM) and discriminative (GMM-

SVM) modelling approaches, based on GMM means super-

vectors, have been shown to provide a good level of perfor-

mance [16, 17]. However recent progress has found an alternate

method of modeling GMM supervectors that provides superior

speaker recognition performance [9]. This technique is referred

to as total variability modeling. Total variability modeling as-

sumes the GMM mean supervector, µ, that best represents a set

of feature vectors can be decomposed as

µ = m+ Tw (1)

where m is the mean supervector of the UBM, T spans a low-

dimensional total variability subspace and w is a vector that best

describe the utterance dependent mean offset Tw. The vector

w is commonly referred to as the i-vector and has a standard

normal distribution N(0, I) and T is the rectangular low rank

matrix which is estimated via factor analysis. In the total vari-

ability modeling approach, i-vectors are the low-dimensional

representation of an audio recording that can be used for classi-

fication and estimation purposes.

The scoring approach proposed in [11] for language iden-

tification, is used in this research. Linear discriminant analy-

sis (LDA) is used to find a new basis for the total variability

space such that for any D, the subspace spanned by the first

D LDA basis vectors maximises the between-class variability

while minimising the within-class variability. LDA is applied

to the i-vectors for all training data from all age-groups and

defines a projection matrix At from the total variability space

onto the subspace spanned by the first D LDA basis vectors. D
is usually set to Q− 1, where Q is the number of classes.

In this system each age-group c is then represented by the

mean of projected and length normalized i-vectors for that class

as

mc =

∑Nc

j=1
w̃j

||
∑Nc

j=1
w̃j ||

(2)

where Nc is the total number of utterances for the age-group c
and the unit normalized LDA i-vectors are

w̃j =
Atwj

||Atwj ||
(3)

where wj is the extracted i-vector from a utterance j.

At the recognition stage, the score for each class c is calcu-

lated as the dot product of the unit normalized LDA test i-vector

with the age-group model mean, i.e.,

score(c) = w̃
T
testmc. (4)



This score expresses the angle between the unit normalized

LDA test i-vector and the mean of projected and length nor-

malized i-vectors for each class. The overall block diagram of

the i-vector based identification system is illustrated in Figure 1.
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Figure 1: The block diagram of the Age-ID system based on the

i-vector approach, depicting both training and testing phase.

Xn and Yn represent samples and class labels, respectively.

The use of i-vectors for age estimation has several distinct

advantages over GMM supervectors, for example the relatively

low dimensionality of i-vectors significantly reduces the com-

putational cost of model training and estimation compared to

a GMM supervector system. Thus the method lends itself to

real-time implementation, which is important for applications.

4. Experimental results and discussion

4.1. Age-ID for children’s speech using isolated frequency

sub-bands

In this section, we study the effect of different sub-bands on

Age-ID performance for children’s speech. Experiments are

conducted separately on 21 sub-bands, each consisting of four

consecutive channels (see Section 3.1 for more details), and us-

ing the gender independent GMM-UBM system. For each sub-

band, three gender independent age-group models are trained,

corresponding to AG1, AG2 and AG3. The models have 64

mixture components, which was found to be adequate for these

12 dimensional sub-band features.

Figure 2 presents the average Age-ID results as a function

of frequency sub-band. It is evident that the performance even

when using a narrow frequency region is in most cases well

above chance. Figure 3 contrasts the usefulness of sub-bands

for Age-ID and Gender-ID. The figure was obtained by normal-

ising the data in Figure 2 so that the sum of the values over all of

the sub-bands is 1. The same procedure was then applied to the

corresponding sub-band results on Gender-ID presented in [3].

The normalised Age-ID results were then subtracted from the

normalised Gender-ID results to obtain Figure 3 (similar pro-

cedure is described in [8]). Thus, negative regions in Figure

3 indicate sub-bands which are more useful for Age-ID, while

positive values indicate sub-bands that are useful for Gender-ID.

The results indicate that the most useful sub-bands for Age-ID,

in comparison to Gender-ID, are the sub-bands 3 and 4 (281 Hz

to 625 Hz), and from 13 to 16 (1.62 kHz to 3 kHz). Thus,

while Gender-ID appears to make use of similar information to

speaker recognition, Age-ID is more similar in these respects to

speech recognition or accent ID [8].
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Figure 2: The effect of different frequency sub-bands on Age-ID,

average identification rate over all age groups.

0 2 4 6 8 10 12 14 16 18 20 22
−0.01

−0.005

0

0.005

0.01

0.015

Sub−Band

N
o
rm

al
is

ed
 G

en
d
er

ID
−

N
o
rm

al
is

ed
 A

g
eI

D

Figure 3: The difference between the normalized Gender-ID

and Age-ID performance for frequency sub-bands.

4.2. Age-ID using full/restricted bandwidth speech

This section presents the Age-ID results that are obtained us-

ing the GMM-UBM, GMM-SVM and i-vector based systems

described in section 3.2. Experiments were performed using

full-bandwidth (FB) and band-limited speech (BL). The band-

limited case includes frequencies up to 5.5 kHz, which corre-

sponds to the frequency region covered by all sub-bands except

sub-bands 18 to 21.

We first study the effect of using gender dependent and in-

dependent age-group modeling, using the GMM-UBM system.

The results of this study are shown in the first two rows of Ta-

ble 2. For Age-ID, gender-independent modeling gives better

results than gender-dependent modeling. This could be due to

the amount of training data, as in the case of gender depen-

dent age modeling we split all training data into 6 groups, com-

pare to gender independent age modeling which training data

split into three groups.Based on these results, subsequent ex-

periments use gender-independent modelling.

Then, we demonstrate the effects of employing the discrim-

inative GMM-SVM and i-vector systems when using gender-

independent modelling. For each of the systems, we performed

experiments using different numbers of mixture components.

The best results were obtained when using 1024, 512 and 256

mixture components for the GMM-UBM, GMM-SVM and i-

vector system, respectively, and these are presented in Table 2.

For the i-vector system, we performed experiments using dif-

ferent numbers of dimensions for training the total variability

matrix. The best results were obtained using 400 dimensions

for the T matrix. It can be seen that the i-vector system out-



performs the GMM-UBM and GMM-SVM systems, especially

when band limited speech is used. Table 3 shows a confu-

Table 2: Age-ID recognition rate (in %) obtained by the gender-

independent GMM-UBM, GMM-SVM and i-vector systems and

gender-dependent GMM-UBM system.

System Age-ID rate (%)

Full-bandwidth Band-limited

GMM-UBM (gender dep.) 71.76 -

GMM-UBM (gender indep.) 82.01 84.07

GMM-SVM (gender indep.) 79.77 -

i-vector (gender indep.) 82.62 85.77

Table 3: Confusion matrix for age identification (in %) for three

age groups, obtained by the i-vector system using band-limited

speech.

Model-index

Grade-index AG1 (%) AG2 (%) AG3 (%)

Male

k 100 0 0

1st 100 0 0

2nd 97.43 2.56 0

3rd 85.71 10.20 4.08

4th 33.33 60.60 6.06

5th 8.57 82.85 8.57

6th 6.97 81.39 11.62

7th 0 54.83 45.16

8th 0 0 100

9th 2.17 6.52 91.30

10th 0 0 100

Female

k 100 0 0

1st 100 0 0

2nd 97.87 2.12 0

3rd 92.10 7.89 0

4th 38.70 61.29 0

5th 11.42 82.85 5.71

6th 10.00 80.00 10.00

7th 2.70 72.97 24.32

8th 0 29.03 70.96

9th 5.00 20.00 75.00

10th 0 30.00 70.00

sion matrix obtained by the i-vector system using band-limited

speech. Each row corresponds to a grade and shows the per-

centages of children in that grade that were classified as being

in AG1, AG2 and AG3. The dotted lines indicate the bound-

aries of AG1, AG2 and AG3. The top and bottom halves of the

table correspond to male and female speakers, respectively. The

table shows similar characteristics for boys and girls up to 7th

grade, with the majority of errors near age-group boundaries.

At the boundary between AG1 and AG2, 10% of 3rd grade boys

(AG1) are incorrectly classified as AG2 and 33% of 4th grade

boys (AG2) are incorrectly classified as AG1. For girls the cor-

responding figures are 8% and 39%. For 7th grade (AG2) 45%

of boys and 24% of girls are classified as being in AG3, while

for 8th grade (AG3) 29% of female speakers are classified as

AG2 but none of the boys are misclassified. The inconsistency

between the results for boys and girls at the AG2-AG3 boundary

may be because AG3 contains speech from a number of boys

whose voices have broken. It may be that gender-dependent

modelling is needed for AG3, even though it is not advanta-

geous overall, or that, as in the case of gender identification [3],

it is necessary to build separate models for AG3 boys whose

voices have and have not broken.

4.3. Human Age-ID for children’s speech

In addition to the computer Age-ID experiments presented in

the previous sections, we also performed experiments on Age-

ID by human listeners. The test set consisted of the same

766 test utterances used in the computer Age-ID experiments.

Twenty listeners participated in the experimental evaluations.

Each participant listened to 38 utterances on average. The

length of each utterance was 10 seconds. All human listening

tests were performed in a quiet room using the same PC and a

high quality headphones. The Age-ID rates for each age-group

achieved by human listeners are presented in Table 4. The aver-

age performance over all age groups was 67.54%.

Table 4: Confusion matrix for age identification (in %) for three

age groups, obtained by human listeners.

Model-index

Test-index AG1 AG2 AG3

AG1 81.2 16.9 1.8

AG2 25.5 50.8 23.6

AG3 3.8 24.4 71.7

5. Conclusions

To conclude, our results for Age-ID based on narrow frequency

sub-bands indicate that the performance, even for narrow fre-

quency regions, is in most cases well above chance. Moreover,

a comparison of useful bands for Age-ID and Gender-ID shows

that most of the useful information for Age-ID is in similar re-

gions of the spectrum to those that are useful for speaker ID.

This result suggests that removing higher parts of the spectrum

will improve Age-ID performance. Hence we compared Age-

ID performance for full-bandwidth (up to 8 kHz) and restricted

bandwidth (up to 5530 Hz). As expected, performance is im-

proved for both the GMM-UBM and i-vector systems when

band-limited speech is used. The best Age-ID performance

is 87.55% obtained from the i-vector system applied to band-

limited speech.

Further analysis of the results from the best system shows

that Age-ID for young children, for both male and female

speakers, is a relatively easy task. The main confusion arises

with male and female speakers who belong to the 4th and 7th

grades. These grades are at the boundary of AG2. For example,

33.33% and 38.70% of 4th grade boys and girls are miss identi-

fied as belonging to AG1, respectively. It is also evident that for

AG3, Age-ID for girls is more challenging than for boys from

same age-group.
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