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Abstract

The spike-and-slab Restricted Boltzmann
Machine (RBM) is defined by having both
a real valued “slab” variable and a binary
“spike” variable associated with each unit in
the hidden layer. In this paper we generalize
and extend the spike-and-slab RBM to in-
clude non-zero means of the conditional dis-
tribution over the observed variables given
the binary spike variables. We also introduce
a term, quadratic in the observed data that
we exploit to guarantee that all condition-
als associated with the model are well de-
fined – a guarantee that was absent in the
original spike-and-slab RBM. The inclusion
of these generalizations improves the perfor-
mance of the spike-and-slab RBM as a fea-
ture learner and achieves competitive per-
formance on the CIFAR-10 image classifica-
tion task. The spike-and-slab model, when
trained in a convolutional configuration, can
generate sensible samples that demonstrate
that the model has captured the broad sta-
tistical structure of natural images.

1. Introduction

Recently, there has been considerable interest in the
problem of unsupervised learning of features for su-
pervised tasks in natural image domains. Approaches
based on unsupervised pretraining followed by either
whole-model finetuning or simply the linear classifi-
cation of features dominate in benchmark tasks such
as CIFAR-10 (Krizhevsky, 2009). One of most pop-
ular energy-based modelling paradigms for unsuper-
vised feature learning is the Restricted Boltzmann Ma-
chine (RBM). An RBM is a Markov random field with
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a bipartite graph structure consisting of a visible layer
and a hidden layer. The bipartite structure excludes
connections between the variables within each layer
so that the latent variables are conditionally indepen-
dent given the visible variables and vice versa. The
factorial nature of these conditional distributions en-
ables efficient Gibbs sampling which forms the basis of
the most widespread RBM learning algorithms such
as contrastive divergence (Hinton, 2002) and stochas-
tic maximum likelihood (Tieleman, 2008).

The spike-and-slab RBM (ssRBM) (Courville et al.,
2011) departs from other similar RBM-based models
in the way the hidden layer latent units are defined.
They are modelled as the element-wise product of a
real valued vector with a binary vector, i.e., each hid-
den unit is associated with a binary spike variable and
a real-valued slab variable. The name spike and slab

is inspired from terminology in the statistics litera-
ture (Mitchell & Beauchamp, 1988), where the term
refers to a prior consisting of a mixture between two
components: the spike, a discrete probability mass at
zero; and the slab, a density (typically uniformly dis-
tributed) over a continuous domain.

In this paper, we introduce a generalization of the ss-
RBM model, which we refer to as the µ-ssRBM. Rel-
ative to the original ssRBM, the µ-ssRBM includes
additional terms in the energy function which give ex-
tra modelling capacity. One of the additional terms
allows the model to form a conditional distribution
of the spike variables (by marginalizing out the slab
variables, given an observation) that is similar to the
corresponding conditional of the recently introduced
mean covariance RBM (mcRBM) (Ranzato & Hinton,
2010) and mPoT model (Ranzato et al., 2010). Con-
ditional on both the observed and spike variables, the
µ-ssRBM slab variables and input are jointly Gaus-
sian with diagonal covariance matrix; conditional on
both the spike and slab variables, the observations
are Gaussian with diagonal covariance. Thus, unlike
the mcRBM or the more recent mPoT model, the µ-
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ssRBM is amenable to simple and efficient Gibbs sam-
pling. This property of the ssRBM makes the model
an excellent candidate as a building block for the de-
velopment of more sophisticated models such as Deep
Boltzmann Machines (Salakhutdinov & Hinton, 2009).

One potential drawback of the ssRBM is the lack of a
guarantee that the resulting model constitutes a valid
density over the whole real-valued data space. In this
paper, we develop several strategies that guarantee all
conditionals are well defined by adding energy terms
to the µ-ssRBM. However, experimentally we find that
loosening the constraint yields better models.

2. The µ-Spike-and-Slab RBM

The µ-ssRBM describes the interaction between three
random vectors: the visible vector v representing the
observed data, the binary “spike” variables h and the
real-valued “slab” variables s. The ith hidden unit is
associated both with an element hi of the binary vec-
tor and with an element si of the real-valued variable.
Suppose there are N hidden units: h ∈ [0, 1]N , s ∈ R

N

and a visible vector of dimension D: v ∈ R
D. The

µ-ssRBM model is defined via the energy function:
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in which Wi denotes the ith weight vector (Wi ∈ R
D),

each bi is a scalar bias associated with hi, each αi is
a scalar that penalizes large values of s2i , and Λ is a
diagonal matrix that penalizes large values of �v�22. In
comparison with the original ssRBM (Courville et al.,
2011), the µ-ssRBM energy function includes three ad-

ditional terms. First, the 1/2 vT
�

�N

i=1
Φihi

�

v term,

with non-negative diagonal matrices Φi, i ∈ [1, N ], es-
tablishes an h-dependent quadratic penalty on v. Sec-
ond, associated with each slab variable is a mean pa-
rameter µ – from which the µ-ssRBM takes its name.
Finally, the

�N

i=1
αiµ

2
ihi term acts as an additional

bias term for the hi, which we include to simplify
the parametrization of the conditionals. In addition
to offering additional flexibility to model the statis-
tics of natural images, the inclusion of the parameters
µ = [µ1, . . . , µN ] and Φ = [Φ1, . . . ,ΦN ] also allows us
to derive constraints on the model that ensure that
the model remains well-behaved over the entire data
domain of RD.

The joint probability distribution over v, s =

[s1, . . . , sN ] and h = [h1, . . . , hN ] is defined as:

p(v, s, h) =
1

Z
exp {−E(v, s, h)} (2)

where Z is the normalizing partition function. We can
think of the distribution presented in Eqns. 1 and 2
as associated with the standard RBM bipartite graph
structure with the distinction that the hidden layer is
composed of an element-wise product of the random
vectors s and h.

To gain insight into the µ-ssRBM model, we will look
at the conditional distributions p(v | s, h), p(s | v, h),
P (h | v) and p(v | h). First, we consider the condi-
tional p(v | s, h):

p(v | s, h) =
1

p(s, h)

1

Z
exp {−E(v, s, h)}

= N

�

Cv|s,h

N
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Wisihi , Cv|s,h

�

(3)

where Cv|s,h =
�

Λ+
�N

i=1
Φihi

�

−1

. The conditional

distribution of v given both s and h is a Gaussian with
mean Cv|s,h

�N

i=1
Wisihi and covariance Cv|s,h. Since

Λ and Φi are diagonal (∀ i ∈ [1, N ]), the covariance
matrix of p(v | s, h) is also diagonal. Eqn. 3 shows the
role played by the Φi in augmenting the precision with
the activation of hi. Indeed, hidden unit i contributes
a component not only to the mean proportional to
Wisi, but also to the global scaling of the conditional
mean.

The conditional over the slab variables s given the
spike variables h and the visible units v is given by:

p(s | v, h) =
N
�

i=1

N
��

α
−1
i vTWi + µi

�

hi , α
−1
i

�

. (4)

As was the case with the conditional p(v | s, h), de-
riving the conditional p(s | v, h) from the joint distri-
bution in Eqn. 2 reveals a Gaussian distribution with
diagonal covariance. Eqn. 4 also shows how the mean
of the slab variable si, given hi = 1, is linearly depen-
dent on v, and as the precision αi → ∞, si converges
in probability to µi.

Marginalizing out the slab variables s yields the tra-
ditional RBM conditionals p(v | h) and p(h | v). The
conditional p(v | h) is also Gaussian,

p(v | h) =
1

P (h)

1

Z

�

exp {−E(v, s, h)} ds

= N
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where Cv|h =
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�N

i=1 α
−1
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T
i
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,

the last equality holds only if the covariance matrix
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Cv|h is positive definite. Note that the covariance is
not obviously parametrized to guarantee that it is pos-
itive definite. In Section 3, we will discuss strategies
to ensure that Cv|h be positive definite via constraints
on Λ and Φ.

In marginalizing over s, the visible vector v remains
Gaussian-distributed, but the parametrization has
changed. While the distribution p(v | s, h) uses h with
s to parametrize the conditional mean with a corre-
sponding diagonal covariance, the conditional p(v | h)
uses h to parametrize a covariance matrix that is non-
diagonal due to the

�N

i=1
α−1

i hiWiW
T
i term, and a

conditional mean mediated by µ.

A closer look at Eqn. 5 reveals an important aspect
of the inductive bias of the model. The conditional
mean of v given h and principal axis of conditional
covariance are generally in a similar direction, and

if
�

Λ+
�N

i=1
Φihi

�

is a scalar matrix (equivalent to

scalar × Identity) the two vectors are in exactly the
same direction. Having the principal component of
the conditional covariance in the same direction as the
mean has the property of p(v | h) being maximally in-
variant to changes in the norm �v�2. This is a desirable
property for a model of natural images where the norm
is particularly sensitive to illumination conditions and
image contrast levels – factors that are often irrelevant
to tasks of interest such as object classification.

The final conditional that we will consider is the dis-
tribution over the latent spike variables h given the
visible vector, P (h | v) =

�N

i P (hi | v) and

P (hi = 1 | v) =
1

p(v)

1

Zi

�

exp {−E(v, s, h)} ds

= σ

�

1

2
α
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i (vTWi)

2 + vTWiµi −
1

2
vTΦiv + bi

�

, (6)

where σ represents a logistic sigmoid. As with the con-
ditionals p(v | s, h) and p(s | v, h), the distribution of h
given v factorizes over the elements of h. Eqn. 6 shows
the interaction between three data-dependent terms.
The first term, 1

2
α−1

i (vTWi)
2, is the contribution due

to the variance in s about its mean (note the scaling
with α−1

i ) and appears in the sigmoid as a result of
marginalizing out s. This term is always non-negative,
so it always acts to increase P (hi | v). Countering this
tendency to activate hi is the other term quadratic
in v, − 1

2
vTΦiv, that is always a non-positive contribu-

tion to the sigmoid argument. In addition to these two
quadratic terms, there is the term vTWiµi whose be-
haviour mimics the data-dependent term in the anal-
ogous GRBM version of the conditional distribution
over h: PG(hi | v) = σ

�

vTWi + bi
�

.

Another perspective on the behaviour of p(hi | v) as

a function of v is gained by considering an alternative
arrangement of the terms:

P (hi= 1 | v) = σ(b̂i −
1

2
(v − ξv|hi

)TC−1
v|hi

(v − ξv|hi
)) (7)

in which Cv|hi
=

�

Φi − α−1

i WiW
T
i

�−1
, ξv|hi

=

Cv|hi
Wiµi and b̂i is a re-parameterization of the bias

that incorporates the remainder of the completion of
the square. It is evident from this form of P (hi = 1 | v)
that, in the event that the matrix Cv|hi

is positive
definite, then P (hi | v) reaches its maximum when
v = Cv|hi

Wiµi. We can easily confirm that the tail
behaviour, as v departs from its maximum, is Gaus-
sian:

σ(−x2) =
exp(−x2)

1 + exp(−x2)
→

x→∞

exp(−x2)

We will look to take advantage of the µ-ssRBM rela-
tionship between Φi and α−1

i WiW
T
i when we consider

ways to constrain the covariance of p(v | h) to be pos-
itive definite in Section 3.

To complete the exposition of the basic µ-ssRBM
model, we present the free energy f(v) of the visible
vector.

f(v) = − log
�
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3. Positive Definite Parameterizations

of the µ-ssRBM

Equation 5 reveals an important property of the µ-
ssRBM model. The conditional p(v | h) is only a well-
defined Gaussian distribution if the covariance matrix
Cv|h is positive definite (PD). However, the covariance
matrix is not parametrized to guarantee that this con-
dition is met. If there exists a vector x such that
xTCv|hx ≤ 0, then the covariance matrix is not posi-
tive definite. In the original presentation of the ssRBM
in Courville et al. (2011), the possibility of the non-
positive-definiteness of the conditional covariance of v
given h was dealt with by limiting the support over the
domain of v (i.e., RD) to a large but finite ball that
encompasses all the training data. Such an approach
is feasible but unsatisfying as the model would natu-
rally tend to build-up probability density close to this
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arbitrary boundary – a region of the input space that
should have low density.

Here, in the context of the µ-ssRBM model, we turn
to the question of how we can constrain the model
parameters to guarantee that the model remains well-
behaved (i.e., all conditionals are well-defined proba-
bility densities). The problem we face is ensuring that
the covariance or equivalently the precision matrix of
p(v | h) is positive definite, i.e., we wish to satisfy the
constraint:

xTC−1
v|hx > 0 ∀x �= 0

To satisfy this constraint, we need to ensure that Λ+
�N

i=1
Φihi is large enough to offset

�N

i=1
α−1

i WiW
T
i hi.

We consider two basic strategies: (1) define Λ to be
large enough to offset a worst-case setting of the h;
and (2) define the Φi to ensure that the contribution
of each active hi is itself PD.

3.1. Constraining Λ

One option to ensure that Cv|h remains PD for all
patterns of h activation is to constrain Λ to be large
enough. In setting a constraint on Λ, we will ignore
the contribution of the Φi terms (which leads to non-
tightness of the constraint). Since the contribution of
every α−1

i WiW
T
i hi term is negative semi-definite, the

worst case setting of the h would be to have hi = 1 for
all i ∈ [1, N ]. This implies that Λ must be constrained
such that:

xT

�

Λ−

N
�

i=1

α
−1
i WiW

T
i

�

x > 0 ∀x �= 0. (8)

If we take Λ to be a scalar matrix: Λ = λI, then
the problem of enforcing a PD precision matrix re-
duces to ensuring that λ is greater than the maximum
eigenvalue ρ of

�N

i=1
α−1

i WiW
T
i . In practice we can

use the power iteration method to quickly estimate an
upper bound on the maximum eigenvalue, and then
constrain λ > ρ throughout training.

3.2. Constraining Φ

Another option to ensure that Cv|h remains PD for
all patterns of h activation is to constrain Φi to be
large enough to ensure that the contribution of each
hi is PD. Let Wij be the jth element of the filter Wi

(or equivalently, the ijth element of the weight matrix
W) and let Φij denote the jjth element of the diagonal
Φi matrix. We want to choose Φi such that:

J(x,Φi) =
�

j

x2
jΦij − (

�

j

wijxj)
2 > 0 ∀x ∈ R

D, x �= 0.

This condition will be satisfied for all x if we can satisfy
it for the x = u of norm 1 that minimizes J(x,Φi)
(u is the eigenvector of the smallest eigenvalue of the
matrix

�

Φi − α−1

i WiW
T
i

�

). To find u, we define the
Lagrangian

L(x,Φi) = J(x,Φi) + η(1−
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to enforce the constraint
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j x
2
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we recover the set of constraints:
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Consider the following general parametrization of Φi:

Φij = η + qα−1
W 2

ij

βij

.

This particular form is chosen so that our constraint
set gives us q =

�

j βij and βij > 0. So with Φij

parametrized as

Φij = ζij + α
−1 W 2

ij

βij/
�

j
βij

with ζij > 0, the covariance matrix of p(v | h) is guar-
anteed to be PD. The parameter ζij is an extra degree
of freedom to Φij to be estimated through maximum
likelihood learning.

We are free to choose the parametrization of the βij

provided βij > 0. For example, with the choice βij =
W 2

ij , Φi simplifies to

Φij = ζij + α
−1

�

j

W 2
ijI (10)

where Φij takes the form of a scalar matrix. Alterna-
tively, we could choose βij = 1 with the result that

Φij = ζij + α
−1DW 2

ij (11)

where the jth elements on the diagonal of Φi is scaled
with W 2

ij .

While we are free to chose βij > 0 as we would like,
the decision affects the inductive bias of the model. In
the case of the Φij parametrization given in Eqn. 10,

the presence of the
�N

i Φihi as a scaling on the mean
of the conditional p(v | s, h) (Eqn. 3) implies that the
activation of any hi will have an effect on the scaling
of the mean across the entire visible vector (or layer)
irrespective of how localized is the corresponding filter
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Wi. Unsurprisingly, use of this parametrization tends
to encourage both sparsely active hi and Wi having
relatively large receptive fields.

The Φi parametrization via Eqn. 11 has the property
that the Φi receptive fields are steered in the direc-
tion of Wi. Where Wi is near zero, Φi has little effect
(unless it is mediated by ζi). This is an appealing
property for modeling images or other data that give
rise to sparse receptive fields Wi.

3.3. Comparing strategies

The two general strategies to guarantee that the co-
variance matrix of p(v | h) is positive definite are
in some sense complementary. In the sparse operat-
ing regime of the µ-ssRBM (most hi are inactive over
most of the dataset), the Λ worst case assumption that
∀i : hi = 1, becomes increasingly inaccurate and, as a
result, the constraint on Λ becomes increasingly con-
servative. Therefore in the sparse regime, the Φ con-
straints would seem more appropriate. On the other
hand, in a highly non-sparse regime, the individual
contributions of the Φ to the global precision matrix
can combine to form a more conservative PD precision
matrix than would result from a constrained Λ.

It is also possible to distribute responsibility for en-
suring the constraint is satisfied jointly to Λ and Φ.
This would constitute a mixed strategy, apportioning
responsibility for compensating for the negative defi-
nite −

�N

i=1
α−1

i WiW
T
i hi term to both Λ and Φ.

4. µ-ssRBM Learning and Inference

Learning and inference in the µ-ssRBM proceeds anal-
ogously to the original ssRBM and is rooted in the
ability to efficiently draw samples from the model via
Gibbs sampling. As with the original ssRBM, we seek
a set of conditionals that will enable simple and effi-
cient Gibbs sampling. Since sampling from the con-
ditional p(v | h) would involve the computationally
prohibitive step of inverting a non-diagonal covari-
ance matrix, we pursue a strategy of alternating sam-
pling from the conditionals P (h | v), p(s | v, h) and
p(v | s, h). Each of these conditionals has the prop-
erty that the distribution factors over the elements of
the random vector, allowing us to efficiently samples.

In training the µ-ssRBM, we use the stochastic maxi-
mum likelihood algorithm (SML, also known as persis-
tent contrastive divergence) (Tieleman, 2008), where
only one or a few Markov Chain (Gibbs) simulations
are performed between each parameter update. These
samples are then used to approximate the expectations
over the model distribution p(v, s, h).

The data log likelihood gradient, ∂

∂θi

�

�T

t=1
log p(vt)

�

,

is:

−

T
�
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�

∂
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E(vt, s, h)

�

p(s,h|vt)

+T

�

∂

∂θi
E(v, s, h)

�

p(v,s,h)

The log likelihood gradient takes the form of a differ-
ence between two expectations, with the expectations
over p(s, h | vt) in the “clamped” condition, and the
expectation over p(v, s, h) in the “unclamped” condi-
tion. As with the standard RBM, the expectations
over p(s, h | vt) are amenable to analytic evaluation.

5. Comparison to Previous Work

There is now a significant body of work on modelling
natural images with RBM-based models. The closest
connection to this work is obviously to the original
ssRBM (Courville et al., 2011) which we recover by
setting the µ-ssRMB parameters µi = 0 and Φi =
0 for all i ∈ [1, N ]. A slightly less obvious limiting
case of the µ-ssRMB is the Gaussian RBM (GRBM).
Setting Φi to be proportional to α−1

i (as discussed in
Section 3) and taking αi = α → ∞, we define a Dirac
in s about µ, In this limit, the conditionals p(v | h)
and P (hi = 1 | v) (Eqns. 5 and 6 respectively) are
given by:

lim
α→∞

p(v | h) = N

�

Λ
−1

N
�

i=1

Wiµihi Λ
−1

�

lim
α→∞

P (hi = 1 | v) = σ
�

vTWiµi + bi
�

If we fix µ = 1 and Λ = I, we recover the Gaussian
RBM conditionals. Note that the connection between
the µ-ssRBM and the Gaussian RBM is mediated en-
tirely by the µ parameter, the original ssRBM has no
such connection with the GRBM.

Beyond the ssRBM, the closest models to the
µ-ssRBM are the mean and covariance RBM
(mcRBM) (Ranzato & Hinton, 2010) and the mean
Product of t-distributions model (mPoT) (Ranzato
et al., 2010). Like the µ-ssRBM, both of these are
energy-based models where the conditional distribu-
tion over the visible units conditioned on the hidden
variables is a multivariate Gaussian with nonzero mean
and a non-diagonal covariance matrix. However the µ-
ssRBM differs from these models in the way the con-
ditional means and covariance interact. In both the
mcRBM and the mPoT model, the means are mod-
elled by the introduction of additional GRBM hidden
units, whereas in the µ-ssRBM, each hidden unit can
potentially contribute to both the conditional mean
and covariance. For the ith hidden unit, the con-
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tribution to each is controlled by the relative val-
ues of the µi and αi. With large |µi| and small αi,
the unit predominantly contributes to the conditional
mean. Conversely, with large αi and small |µi|, the
unit mostly contributes to the conditional covariance.
The advantage of the µ-ssRBM approach is that we
are able to save a hyper-parameter by letting maxi-
mum likelihood induction optimize the trade-off be-
tween mean and covariance modeling. Empirically, we
find that while some hidden units learn to focus ex-
clusively on the conditional covariance (with µi ≈ 0);
most units take advantage of the flexibility offered in
the µ-ssRBM framework and contribute to both the
conditional mean and covariance.

The mPoT and mcRBM also differ from the µ-ssRBM
in how they parametrize the visible covariance. While
the µ-ssRBM uses h activations to pinch the precision
matrix along the direction specified by the correspond-
ing weight vector, both the mcRBM and the mPoT
models use their latent variable activations to main-
tain constraints, decreasing in value to allow variance
in the direction of the corresponding weight vector.

Interestingly, the µ-ssRBM term involving Φi is very
similar to the covariance term in the mcRBM energy
function. The difference is that our restriction to a
diagonal Φi significantly limits what we can model
with it. However, this restricted structure allows us
to sample efficiently from the model using Gibbs sam-
pling which is not available to either the mcRBM or
the mPoT model. In addition, the roles of these covari-
ance terms are also quite different. In the mcRBM, the
covariance term is associated with the model’s feature
vectors. In the µ-ssRBM, we use the Φi both to help
constrain the model’s conditionals to be well-defined,
and in conjunction with W , to help maximize the like-
lihood of the training data.

Finally, the covariance structure of the µ-ssRBM con-
ditional p(v | h) (Eqn. 5) is very similar to the product
of probabilistic principal components analysis (PoP-
PCA) model (Williams & Agakov, 2002) with compo-
nents corresponding to the µ-ssRBM weight vectors
associated with the active hidden units (hi = 1).

6. Experiments

We demonstrate the utility of the µ-ssRBM on the
CIFAR-10 dataset by classifying images and by sam-
pling from the model. In particular, our experiments
are directed toward exploring the properties of the dif-
ferent elements of the model, including the roles of µ
and Φ and the effects of the various Λ and Φ PD con-
straints.

Figure 1. (Top left) ZCA-whitened data used for patch-
wise training. (Top right) Filters W learnt when µ and Φ

were fixed at zero. These filters produce edges similar to
many other models, and neatly separate black-and-white
edges from colour ones. Filters W (bottom left) and Φ

(bottom right) learnt when µ and Φ are fit to the data.
The combination of W and Φ gives individual units more
flexibility, and gives rise to a richer variety of features.

Our experiments are based on the CIFAR-10 image
classification dataset consisting of 40 000 training im-
ages, 10 000 validation images, and 10 000 test images.
The images are 32-by-32 pixel RGB images. Each im-
age is labelled with one of ten object categories (aero-
plane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck) according to the most prominent object
in the image.

Classification: We evaluate the µ-ssRBM as a
feature-extraction algorithm by plugging it into the
classification pipeline developed by Coates et al.
(2011). In broad strokes, the µ-ssRBM is fit to (192-
dimensional) 8x8 RGB image patches, and then ap-
plied convolutionally to the 32x32 images. The image
patches (starting from pixels between 0 and 255) on
which the µ-ssRBM was trained were centered, and
then normalized by dividing by the square root of their
variance plus a noise-cancelling constant (10). The
normalized patches were whitened by ZCA (Hyvärinen
& Oja, 2000) with a small positive constant (0.1)
added to all eigenvalues. The resulting patches (Fig-
ure 1, top left) are mostly grey with high spatial fre-
quencies amplified, and lower spatial frequencies at-
tenuated. Our models were trained from the 16 non-
overlapping 8x8 patches from each of the first 10 000
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Table 1. The performance of µ-ssRBM variants with 256
hidden units in CIFAR-10 image classification (± 95% con-
fidence intervals). “no PD” = without PD constraint.

Model Accuracy (%)
no PD, µ free, Φ free 73.1 ± 0.9
no PD, µ free, Φ = 0 71.43 ± 0.9
no PD, µ = 0, Φ free 71.19 ± 0.9
no PD, µ = 0, Φ = 0 68.92 ± 0.9
PD by Diag. W (Eqn. 11) 69.1 ± 0.9
PD by Λ (Eqn. 8) 68.3 ± 0.9
PD by scal. mat. (Eqn. 10) 67.1 ± 0.9

training set images in CIFAR-10 (for a total of 160 000
training examples).

Models were trained for one hundred thousand mini-
batches of 100 patches. On an NVIDIA GTX 285
GPU this training took on the order of 15 minutes for
most models. We used SML training (Tieleman, 2008).
Classification was done with an �2-regularized SVM.
The SVM was applied to the conditional mean value
of latent spike (h) variables, extracted from every 8x8
image patch in the 32x32 CIFAR-10 image. Prior to
classification, our conditional h values were spatially
pooled into 9 regions, analogous to the 4 quadrants
employed in Coates et al. (2011). For a model with
N hidden units, the classifier operated on a feature
vector of 9N elements.

Table 1 lists the performance of several variants on
the µ-ssRBM model. For this comparison all variants
were trained with a small amount of sparsity aimed
at maintaining 15% activity, and were configured with
256 hidden units. The lines labelled PD correspond
to models that were constrained to have positive def-
inite covariance of p(v | h) while the lines labelled
no PD are not. If µ = 0 appears in a line the corre-
sponding model was trained with µ = 0 or equivalently
with the µ terms removed from the energy function.
The nomenclature for Φ is analogous. This implies for
instance that the original ssRBM model would corre-
spond to the no PD, µ = 0, Φ = 0 condition.

Table 1 reveals that it is possible to constrain Φ to en-
force that Cx|h is PD and achieve classification results
that match that of the original ssRBM. However, if we
take the same µ-ssRBM form and loosen the PD con-
straint, the model can perform much better. Also of
note is that both the µ and the Φ terms seem to con-
tribute approximately equally to improving the classi-
fication accuracy.

Table 2 situates the performance of the µ-ssRBM in
the literature of results on CIFAR-10. The µ-ssRBM

Table 2. The performance of µ-ssRBM relative to other
models in the literature for CIFAR-10 (± 95% confidence
interval). The k-means results are taken from Coates et al.
(2011), the “conv. trained DBN” result is the convolution-
ally trained two-layer Deep Belief Network (DBN) with
rectified linear units, reported in Krizhevsky (2010), and
the GRBM, cRBM, mcRBM results are taken from Ran-
zato & Hinton (2010)

Model Accuracy (%)
k-means (4000 units) 79.6 ± 0.9
conv. trained DBN 78.9 ± 0.9
µ-ssRBM (4096 units) 76.7 ± 0.9
k-means (1200 units) 76.2 ± 0.9
µ-ssRBM (1024 units) 76.2 ± 0.9
k-means (800 units) 75.3 ± 0.9
µ-ssRBM (512 units) 74.1 ± 0.9
µ-ssRBM (256 units) 73.1 ± 0.9
k-means (400 units) 72.7 ± 0.9
k-means (200 units) 70.1 ± 0.9
mcRBM (225 factors) 68.2 ± 0.9
cRBM (900 factors) 64.7 ± 0.9
cRBM (225 factors) 63.6 ± 0.9
GRBM 59.7 ± 1.0

performs better than the most closely-related mod-
els - the GRBM, cRBM, and mcRBM. Recent work
by Coates et al. (2011) has shown that a feature-
extractor based on K-means actually out-performs
these energy-based approaches to feature extraction
on CIFAR-10, in the limit of very large hidden unit
counts. Future work will look at more effective train-
ing strategies for energy models in this regime.

Model Samples: To draw samples from the model,
we trained it convolutionally, similarly to Krizhevsky
(2010). Our convolutional implementation of the µ-
ssRBM included 1000 fully-connected units to capture
global structure, and 64 hidden units for every posi-
tion of an 9x9 RGB filter. The model was trained
on the CIFAR dataset, centered and globally contrast
normalized. Filters W and Φ were shared across the
image, though independent scalar-parameters µi, αi,
and hidden unit bias bi were allocated for each indi-
vidual hidden unit. Figure 2 illustrates some samples
drawn from the model. The samples are taken from the
negative phase near the end of training (with the learn-
ing rate annealed to near zero). These samples exhibit
global coherence, and sharp region boundaries. Quali-
tatively, these samples are more compelling than sam-
ples from similar energy-based models, such as those
featured in Ranzato et al. (2010).
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Figure 2. (Left) Samples from a convolutionally trained µ-ssRBM exhibit global coherence, sharp region boundaries, a
range of colours, and natural-looking shading. (Right) The images in the CIFAR-10 training set closest (L2 distance with
contrast normalized training images) to the corresponding model samples. The model does not appear to be capturing
the natural image statistical structure by overfitting particular examples from the dataset.

7. Discussion

In this paper we have introduced the µ-ssRBM, a gen-
eralization of the ssRBM that includes extra terms in
the energy function. One of these terms permits the
model to capture a non-zero mean in the Gaussian
conditional p(v | h), bringing the ssRBM framework in
line with the recent work of Ranzato & Hinton (2010)
and Ranzato et al. (2010) which also modelled the con-
ditional of the observed data given the latent variable
value to be a general multivariate Gaussian with non-
zero mean and full covariance. Unlike these other ap-
proaches, instantiating the slab vector s renders the
µ-ssRBM amenable to efficient block Gibbs sampling.

The other functional term included in the µ-ssRBM
energy function adds a positive definite diagonal con-
tribution to the covariances associated with the Gaus-
sian conditions over the observations. This term was
used to define variants of the µ-ssRBM that were con-
strained to have well-defined conditional.

Still, our techniques for constraining the µ-ssRBM to
have PD conditionals are based on loose worst-case
scenarios, and potentially leave room for improvement.
Our classification experiments indicate that the µ-
ssRBM was able to use the extra capacity offered by
the addition of these elements to the energy function
to improve the classification accuracy. They also show
that the addition of the PD constraint comes at the
cost of classification performance.
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