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Abstract

Recently, unsupervised methods for monocular vi-
sual odometry (VO), with no need for quantities
of expensive labeled ground truth, have attracted
much attention. However, these methods are inade-
quate for long-term odometry task, due to the inher-
ent limitation of only using monocular visual data
and the inability to handle the error accumulation
problem. By utilizing supplemental low-cost iner-
tial measurements, and exploiting the multi-view
geometric constraint and sequential constraint, an
unsupervised visual-inertial odometry framework
(UnVIO) is proposed in this paper. Our method
is able to predict the per-frame depth map, as
well as extracting and self-adaptively fusing visual-
inertial motion features from image-IMU stream to
achieve long-term odometry task. A novel slid-
ing window optimization strategy, which consists
of an intra-window and an inter-window optimiza-
tion, is introduced for overcoming the error accu-
mulation and scale ambiguity problems. The intra-
window optimization restrains the geometric in-
ferences within the window through checking the
photometric consistency. And the inter-window
optimization checks the 3D geometric consistency
and trajectory consistency among predictions of
separate windows. Extensive experiments have
been conducted on KITTI and Malaga datasets to
demonstrate the superiority of UnVIO over other
state-of-the-art VO / VIO methods. The codes are
open-source1.

1 Introduction

VO or VIO is a fundamental task that aims to track the in-
cremental motion of the sensor and simultaneously build a
map of the environment. Traditional monocular VO meth-
ods [Mur-Artal and Tardós, 2017, Geiger et al., 2011, En-
gel et al., 2017] utilize handcrafted features or photometric
matches to calculate the trajectory from a monocular image

∗Equal contribution
†Corresponding Author
1https://github.com/Ironbrotherstyle/UnVIO

sequence. However, these methods are impressionable to mo-
tion blur, occlusion, and textureless regions. As a comple-
mentary sensor of visual cameras, inertial measurement unit
(IMU) has been widely adopted in VIO methods [Huang and
Liu, 2018, Bloesch et al., 2015, Leutenegger et al., 2013, Qin
et al., 2018] for its high-frequency motion measurement and
relatively low cost. The use of IMU can help to increase the
robustness as well as improving the accuracy.

With the development of CNN and RNN, various learning-
based VO or VIO methods have been proposed. Although
many supervised methods [Wang et al., 2018, Clark et al.,
2017, Chen et al., 2019] have been revealed more competi-
tive than traditional methods, the demands of a large num-
ber of labeled data, i.e., the ground truth poses acquired from
high-precision devices, limit the application of the technol-
ogy. Self-supervised methods [Shamwell et al., 2018, Han et
al., 2019] release the pressure of collecting large quantities of
ground truth, but they still require other expensive data, e.g.,
depth map, which degrades the flexibility. In contrast, unsu-
pervised VO methods [Zhou et al., 2017, Bian et al., 2019]
only utilize image sequences to achieve pose estimation, re-
quiring no ground truth label nor expensive data input. How-
ever, existing unsupervised VO methods suffer from poor ca-
pability on long-term odometry task, due to the inherent limi-
tation of only relying on visual data that may degrade in some
cases. Besides, the error accumulation problem in long-term
trajectory was ignored in previous methods, thus causing the
mediocre result.

In this paper, an unsupervised visual-inertial odometry
framework (UnVIO) is proposed. As shown in Fig. 1, by
taking the consecutive images and IMU measurements as in-
put, UnVIO is able to predict the depth map and estimate
the ego-motion. In particular, a heuristic fusion module is
introduced to self-adaptively fuse the visual and inertial fea-
tures, enabling the model to handle data pollution. The entire
framework is trained in an unsupervised end-to-end fashion,
through a proposed sliding window optimization strategy. A
sliding window is utilized to traverse through the sequence,
where the geometric constraint and sequential constraint are
exploited to optimize the geometric inferences within and
among windows. The contributions can be listed as follows:

• An end-to-end unsupervised visual-inertial odometry
framework (UnVIO) is proposed for estimating the ego-
motion as well as predicting the depth map.
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Figure 1: The pipeline of the proposed visual-inertial odometry framework (UnVIO). The DepthNet takes a single image as input, and outputs
a dense depth map. The PoseNet takes the fused features from the concatenated adjacent views and contiguous IMU data to regress relative
camera poses. The whole framework is trained through a sliding window optimization strategy.

• A visual-inertial feature fusion module is designed to se-
lect the most discriminative motion features for camera
pose regression. The module improves the robustness to
the contamination of image-IMU input.

• A sliding window optimization strategy, consisting of
an intra-window optimization and an inter-window op-
timization, is proposed for unsupervised VIO to tackle
the error accumulation and scale ambiguity problems.

2 Related Work

Traditional methods. Traditional visual odometry meth-
ods can be divided into two categories, feature-based methods
and direct methods. ORB-SLAM2 [Mur-Artal and Tardós,
2017] is a classical feature-based method which extracts
hand-crafted features and utilizes bundle adjustment to esti-
mate ego-motion in real-time. DSO [Engel et al., 2017] is a
sparse direct method that performs the epipolar matching to
achieve camera tracking, based on the assumption of photo-
metric consistency.

In order to increase the robustness and improve the per-
formance, researchers exploit IMU measurements as supple-
mental information, hence extending VO methods to VIO
methods [Bloesch et al., 2015,Huang and Liu, 2018]. OKVIS
[Leutenegger et al., 2013] is a tightly-coupled method which
optimizes the reprojection error and IMU error at the same
time. VINS-Mono [Qin et al., 2018] fuses preintegrated IMU
measurements with visual feature observations to achieve ac-
curate pose estimation.

Supervised/Self-Supervised learning methods. By har-
nessing the deep convolutional and recurrent neural networks,
Wang et al. [Wang et al., 2018] designed a supervised archi-
tecture to estimate camera pose from the monocular image
sequence. VINet [Clark et al., 2017] firstly tackled VIO in a
supervised manner. Chen et al. [Chen et al., 2019] exploited
two masking strategies for visual-inertial sensor fusion.

Some self-supervised learning methods were proposed for
releasing the pressure of collecting quantities of ground truth
labels for supervised learning. Shamwell et al. [Shamwell

et al., 2018] presented VIOLearner that carried out online
error correction in multiple scales to refine the pose estima-
tion. But VIOLearner required the depth map as input, thus
limiting its applicability on other scenes without supplying
depth data. DeepVIO [Han et al., 2019] is a self-supervised
VIO method that uses 3D geometric constraint as supervision.
However, DeepVIO needs an awesome pretrained stereo net-
work PSMNet [Chang and Chen, 2018] to provide the accu-
rate and dense disparity map for training.

Unsupervised learning methods. Zhou et al. [Zhou et al.,
2017] proposed an unsupervised framework of pose estima-
tion and depth prediction. The framework can be trained by
only using image sequences. Shen et al. [Shen et al., 2019]
proposed a matching loss constrained by epipolar geome-
try and improved the odometry performance. In addition to
the photometric matching loss, PatchGAN [Vankadari et al.,
2019] adopted the generative adversarial approach to promote
the depth prediction and pose estimation results. Different
from these unsupervised VO methods, we propose an unsu-
pervised VIO method that significantly improves the odome-
try performance. In contrast to self-supervised VIO methods,
ours requires no extra expensive data as input, but achieves
competitive results through the sliding window optimization
strategy and visual-inertial fusion module.

3 Unsupervised Visual-inertial Odometry

An overview of the unsupervised visual-inertial odometry
framework is shown in Fig. 1. The DepthNet learns a map-
ping from single RGB image to depth map (see Sec.3.1). By
taking the raw monocular image sequence and IMU mea-
surements as input, the visual-inertial odometry networks
estimate the ego-motion (see Sec.3.2). The whole frame-
work is trained in a sliding window optimization strategy
that includes two parts: intra-window optimization and inter-
window optimization (see Sec.3.3).

3.1 Depth Estimation

Given an image I ∈ R
3×H×W , the DepthNet learns a map-

ping function FD that infers the scene depth of per pixel,
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i.e., D = FD(I). The DepthNet is designed based on an
encoder-decoder architecture where the encoder part maps
the RGB image into a high dimensional feature space, and
the decoder remaps these features into depth values. The
pretrained ResNet18 [He et al., 2016] is adopted as the en-
coder and the skip-connection is exploited between the en-
coder and decoder for reserving structure details. For the
decoder, the nearest neighboring upsampling operation fol-
lowed by a Conv layer is used to expand the resolution. Ex-
ponential linear units are appended after each Conv layer as
recommended in [Godard et al., 2017].

3.2 Visual-inertial Odometry

Two parallel networks are designed to extract visual features
and inertial features, followed by a visual-inertial fusion mod-
ule to select the most efficient features. Then, the PoseNet
takes the fused temporal visual-inertial features as input to
regress 6 DOF poses.

Visual feature extraction. Two adjacent frames It−1, It
from the image sequence are concatenated along the channel
dimension as the input of VisualNet. The architecture of Visu-
alNet is made up of the first 7 Conv layers of FlowNet [Doso-
vitskiy et al., 2015] and a global average pooling. The process
of visual motion feature extraction can be formulated as:

FV

t = Φ (It−1 ⊕ It) , (1)

where ⊕ denotes the concatenation in the channel dimension,
Φ is the feature extraction function of VisualNet.

Inertial feature extraction. IMU measures the linear ac-
celeration and angular velocity of the embedded body at a
faster rate than the visual measurement. The sampled raw
IMU measurements from time t − 1 to t are arrayed in the
following form:

M =





α0
t−1 ω0

t−1

. . . . . .

αn−1

t ωn−1

t



 ∈ R
n×6

, (2)

where α, ω ∈ R
3 are the linear acceleration and angular ve-

locity respectively, n is the number of IMU samples. The
sequential IMU measurements are then sent into a two-layer
LSTM [Hochreiter and Schmidhuber, 1997] to get the inertial
motion features:

F I

i ,H
i = R

{(

αi, ωi
)

;Hi−1
}

, (3)

where R represents the recurrent function of IMUNet, Hi is
the hidden state. By this way, sequential IMU measurements
are integrated into the final inertial motion feature F I

t .

Visual-inertial feature fusion. A straightforward but ef-
fective fusion strategy is designed to fuse visual features and
inertial features. The concatenated visual-inertial features
F = FV

t ⊕ F I
t along channel dimension will be firstly ag-

gregated into squeezed features F ′, by a learned basis vector
group G and a learned bias vector b:

F ′ = G · F + b. (4)

Then, F ′ are decoded to a weight vector W that indicates
the importances of channel-wise visual and inertial features:

W = σ (FF (F ′)) , (5)
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Figure 2: An illustration of the sliding window optimization, win-
dow size w is set to 3 for an instance. Photometric consistency is
performed in intra-window optimization, while trajectory and 3D
geometric consistency are performed in inter-window optimization.

where FF is the decoding function of the fusion module, and
σ represents the sigmoid function. The recalibrated visual-
inertial features F are obtained through the Hadamard prod-
uct of W and F : F = F ⊙W .

Pose estimation. Given an image-IMU stream, the mo-
tion feature set

{

F
1
0,F

2
1, · · · ,F

s−2

s−3,F
s−1

s−2

}

where each item
represents the visual-inertial features between two adjacent
times, is fed into PoseNet to dig the temporal relevance:

T
i

i−1,H
i = R

{(

F
i

i−1

)

;Hi−1
}

, (6)

where Hi is the hidden state output, and R is the refining
function of PoseNet. Ti

i−1 is the refined motion features be-
tween frame i− 1 and frame i, which is subsequently sent to
a linear layer to obtain 6 DOF camera pose pi

i−1.

3.3 Sliding Window Optimization

The key supervision of the unsupervised visual-inertial
odometry framework comes from the multi-view geomet-
ric constraint and sequential constraint. Given a se-
quence of visual-inertial measurements at different times,
{⟨I0,M0⟩ , · · · , ⟨Is−1,Ms−1⟩}, a sliding window traverses
through the sequence, with consistency check leveraged to
optimize the geometric inferences (depth and camera pose).
An example of sliding window optimization with step size 1
and window size 3 is shown in Fig. 2. In each window W ,
the depth D and camera poses p̂∗ are independently predicted
from the windowed visual-inertial measurements through our
framework. The photometric consistency check is utilized to
achieve individual intra-window optimization. To handle the
error accumulation and scale ambiguity problems, additional
inter-window optimization is designed to constrain predic-
tions of different windows through checking 3D geometric
consistency and trajectory consistency.

Prior knowledge of multi-view geometry. When a camera
moves in a scene, objects that can be seen in adjacent views
form the geometric constraint. Denote Is, It are two adjacent
frames of source view and target view respectively, and ps,
pt are two pixel points that correspond to the same 3D map
point of the scene. With the depth maps Ds, Dt and the ego-
motion transform matrix Tt→s available, the 3D geometric
consistency can be set by:

Ds (ps)K
−1ps = Tt→sDt (pt)K

−1pt, (7)
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Method Type Metric 00 01 02 03 04 05 06 07 08 09 10
Avg

(sub-t)
Avg

(train)
Avg
(test)

VISO-M geo
trel 36.95 33.56 21.98 16.14 2.61 17.20 7.91 20.00 39.78 29.01 28.52 27.18 21.79 28.77
rrel 2.42 7.22 1.22 2.67 1.53 3.52 1.83 5.30 1.99 1.32 3.23 2.89 3.08 2.28

ORB-SLAM2 geo
trel 19.54 82.83 7.85 2.80 1.38 13.8 16.99 10.98 14.40 14.37 3.94 13.31 18.95 9.16
rrel 0.27 0.86 0.23 0.16 0.15 0.21 0.25 0.30 0.31 0.26 0.28 0.26 0.3 0.27

VINS geo
trel / 41.61 27.53 / 70.96 11.64 18.35 10.00 18.09 23.90 16.50 13.45 28.31 20.2
rrel / 1.13 2.78 / 1.20 1.26 1.65 1.72 1.16 2.47 2.34 1.38 1.56 2.41

VIOLearner s-sup
trel 5.62 / 4.07 / / 3.00 / 3.60 2.93 1.51 2.04 3.84 / 1.78
rrel 3.63 / 1.48 / / 1.40 / 2.06 1.32 0.90 1.37 1.98 / 1.14

DeepVIO s-sup
trel 11.62 / 4.52 / / 2.86 / 2.71 2.13 1.38 0.85 4.77 / 1.12
rrel 2.45 / 1.44 / / 2.32 / 1.66 1.02 1.12 1.03 1.78 / 1.08

SfM u-sup
trel 13.68 22.51 11.70 20.81 8.61 8.46 21.55 12.02 12.56 13.57 16.08 11.68 14.66 14.83
rrel 5.46 3.29 4.25 8.5 5.81 4.55 8.20 6.64 4.67 4.83 4.35 5.11 5.71 4.59

SC u-sup
trel 10.03 25.78 9.07 7.52 3.24 6.23 13.56 6.45 9.92 11.52 10.44 8.34 10.20 10.98
rrel 3.84 1.16 2.16 2.49 0.91 1.78 2.10 2.14 1.98 3.26 4.73 2.38 2.06 4.00

Ours
(NoIMU)

u-sup
trel 4.78 17.28 4.10 4.66 2.43 4.84 5.46 3.9 6.23 9.08 7.82 4.77 5.96 8.45
rrel 0.97 0.56 0.72 1.45 0.34 1.43 0.46 2.11 1.16 2.92 4.08 1.28 1.02 3.50

Ours u-sup
trel 3.67 16.7 3.11 / 1.95 3.32 4.48 3.49 4.74 4.13 5.51 3.67 5.18 4.82
rrel 0.96 0.61 0.59 / 0.49 0.73 0.92 0.83 0.67 0.89 0.53 0.76 0.73 0.71

Table 1: Comparison of odometry performance with existing geometry-based (geo), self-supervised (s-sup), and unsupervised (u-sup) VO
or VIO approaches on KITTI odometry dataset. The best, second-best, and third-best results of trel and rrel are respectively highlighted in
bold, underline and italic. / indicates that the data could not be acquired or the method fails on this sequence.

where K is the camera intrinsic matrix. Also, Equ. (7) can
be converted to indicate 2D reprojection constraint:

ps ∼ KTt→sDt (pt)K
−1pt, (8)

where ∼ means ‘equal in the homogeneous coordinate. Ac-
cording to Equ. (8), a sample grid can be generated and used

to warp Is into synthesized target-view image Ĩs, through a
bilinear sampling. The photometric consistency check is de-

fined by the appearance similarity between Ĩs and It.

Intra-window optimization. The image-IMU stream
{⟨Ii,Mi⟩ , · · · , ⟨Ii+w−1,Mi+w−1⟩} of each sliding window
is utilized for geometric inference generation and intra-
window optimization. The middle frame of the window is
taken as the target view, while others are source views. The
predicted depth map D of the target view and estimated

camera poses
⟨

p̂i+1

i
, · · · , p̂i+w−1

i+w−2

⟩

between adjacent frames

within the window, are checked by photometric consistency:

Lphoto =
∑

⟨s,t⟩

(

λ1 ·
∣

∣

∣
Ĩs − It

∣

∣

∣
+ λ2 · SSIM

(

Ĩs, It

))

, (9)

where ⟨s, t⟩ denotes all the source-target pairs, SSIM [Wang
et al., 2004] represents the structural similarity metric. Ad-
ditional smoothness loss is also adopted for alleviating the
shortage of photometric consistency on the textureless re-
gions as recommended in [Shen et al., 2019]:

Lsmooth =
∑

i,j

(

|∂xdi,j | e
−|∂xIi,j | + |∂ydi,j | e

−|∂yIi,j |
)

. (10)

The intra-window optimization loss can be summarized as:

Lintra = α1 · Lphoto + α2 · Lsmooth, (11)

where α1 and α2 are weighting factors.

Inter-window optimization. It is prone to fall into a lo-
cal optimum by only relying on the optimization within win-
dowed frames, due to the lack of sequential constraint that
may cause the universal scale ambiguity and the accumu-
lated error problems in monocular odometry. We consider the
inter-window optimization, including trajectory consistency
check and 3D geometric consistency check.

Partial information of the sequence is exploited to estimate
the windowed ego-motion in intra-window optimization, i.e.,
{

T
i+1

i
, · · · ,Ti+w−1

i+w−2

}

→
⟨

p̂i+1

i
, · · · , p̂i+w−1

i+w−2

⟩

. To take the
inter-window relevance into account, the integrated informa-
tion is also exploited to estimate the camera poses for the
entire sequence, i.e.

{

T
1
0, · · · ,T

s−1

s−2

}

→
⟨

p10, · · · , p
s−1

s−2

⟩

.
The estimated camera poses p̂∗ that aggregated from the win-
dowed estimation and the corresponding p∗ that estimated
from the integrated sequential information are checked for the
trajectory consistency by:

Lpose =
∑

i

∣

∣p̂i+1

i
− pi+1

i

∣

∣ . (12)

With the sliding window traverses through the sequence,
the middle-frame depth map that determines the scale of each
window is predicted. Therefore, to ensure the uniform scale
of contiguous windows, we project the depth map into 3D
point clouds and then perform the 3D transform based on
Equ. (7) to check the 3D geometric consistency. The 3D ge-
ometric consistency loss L3D for inter-window optimization
is defined as:

L3D =
∑

i

∣

∣

∣
D̃i − Ti+1→iDi+1

∣

∣

∣

D̃i + Ti+1→iDi+1

, (13)

where D̃i is the warped depth map from Di. The loss function
of inter-window optimization is then concluded as:

Linter = α3 · Lpose + α4 · L3D. (14)
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(a) KITTI 05 (b) KITTI 07 (c) KITTI 09 (d) KITTI 10

(e) Malaga 03 (f) Malaga 07 (g) Malaga 09

Figure 3: Trajectory estimation on KITTI and Malaga dataset. (a), (b) are KITTI 05, 07 in the training set. (c), (d) are KITTI 09, 10 that are
used for testing. (e), (f), (g) are the test trajectories of Malaga 03, 07, 09 overlaid on Google Map (GPS is served as reference instead). Best
viewed in the colored electronic version.

To summarize, the loss function of sliding window opti-
mization can be written in:

Lfinal = Lintra + Linter . (15)

4 Experiments

In this section, both quantitative and qualitative results com-
pared with traditional and learning-based VO/VIO methods
are presented. The ablation study is employed to demonstrate
the effectiveness of each component of our method.

4.1 Datasets

KITTI Dataset. KITTI dataset [Geiger et al., 2012] serves
as a prevalent driving dataset, with stereo images at 10Hz,
IMU data at 100Hz, accurate pose and laser scan. Seqs 00-10
of the odometry partition are used, except for 03 where IMU
data is not acquirable. Seqs 00-08 excluding 03 are adopted
for training and 09-10 are utilized for testing.

Malaga Dataset. Malaga [Blanco-Claraco et al., 2014] is
an outdoor dataset. Stereo images at 20Hz, IMU measure-
ments at 100Hz and GPS are provided. In our implementa-
tion, rectified left images are downsampled to 10Hz. Seqs 01,
02, 04, 05, 06, 08 are adopted for training and Seqs 03, 07,
09 are used for qualitatively evaluating since no ground truth
pose is offered.

4.2 Training Details

All the models are implemented by using the Pytorch frame-
work on a computer equipped with an Nvidia GeForce
GTX1080 Ti GPU. Adam optimizer with learning rate 10−4,

β1 = 0.9, β2 = 0.999 is utilized. Images for training on both
datasets are resized to 832 × 256, meanwhile, the IMU sam-
ples n is set to 11. The training process converges after about
100000 iterations with a batch size of 4. Besides, the length
of training sequence s and window size w are 5 and 3 respec-
tively in our experiment. The weights for loss functions are
empirically given as: α1 = 1, α2 = 0.1, α3 = 0.1, α4 =
0.1, λ1 = 0.15, λ2 = 0.85.

4.3 Odometry Evaluation

The evaluation of odometry is carried out among traditional
VO methods VISO-M [Geiger et al., 2011] (monocular ver-
sion), VISO-S [Geiger et al., 2011] (stereo version), ORB-
SLAM2 [Mur-Artal and Tardós, 2017], VIO methods VINS-
Mono [Qin et al., 2018], OKVIS [Leutenegger et al., 2013],
self-supervised VIO methods VIOLearner [Shamwell et al.,
2018], DeepVIO [Han et al., 2019], and unsupervised VO
methods SfM [Zhou et al., 2017], SC [Bian et al., 2019]. All
the monocular methods need to be evaluated after making 7
DOF (6 DOF + scale) alignment with ground truth, apart from
VINS and OKVIS that can recover the scale. Notably, we
implemented the above open-source methods except for VI-
OLearner and DeepVIO to get the odometry results. KITTI
benchmark [Geiger et al., 2013] is utilized as the evaluation
criterion, where trel is the average translational RMSE drift
(%) on length of 100m-800m, and rrel is the average rota-
tional RMSE drift (◦/100m) on length of 100m-800m.

The quantitative results of odometry evaluation on KITTI
dataset are summarized in Table 1. Seqs 00, 02, 05, 07, 08
of the training set are selected for evaluation in [Shamwell et
al., 2018], therefore, we calculate the average errors of these
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Figure 4: Qualitative comparison of depth estimation among SfMLearner, SC, and the proposed UnVIO on KITTI and Malaga dataset. It is
clear that the proposed method predicts depth maps with more details and sharper edges compared with competitors.

Seq M

Mis-c: Unsyn: IMU-D: Cam-D:

10
◦ 20ms 30% 30%

trel rrel trel rrel trel rrel trel rrel

09
Ours 4.13 0.89 4.60 0.93 16.05 5.01 6.54 1.48

VINS 34.53 3.60 28.06 2.73 29.15 4.08 30.22 2.87

10
Ours 5.51 0.53 5.10 0.63 8.33 2.09 9.02 1.63

VINS 27.76 2.41 22.13 3.50 28.31 3.60 19.31 2.65

Table 2: The robustness test of VIO on four settings: camera-IMU
calibration error (Mis-c), unsynchronization (Unsyn), IMU distur-
bance (IMU-D), and camera degradation (Cam-D).

Method
Error metric Accuracy metric (δ)

Abs Rel Sq Rel RMSE < 1.25 < 1.252 < 1.253

SfM 0.3272 3.1131 9.5216 0.4232 0.7010 0.8476

SC 0.1629 0.9644 4.9129 0.7760 0.9315 0.9773

Ours 0.1322 0.73005 4.2443 0.8324 0.9509 0.9821

Table 3: Comparison of quantitative depth results on KITTI 09, 10.
SfMLearner and state-of-the-art SC are used as a reference. The
best of each metric is highlighted in bold.

Method IMU SW Fusion
Seq 09 Seq 10 Avg

trel rrel trel rrel trel rrel

Ours 10.35 3.67 10.58 6.26 10.46 4.96

Ours ✓ 5.63 1.10 6.39 0.88 6.01 0.99

Ours ✓ ✓ 5.36 1.19 5.74 0.54 5.55 0.87

Ours ✓ ✓ ✓ 4.13 0.89 5.51 0.53 4.82 0.71

Table 4: The ablation study of components on VO results. ’IMU’,
’SW’, ’Fusion’ mean IMU input, sliding window optimization and
fusion strategy.

sequences in column Avg(sub-t). The results of Avg(sub-t)
show that our method outperforms other self-supervised VIO
methods in both trel and rrel metrics, although without us-
ing extra depth data. The average results of all the training
set except Seq 03 whose IMU data is not available are used
for the complete comparison on the training set (see column
Avg(train)). Our method clearly performs better in trel than
the unsupervised VO methods and traditional methods that
may hold larger accumulated errors. Additionally, average
errors on the test set (see column Avg(test)) are provided. It
can be observed that the proposed method significantly im-
proves the translational performance compared with the un-
supervised VO methods and traditional methods on unseen
scenes, validating the superiority of UnVIO. Compared with
self-supervised VIO methods, UnVIO also achieves competi-
tive results with lower rotational error rrel on the test set. The
reason that other self-supervised VIO methods gain better trel
may be that the extra depth data can provide more determinate
information for geometric inference. Besides, our vision-only

method, i.e, Ours (NoIMU), performs better than other unsu-
pervised VO methods, which indicates the predominance of
our framework when implemented without IMU data.

Fig.3 illustrates the trajectories generated by various meth-
ods on KITTI and Malaga dataset. The proposed UnVIO can
predict more accurate trajectories than other learning-based
methods on KITTI and is superior to traditional monocular
VO methods. They may hold large drift due to scale ambigu-
ity and accumulated error. It is obvious that our method out-
performs reference methods on Malaga dataset, where VINS
and OKVIS are likely to fail at the begining part of the trajec-
tories because of long-time initialization.

4.4 VIO Robustness Evaluation

Four settings that simulate sensor data collapse due to phys-
ical and thermal changes in the VIO system are conducted
to test the robustness of UnVIO. Specifically, Mis-c:10◦ indi-
cates adding 10◦ to the rotation matrix of camera-IMU extrin-
sic parameters. Unsyn:20ms means randomly adding 20ms to
the IMU time-stamp. IMU-D:30% represents adding white
noise to the accelerometer data and random walk noise to
the gyroscope measurements at a rate of 30%. Cam-D:30%
means adding blur, partial occlusion or full occlusion on the
input images with a probability of 30%. Table 2 details
the performance of VINS and the proposed method trained
on KITTI on the abovementioned conditions. The proposed
method has no performance deterioration on Mis-c because
the extrinsic parameters are not required in our method. How-
ever, VINS seems to be confused and holds large errors as
VINS relies on delicate calibration. On Unsyn, our method
shows the advantages of handling the unsynchronized image-
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IMU stream than VINS. Even when the input data is polluted,
i.e. IMU-D and Cam-D, the proposed method still achieves
better performance, showing better robustness to polluted in-
put data.

4.5 Depth Evaluation

Since depth and pose estimation are coupled tasks, we test
the performance of DepthNet following the odometry split.
Table 3 gives quantified comparison with SfM, SC, and the
proposed UnVIO on KITTI dataset. The results show that
our method achieves the best performance in all metrics. Fig.
4 sketches the predicted depth maps. The first row lists the
monocular inputs of KITTI and Malaga dataset, and the sec-
ond to the last rows are the predicted depth maps correspond-
ing to each input of the three methods. Intuitively, our results
retain more details of the edges and contours of the predicted
objects, e.g., the road sign and distant cars.

4.6 Ablation Study

Ablation study has been done to demonstrate the effective-
ness of each proposed component, as shown in Table 4. By
extending VO methods to unsupervised VIO methods, the
performance gains remarkable improvements via taking both
image and IMU data as input. It can also be concluded that
the proposed sliding window optimization is able to promote
the translational and rotational performance. This is because
the sliding window optimization strategy not only considers
the intra-window photometric consistency, but also focuses
on inter-window 3D geometric consistency and trajectory
consistency to handle the widespread problems in monoc-
ular odometry. By self-adaptively fusing the visual-inertial
features through the visual-inertial fusion module, the perfor-
mance is further improved.

5 Conclusions

An unsupervised visual-inertial odometry framework (Un-
VIO) which only utilizes the monocular image-IMU stream
for training and testing, is proposed in this paper. A visual-
inertial feature fusion module is introduced to enable UnVIO
to show robustness to polluted data. Besides, a novel sliding
window optimization strategy with the advantages of over-
coming scale ambiguity and error accumulation is proposed.
Experimental results show that our method not only outper-
forms other unsupervised methods and traditional methods
but also performs competitively with self-supervised VIO
methods that need extra expensive depth data.
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Dueñas, and J. González-Jiménez. The málaga urban dataset:
High-rate stereo and lidar in a realistic urban scenario. The In-
ternational Journal of Robotics Research (IJRR), 33(2):207–214,
2014.

[Bloesch et al., 2015] M. Bloesch, S. Omari, M. Hutter, and
R. Siegwart. Robust visual inertial odometry using a direct ekf-
based approach. In IEEE/RSJ international conference on intel-
ligent robots and systems (IROS), pages 298–304, 2015.

[Chang and Chen, 2018] J. Chang and Y. Chen. Pyramid stereo
matching network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5410–
5418, 2018.

[Chen et al., 2019] C. Chen, S. Rosa, Y. Miao, C. X. Lu, W. Wu,
A. Markham, and N. Trigoni. Selective sensor fusion for neu-
ral visual-inertial odometry. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages
10542–10551, 2019.

[Clark et al., 2017] R. Clark, S. Wang, H. Wen, A. Markham, and
N. Trigoni. Vinet: Visual-inertial odometry as a sequence-to-
sequence learning problem. In Thirty-First AAAI Conference on
Artificial Intelligence (AAAI), pages 3995–4001, 2017.

[Dosovitskiy et al., 2015] A. Dosovitskiy, P. Fischer, E. Ilg,
P. Husser, C. Hazirbas, V. Golkov, P. v. d. Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional
networks. In IEEE International Conference on Computer Vision
(ICCV), pages 2758–2766, 2015.

[Engel et al., 2017] J. Engel, V. Koltun, and D. Cremers. Direct
sparse odometry. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 40(3):611–625, 2017.

[Geiger et al., 2011] A. Geiger, J. Ziegler, and C. Stiller. Stere-
oscan: Dense 3d reconstruction in real-time. In IEEE Intelligent
Vehicles Symposium (IV), pages 963–968, 2011.

[Geiger et al., 2012] A. Geiger, P. Lenz, and R. Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark suite.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3354–3361, 2012.

[Geiger et al., 2013] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun.
Vision meets robotics: The kitti dataset. The International Jour-
nal of Robotics Research (IJRR), 32(11):1231–1237, 2013.

[Godard et al., 2017] C. Godard, O. Mac Aodha, and G. J. Brostow.
Unsupervised monocular depth estimation with left-right consis-
tency. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 270–279, 2017.

[Han et al., 2019] L. Han, Y. Lin, G. Du, and S. Lian. Deep-
vio: Self-supervised deep learning of monocular visual iner-
tial odometry using 3d geometric constraints. arXiv preprint
arXiv:1906.11435, 2019.

[He et al., 2016] K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR),
pages 770–778, 2016.

[Hochreiter and Schmidhuber, 1997] S. Hochreiter and J. Schmid-
huber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[Huang and Liu, 2018] W. Huang and H. Liu. Online initialization
and automatic camera-imu extrinsic calibration for monocular

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2353



visual-inertial SLAM. In International Conference on Robotics
and Automation (ICRA), pages 5182–5189, 2018.

[Leutenegger et al., 2013] S. Leutenegger, P. T. Furgale, V. Rabaud,
M. Chli, K. Konolige, and R. Siegwart. Keyframe-based visual-
inertial slam using nonlinear optimization. In Proceedings of
Robotis Science and Systems (RSS), 2013.

[Mur-Artal and Tardós, 2017] R. Mur-Artal and J. D. Tardós. ORB-
SLAM2: an open-source SLAM system for monocular, stereo
and RGB-D cameras. IEEE Transactions on Robotics (TRO),
33(5):1255–1262, 2017.

[Qin et al., 2018] T. Qin, P. Li, and S. Shen. Vins-mono: A ro-
bust and versatile monocular visual-inertial state estimator. IEEE
Transactions on Robotics (TRO), 34(4):1004–1020, 2018.

[Shamwell et al., 2018] E. J. Shamwell, S. Leung, and W. D. Noth-
wang. Vision-aided absolute trajectory estimation using an
unsupervised deep network with online error correction. In
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2524–2531, 2018.

[Shen et al., 2019] T. Shen, Z. Luo, L. Zhou, H. Deng, R. Zhang,
T. Fang, and L. Quan. Beyond photometric loss for self-
supervised ego-motion estimation. In International Conference
on Robotics and Automation (ICRA), pages 6359–6365, 2019.

[Vankadari et al., 2019] M. B. Vankadari, S. Kumar, A. Majumder,
and K. Das. Unsupervised learning of monocular depth and
ego-motion using conditional patchgans. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 5677–5684,
2019.

[Wang et al., 2004] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing
(TIP), 13(4):600–612, 2004.

[Wang et al., 2018] S. Wang, R. Clark, H. Wen, and N. Trigoni.
End-to-end, sequence-to-sequence probabilistic visual odome-
try through deep neural networks. The International Journal of
Robotics Research (IJRR), 37(4-5):513–542, 2018.

[Zhou et al., 2017] T. Zhou, M. Brown, N. Snavely, and D. G.
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1851–1858, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2354


	Introduction
	Related Work
	Unsupervised Visual-inertial Odometry
	Depth Estimation
	Visual-inertial Odometry
	Sliding Window Optimization

	Experiments
	Datasets
	Training Details
	Odometry Evaluation
	VIO Robustness Evaluation
	Depth Evaluation
	Ablation Study

	Conclusions

