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Abstract

Though names reference actual entities it is nontrivial to re-

solve which entity a particular name observation represents.

Even when names are devoid of typographical error, the

resolution process is confounded by both ambiguity, where

the same name correctly references multiple entities, and by

variation, when an entity is correctly referenced by multiple

names. Thus, before link analysis for surveillance or

intelligence-gathering purposes can proceed, it is necessary

to ensure vertices and edges of the network are correct. In

this paper, we concentrate on ambiguity and investigate

unsupervised methods which simultaneously learn 1) the

number of entities represented by a particular name and

2) which observations correspond to the same entity. The

disambiguation methods leverage the fact that an entity’s

name can be listed in multiple sources, each with a number

of related entity’s names, which permits the construction

of name-based relational networks. The methods studied

in this paper differ based on the type of network similarity

exploited for disambiguation. The first method relies upon

exact name similarity and employs hierarchical clustering of

sources, where each source is considered a local network. In

contrast, the second method employs a less strict similarity

requirement by using random walks between ambiguous

observations on a global social network constructed from

all sources, or a community similarity. While both methods

provide better than simple baseline results on a subset of the

Internet Movie Database, findings suggest methods which

measure similarity based on community, rather than exact,

similarity provide more robust disambiguation capability.

Keywords: Disambiguation, Social Networks, Random

Walks, Multi-class Clustering

1 Introduction

Technological advances have sustained a continuing
increase in our abilities to gather, store, and model
information at the entity-specific level. With respect
to entity-specific, or social, networks, the types of
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relationships which are learnable are vast and can
provide detailed knowledge ranging from individual
preferences to organizational structures. Yet, before
knowledge regarding an entity or relationships between
entities can be extracted from relational systems we
must first attend to a more fundamental feature of
data: correctness. Specifically, we must be able to
decide when two pieces of data correspond to the same
entity or not. Failure to ensure correctness can result
in the inability to make inferences or the learning of
false knowledge. The ability to decide when two or
more pieces of data refer to the same entity is crucial
not only for correct network construction and analysis,
but to a wide range of critical processes, including
data fusion, cleaning, profiling, speech recognition, and
machine translation.

For surveillance and counterterrorism analysis, the
relational data of interest is often made up of names,
such that a vertex refers to a particular name and an
edge specifies the relationship between two names. How-
ever, even when names are devoid of typographical er-
rors, there are additional confounders to data correct-
ness. First, there can exist name variation, where mul-
tiple names correctly reference the same entity. Sec-
ond, there can exist name ambiguity, such that the same
name correctly references multiple entities. While both
problems must be accounted for, this paper concentrates
on the basic aspects, and how to resolve, ambiguity. The
basic question we ask is, how do you resolve which par-
ticular entity is referred to, or disambiguate, various
observations of the same name?

Disambiguation is by no means a trivial feat, and
the manner by which an individual makes the decision
is often contingent on the available contextual clues as
well as prior, or background, information. For example,
when a reader encounters the name “George Bush”,
the reader must decide if the name represents “George
H.W. Bush” - the 41st President of the United States
of America, or “George W. Bush” - the 43rd president,
or some other individual of lesser notoriety. How
does one determine whom the name corresponds to?
When the name is situated in a traditional communique,
such as a news story, we tend to rely on linguistic
and biographical cues. If the name is situated in the
following sentence, “George Bush was President of the
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United States of America in 1989.”, then, with basic
knowledge of American history, it is clear the story
refers to the elder “George H.W. Bush”.

Though spoken conversations and written commu-
nications between entities are structured by known
grammars there is no requirement for text-based doc-
uments to provide traditional semantic cues. One such
counter scenario, which explicitly concerns social net-
works, occurs when documents are merely rosters that
consist of nothing but names. [30] To relate informa-
tion corresponding to the same entity in this type of
environment, disambiguation methods must be able to
leverage list-only information. Models employed in nat-
ural language processing [32], such as those available in
the sentence regarding the American President, are not
designed to account for this new breed of semantics.

There has been some headway made in the design
of less structure dependent disambiguation methods.
[6, 7, 21] However, these methods are often tailored
to assumptions and characteristics of the environments
where the references reside. For example, some methods
leverage the covariates of references (i.e. the observation
of two references in the same source) or require that so-
cial groups function as cliques. [6, 7] This model expects
environments in which strong correlations exist between
pairs or sets of entities, such that they often co-occur in
information sources. While closely knit groups of enti-
ties provide an ideal scenario, it is not clear if such so-
cial settings manifest in the real world. In contrast, it is
feasible, and intuitive, to leverage less directly observed
relationships. This is precisely the route explored in this
paper. We consider networks of the references in ques-
tion, such that one can leverage “community” structures
among entities. By studying communities of entities, we
exploit relationships between entities which have min-
imal, or no, observed interactions. This is extremely
powerful, since it allows for disambiguation when co-
variates are weak or the social network of entities is less
centralized.

In this research paper, we investigate the degree
to which disambiguation methods can be automated
using relational information only. More specifically,
given only a set of observations of names from infor-
mation sources, such as webpages, can we construct
an automated system to determine how many enti-
ties correspond to each particular name? Furthermore,
can we determine which particular name observation
corresponds to which underlying entity? The meth-
ods discussed in this paper are evaluated on a real
world dataset derived from the Internet Movie Database
(IMDB). Experimental findings from this research sug-
gest that community similarity, which leverage indirect
relationships, is more reliable for disambiguation than

similarity methods which rely on direct relationships.
In addition, we demonstrate that simple methods, such
as those based on random walks can be applied towards
estimating community similarity.

The remainder of this paper is organized as follows.
In the following section, related research in linkage and
disambiguation, including recent developments within
the data mining community, is reviewed. In Section
3, the disambiguation methods which are applied in
this research are formally introduced and defined. In
Section 4, the IMDB dataset is summarized and the
results of disambiguation experiments with this dataset
are presented. Then, in Section 5, we consider some of
the limitations of this research, discuss some of potential
extensions, and consider some applications of social
network-based disambiguation. Finally, in Section 6,
the contributions of this research are summarized.

2 Background and Related Research

There exist a number of approaches that have been
applied to disambiguation. In this section, we briefly
review previous disambiguation research and where the
work presented in this paper differs.

In general, disambiguation methods can be tax-
onomized on two features: 1) information type and
2) supervision. Information type specifies to whom
data corresponds and there are two main types often
used for disambiguation: a) personal and b) relational.
Personal information corresponds to static biographical
(e.g. George H.W. Bush was the 41st President) and
grammatical (e.g. fall used as a noun vs. as a verb)
information. To leverage this information, disambigua-
tion methods usually use sets of rules for discerning one
meaning from another. In contrast, relational informa-
tion specifies the interactions of multiple values or terms
(e.g. George H.W. Bush collocates with Ronald Reagan
whereas George W. Bush collocates with Dick Cheney).

The second taxonomizing feature is the supervision
of the disambiguation process. In a supervised learn-
ing systems, each of the a disambiguation method is
trained on labeled sample data (e.g. first sample corre-
sponds to first meaning, second sample corresponds to
second meaning, etc.). In an unsupervised learning sys-
tem, methods are not trained, but instead attempt to
disambiguate based on observed patterns in the data.

2.1 Personal Disambiguation. Word sense disam-
biguation methods initially gained momentum in nat-
ural language processing. Early computational meth-
ods tagged sentences with parts of speech and disam-
biguated words/phrases based on part of speech. [8, 19]
With the incorporation of a database-backed model,
IBM’s “Nominator” system [33], uses phrase context
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(e.g. punctuation, geographic position in sentence, and
capitalization) in parallel with prior knowledge (e.g.
known type of entity for names) for disambiguation.
Names encountered by the system are matched to names
whose context and knowledge have been previously
specified. An alternative supervised method is to per-
form disambiguation using parallel corpora, such as in
the cross-lingual context. [28]

Bagga and Baldwin [3] introduced an unsupervised
disambiguation model based on sentence comparison for
when prior knowledge is unknown. Sentence are parsed
into vector-space summaries of words or concepts. Sum-
mary pairs are compared and similarity scores above
a certain threshold are predicted as the same entity.
Mann and Yarowsky [25] extend summaries to parse
and structure biographical data, such as birth day, birth
year, occupation, and place of birth. Once each name is
associated with a simply biography, the name observa-
tions are clustered based on similarity of their biogra-
phies.

The recently developed “Author-ity” system, is an
unsupervised system developed for database queries.
Input is provided to this system as an author’s name,
in the form of last name and first initial. The system
returns a list of scientific articles, authored by the name
of interest, ranked in decreasing certainty of whether or
not an article was authored by the same person. [31]
Articles are ranked by performing a pairwise similarity
of title, journal name, coauthor names, medical subject
headings, language, affiliation, and prevalence of name
in the database.

A drawback of personal information dependent
methods is their lack of accountability for unstructured
information. These methods require rules, grammars,
and or multiple attributes for comparison.

2.2 Relational Disambiguation. An alternative
approach for natural language disambiguation is based
on a probabilistic model of word usage. Lesk [24] ex-
tended rule based models to account for the relationship
of an ambiguous word with its surrounding words. He
demonstrated that for an ambiguous word, overlap in
the dictionary definitions’ of surrounding text words can
be used to disambiguate. Gale et. al. [14] demonstrated
that the dictionary definitions are unnecessary provided
a representative sample of word covariation was avail-
able. In their research, a Näıve Bayes classifier was
trained for each ambiguous word and its surrounding
words. Given a new word observation for disambigua-
tion, the word was labeled with the definition of the
max score classifier. Additional statistical models for
using word and concept covariates have been studied.
[9, 15, 16, 27, 34] A classifier based on covariance (i.e.

the probability that a word occurs with another word)
is trained for each meaning of the ambiguous word. For
each new ambiguous word occurrence, a sense predic-
tion is made based on which classifier the word, and its
surrounding words, are most similar to.

Networks provide a way to construct robust pat-
terns from minimally structured information. Certain
word disambiguation methods have employed seman-
tic [11, 18, ?] networks from corpora for more robust
similarity measures. Similarly, other models have con-
sidered belief propagation networks and Bayesian mod-
els for disambiguation. [12] In this research, we con-
sider the degree to which social networks can be used
for disambiguation. Recent research has considered a
specific case of social networks for unsupervised social
disambiguation network [6, 7], in which both ambiguity
and variation problems are tackled simultaneously using
an iterative approach akin to expectation-maximization.
In the maximization step, two references are predicted
as the same entity if they are within a certain “distance”
of each other. The distance predictions are achieved in
the expectation step, and are calculated as a weighed
average of 1) the distance between the observed set of
references and 2) the groups which the predicted entity
for the observed references is expected to be a part of. In
the first measure, a measurement between the attributes
of the references is incorporate as used in record link-
age research (e.g. John vs. Jon). The second measure
corresponds to the distance between two sets of groups,
where a group is a clique of entities representative of the
document in which the reference resides in, as predicted
from the previous iteration.

A shortcoming of this model is a design tailored to
an expectation of how citation networks are organized.
The proposed model has not been evaluated on actual
collaboration networks, but rather synthetic data in
which clique structures are guaranteed to exist. As a
result, their approach skews predictions towards groups
which are not only equivalent, but function as cliques.
This bias can have serious difficulty in a lesser connected
environment, or decentralized, environments such as
the Internet Movie Database studied in this paper.
Clique detection requires what we informally term exact
similarity, such that relationships between entities must
be directly observed (e.g. Alice and Bob are related if
they collocate in the same source). Furthermore, this
model is not necessarily representative of the space of
social networks. It is unclear if this model generalizes
to other types of social networks [2, 26], such as small-
world [22], hierarchical [29], or cellular [10].

As applied in this research, we incorporate commu-
nity similarity to relax the direct observation require-
ment and permit relationships to be established be-
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tween entities indirectly. For instance, Alice and Bob
may never be observed together, but both Alice and
Bob collocate Charlie, Dan, and Fran. Though com-
munity similarity measures do not necessarily all types
of networks, the goal of this research is to demonstrate
their capability in comparison to exact similarity in a
controlled environment. We suspect that in a less cen-
tralized system, such as the IMDB, similarity measures
based on community provide more robust metrics. In
following section, we introduce two methods: one de-
pendent on exact similarity and an alternative method
which is dependent on community similarity.

3 Disambiguation Models and Methods

In this section, we formalize aspects of disambiguation
in a more formal manner. In order to do so, we borrow
from set theory and introduce a basic set of terminology,
definitions, and notations.

Figure 1: A) An example of an ambiguous name Alice
for entity1 and entity3. B) An example of name
variation of Alice and Ali for entity1.

An entity is defined as an element from a population of
objects. However, entities are not necessarily observed,
and thus we consider a set of entities are considered
as a set of unobserved, or latent, variables H =
{h1, h2, . . . , hk}. Rather, there exist a set of objects
which are used to reference entities. For this research,
we consider these referencing objects to take the form
of names. These names manifest in a set of information
sources S = {s1, s2, . . . , sm}, such that each source si

consists of a set of extracted names Ni. For example,
one can consider a single webpage as a single source.
The set of distinct names observed in S is represented
by E = {e1, e2, . . . , en} = N1 ∪N2 · · · ∪Nm.

While the same name can be ambiguous to multiple
entities, each occurrence of a name references a single

entity only. A name which refers to k different entities
is called k-ambiguous. This is the scenario depicted in
Figure 1.A, where the name Alice correctly represents
entity1 in source1 and entity3 in source3. Similarly,
an entity may be correctly represented by k different
names. An entity which is referred to by k different
names is called k-variant. In Figure 1.B, entity1 and
entity2 are 2- and 1-variant, respectively. For this study,
investigation is restricted to 1-variant entities and k-
ambiguous names.

In this paper there are two techniques evaluated
for name disambiguation, the first leverages directly
observed relationships, whereas the second incorpo-
rates unobserved, though meaningful, relations. The
first technique is a version of hierarchical clustering on
sources with ambiguous names only. The second con-
structs social networks from all sources, regardless of
the existence of the ambiguous name of interest. The
following sections explain these methods in detail.

3.1 Hierarchical Clustering. For the first method,
each source is represented as a Boolean vector si =
[ei1, . . . , ein], where eij = 1 if name ej is in source si and
0 otherwise. Hierarchical clustering is performed using
an average linkage criterion calculated as follows. [13]
Each source to be clustered is initialized as a singleton
cluster. Then, similarity between two clusters ci, cj ,
denoted csim(ci, cj), is measured as:

csim(ci, cj) =

∑
s∈ci,t∈cj

ssim(s, t)

|ci||cj |

where the similarity between two sources si, sj , denoted
ssim(si, sj), can measured using any distance or simi-
larity function. The similarity function of choice for this
research is one minus the cosine distance of the vectors
of the two source vector representations. More specifi-
cally, cosine similarity between two sources is calculated
as:

ssim(si, sj) =

√∑n
x=1 eixejx√∑n

y=1 eix

√∑n
z=1 eiz

The most similar clusters are then merged into a
new cluster. This process proceeds until either a pre-
specified stopping criteria is satisfied or all sources reside
in one common cluster.

3.2 Random Walks and Network Cuts. An alter-
native method considered in this research is the analysis
of social networks constructed via names with high cer-
tainty. Mainly, we are interested in the partitions of
networks as prescribed by random walks from nodes of
ambiguous names. One principle difference between the
random walk method described in this section and the
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Figure 2: A) Social network with a four ambiguous name observations. Nodes connected to ambiguous nodes
correspond to original sources. B) network with non-ambiguous names removed. The directed edges correspond
to the probability of walking from one node to another.

hierarchical clustering of the previous section is the walk
is permitted to proceed over nodes (names) which occur
in sources devoid of ambiguous names. By doing so, we
exploit weak ties, which taken in combination, can per-
mit the discovery of community structures in the graph.

From the set of sources S, a social network is
constructed in the following manner. Every distinct
name in S is set as a node in the network. An edge
exists between two nodes if the names collocate in a
source at least one time. The weight of the edge between
two nodes i, j is related to the inverse of the number of
names observed in a source. This weight is calculated
as

wij =
∑

s∈S θijk

|s|
,

where θijk is an indicator variable with value 1 if names
for nodes i and j collocate in source s and 0 otherwise.
The reasoning behind this weighting schema is the belief
that the lesser number of entities observed in a source,
the greater the probability the entities have a strong
social interaction. For instance, a website which depicts
a list of all students, faculty, and staff of a university
conveys less specific information than the class roster
for a machine learning graduate course.

In order to test disambiguation in a controlled
environment, we make the following adjustment to the
networks. For each ambiguous name, we construct
a separate network. Basically, the social network is
constructed in same manner, except each observation of
the ambiguous name of interest is set as its own node in
the network. An example network is depicted in image
Figure 2.A for the name Alice. In this network, Gil is
indirectly connected to Alice through her acquaintances
(Dan and Fran.

Given the social network, we proceed with random
walks over the graph. Each walk begins at a node with

an ambiguous name observation. The probability a step
is taken from node a to node b is the normalized weight
of the edge with respect to all edges originating from
node a. This probability is calculated as P (a → b|a) =
wab/

∑
j waj . Note the probability P (a → a|a) = 0.

The random walk proceeds from until either 1) an
ambiguous name node is encountered or 2) a maximum
number of steps are taken. In our studies, we limit the
maximum number of steps to 50. After a certain number
of random, we approximate the posterior probability
of reaching b given the walk originated at a and the
observed network, which is represented as P (a ⇒ b).
As depicted in Figure 2.B, the posterior probabilities
remove the necessity for all network nodes except for
the ambiguous names. The similarity between nodes a
and b is set to the average of the probability of reaching
a given b as a start node and vice versa, or [P (a ⇒ b)
+ P (b ⇒ a)] / 2. This similarity score is then used in
a single linkage clustering process, such that edges are
removed if their similarity is below a threshold value.
Each resulting components of the graph corresponds
to a particular latent variable, or entity. The set of
names for each component correspond to the names for
a particular entity.

More complex schemes for measuring similarity are
proposed in the discussion, but were not evaluated in
this study.

3.3 F scores for Multi-class Accuracy. Given a
clustering of names, we measuring the accuracy of the
predictions through the F-score. This metric was ini-
tially introduced by the information retrieval commu-
nity for testing the accuracy of clusters with greater
than two predefined classes, such as the topics of web-
pages (e.g. baseball vs. football vs. tennis vs. etc..).
[23] As applied to disambiguation, the F-score is mea-

97



Figure 3: Summary statistics of entity, source, and name distributions in the IMDB. A) Log-log plot of movies
per entity, B) log-log plot of entities per movie, and C) log-log plot of frequency of ambiguous name size.

sured as follows. Let He = {h1, h2, . . . , hm} be the
set of entities referenced by a specific name. Let
Se = {se1, se2, . . . , sem} be a set of sets of sources,
such that sei corresponds to the set of sources that en-
tity hi occurs in. For this research, we only consider
sources which contain a single occurrence of an ambigu-
ous name. Thus, for all sei, sej ∈ Se, sei∩sej = ∅. Now,
let C = {c1, . . . , ck} be a set of clusters of the sources
in Se. Furthermore, let T = {t1, . . . , tk} be the set of
sources for each cluster in C.

The F-score is a performance measure, which uses
the harmonic mean of precision and recall statistics
for a multi-class classification system. In information
retrieval, recall R is defined as the fraction of known
relevant documents which were retrieved by the system.
In contrast, precision P is defined as the fraction of
the retrieved documents which are relevant. For a
specific class in the system, which is simply an entity,
we define recall and precision for an arbitrary cluster as
R(ei, cj) = |si∩tj |/|si| and R(ei, cj) = |si∩tj |/|tj |. The
F-score for an arbitrary entity-cluster pair, f(ei, cj),
which is referred to as the local F score, is taken as
the harmonic mean of the recall and precision:

f(ei, cj) =
2R(ei, cjP (ei, cj)

R(ei, cj + P (ei, cj)

While the local F score provides fit for a single entity
class and a single cluster, it is the complete system
partitioning which we are interested in. To measure the
accuracy of the complete system we compute a global
F-score, which is basically the sum of the largest local F-
scores for each entity class. More specifically, the global
F score for an E, C pair is:

F (E,C) =

∑
s∈Se|s|maxc∈C(f(e,c))

|
⋃

s∈Se
s|

For the methods evaluated in this paper the global
F-score is used to test the goodness of fit for a clustering.

4 Experiments

In this section, the disambiguation methods of the
previous section are evaluated on a real world dataset.

4.1 Data Description. The dataset chosen to eval-
uate the disambiguation strategies consists was the In-
ternet Movie Database (IMDB). A publicly available
dataset [17] was downloaded from the IMDB’s ftp site
and was parsed into a relational database for process-
ing purposes. The database contains approximately 115
years worth of actor lists for movies, television shows,
straight to video and dvd. For resolution purposes, the
IMDB staff labels every entity uniquely, so even entities
with ambiguous names are provided with unique pri-
mary IDs in the form of an appended roman numeral
(i.e. John Doe (I) vs. John Doe (II)). As a result, the
underlying truth of the data is known for validation pur-
poses. For this study, this information is only taken into
account after disambiguation.

A subset of the IMDB dataset was chosen for
evaluation purposes. This subset covered the ten year
period 1994-2003 and consists of all movies with greater
than 1 actor. For completeness purposes, the following
summary statistics were gathered. There are 37,000
movies and 180,000 distinct entities. The distribution
of number of movies per actor is depicted in Figure 3.A,
and it can be validated that it follows a log-log linear
model, or power law distribution. The average number
of entities per movie is 8 with a standard deviation of
9.9. Furthermore, it can be validated that in Figure 3.B
that the number of entities per movie follows a similar
trend. As noted by Barabasi and Albert, the degree
distribution of the actor-to-actor network constructed
from IMDB data follows a power law distribution as
well. [5]

To construct a set of k-ambiguous names, entities
were grouped by last name. There are 85,000 distinct
last names. The distribution of number of entities
per last name also follows a power law distribution,
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Figure 4: F-scores of hierarchical clustering of sources for each 2-ambiguous name. The topline corresponds
to best F score observed during clustering. The plot below is the difference between the best F-score minus a
baseline F-score of all sources as A) singletons and B) a single cluster. Image C depicts scores for names where
the number of sources is greater than the number names. In this image, the baseline is the difference between the
best F-score and the max F-score of both baselines.

as shown in image C of Figure 3. To put these
numbers in perspective, there are approximately 12,000
2-ambiguous names.

4.2 Hierarchical Clustering Results. The IMDB
dataset was subject to hierarchical clustering using the
average linkage criteria described above. For clustering
raw sources, we considered a continuum of similarity
thresholds for stopping the clustering procedure. Fig-
ure 4 depicts the best global F-scores achieved for names
from this dataset. The x-axis is ordered by number of
entities per name, so 1-ambiguous names are on the left.
The graph is then subordered by best observed F-score.
The predicted F-scores were compared against several
baseline methods. In Figure 4.A-C of , the upperline
corresponds to the best observed F-score. In Figures
4.A and 4.B, the plot below the best score line corre-
sponds to the difference between the best score and the
baseline. The baseline method in Figure 4.A assumes all
ambiguous names are distinct entities. In contrast, the
baseline in Figure 4.B assumes all ambiguous names cor-
respond to a single entity. These baselines are referred
to as AllSingletons and OneClusterOnly, respectively.
In 4, the first 70,000 points correspond to 1-ambiguous
names, which explains is why the single cluster baseline
predicts perfectly (i.e. F-score of 1).

To consider a more specific case where the baseline
is not guaranteed to score perfectly, Figure 4.C depicts
a disambiguation results for 2-ambiguous names, where
the number of sources is greater than 2. In contrast
to Figures 4.A and 4.B, the plot in 4.C presents the
difference between the best F-score from hierarchical
clustering and the maximum score achievable from a
baseline method.

To an extent, the images of Figure 4 skew the
clustering prediction results. Though Figure 4 implies
that clustering provides F-scores above baseline scores,
it must be taken into account that these are the best F-

scores possible. The only way to discover the maximum
F-score is to check the accuracy of each disambiguation
prediction against the underlying truthful values. It is
unfair to compare the power of hierarchal clustering
to maximum F score of the baseline tests for similar
reasons. Just as we cannot consider all partitions of
the hierarchical clustering process simultaneously, we
cannot simply take the max of both baselines - we
must choose one or the other. In reality, an automated
method must be able to find a point at which clustering
automatically stops.

A simple method which was tested for automatic
stopping was to average out the F-scores at various sim-
ilarity threshold values. The resulting scores are demon-
strated in Figure 5.A with the label “hc”. In contrast
to Figure 4, the average F-scores for all singletons and
single cluster baselines are reported. The vertical line
in the graph depicts one standard deviation around the
average hierarchical clustering F-score. A threshold of
0 corresponds to the OneClusterOnly baseline and a
threshold of 1 corresponds to the AllSingletons base-
line. In Figure 4.A, as the threshold increases from 0 to
1, the F-score increases. The average F-score reaches a
maximum value close to a similarity of 0.99, at which
point the average F-score and all clusterings within 1
standard deviation achieve better than the best baseline
of all singletons. This is very encouraging, except with
such a high similarity threshold it is implied that we
should only merge clusters with extremely high struc-
tural equivalence in their vectors. This is quite peculiar,
and appears to be completely antithetical to the belief
that community structures permit greater capability for
disambiguation.

4.3 Random Walk Results. However, once we con-
sider the results from the random walk clustering, the
previous result appears to be less counter than initially
implied. In the right plot of Figure 4, we present average
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Figure 5: A) Average F-score of hierarchical clustering (hc), singletons, and single cluster baselines over continuum
of cosine similarity threshold values. The vertical lines correspond to 1 standard deviation. B) Average F-score
of random walk network partitioning, singletons, and single cluster baselines over continuum of cosine similarity
threshold values. The vertical lines correspond to 1 standard deviation.

the F scores for random walk partitioning. There were
100 random walks initiated from each ambiguous node.
Recall, similarity is actually the mean of the probability
of walking between ambiguous name observations a and
b within 50 steps. The graph is then thresholded, such
that probabilities below the threshold are removed, and
the resulting network components are set as the pre-
dicted clusters. From this plot, it is apparent that a
maximum F-score is achieved at a relatively low thresh-
old, specifically a probability of 0.12. Moreover, the
average F score maximum at this point is greater that
the maximum for simple hierarchical clustering by ap-
proximately 0.1. This is a significant improvement and
supports the community structure hypothesis. Nodes
and edges which are not directly related to the ambigu-
ous names provide a significant amount of power for
disambiguation purposes.

5 Discussion

The results of the previous section demonstrate com-
munity equivalence provides an advantage over exact
equivalence for measuring similarity and, subsequently,
disambiguation. While the datasets which these results
are derived correspond to real world observations, the
experiments and models of disambiguation are based
on a highly controlled environment. Some of the limita-
tions of this environment, and possibilities for extension
are addressed in the following sections.

5.1 Building a Better Stopping Criteria. One
limitation of this work stems from its dependency on
a static threshold as a stopping criteria of the cluster-
ing process. This is a age old concern regarding hier-
archical clustering and, for the most part, all stopping

criteria are based on heuristics which are tailored to a
researcher’s respective environment. Airoldi and Malin
have recently proposed a statistical test for stopping the
clustering process based on geometric intuition regard-
ing the growth rates of clusters. [1] In their research,
clustering utilizes a single linkage criterion and thus has
yet to be proven if such geometric insights hold for more
complex clustering criteria such as the average linkage
method employed for this paper’s analysis. It is possible
such tests could be adapted and in future research we
hope to address this issue in more depth.

Though stopping criteria for hierarchical clustering
may be difficult to define, it might be easier to derive an
intuitive threshold for the random walk procedure. In
this research, only similarity based on the probability
of reaching one node from another was considered.
However, this is an incomplete picture of the community
surrounding an ambiguous name, and furthermore is a
biased estimator. The information which random walks
provide is much more substantial than the probability of
reaching one node from another. In effect, there are at
several additional features which can be accounted for
to reduce bias in static thresholds. First of all, certain
names are observed in more sources than other names.
As a result, if the probability of reaching node b from
node a is 0.2 and there are 20 sources in consideration,
this is clearly a more probable occurrence than if the
same probability was observed when 200 sources are
considered.

Second, random walks provide the probability that
a node will reach any node. Thus, we can consider the
number of times a walk originating from an ambiguous
node finds another ambiguous node, including itself,
in the random walk. Note, there will be occurrences
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when a random walk fails to find an ambiguous nodes.
Such occurrences should not be discounted since they
still communicate important indications of the distance
between one ambiguous node and another. Thus, it
is apparent that the probability P (a ⇒ b) should be
inversely correlated to the probability a node walks
back to itself, or P (a ⇒ a). Furthermore, we should
negatively reweight if node b is a node which is reachable
from many different nodes.

Third, the random walks were arbitrary specified
to time out after 50 steps. By this construction, a walk
completed successfully (i.e. reaches an ambiguous name
node) in 2 steps is given equal weight in the similarity
measure than a successful walk of 50 steps. It is possible
that a discounting model may be more appropriate, such
that as the number of steps increases, the score provided
to a successful completion tends toward zero. In future
research we expect to design more formal probabilistic
representations of community similarity.

5.2 Towards More Realistic Models. In this pa-
per, we introduced the concept of a k-ambiguous name.
While there were almost 20,000 names with a k greater
than 1, we controlled our clustering experiments to test
on environments where the only uncertainty was associ-
ated with one particular name. Controlling for certainty
is useful in the evaluation of the relative performance
of disparate disambiguation procedures, but obviously
this is an unrealistic assumption. In the real world, it
is not clear if any observed name ever has complete cer-
tainty. This suggests that probabilistic models of cer-
tainty may be useful for disambiguating names when
many names are ambiguous. For instance, expectation-
maximization strategies over the graph are a potential
route of research for resolution. [20, 21] With respect to
this research, an extension to this research is to consider
basic iterative methods, which can be used to cluster
and classify relational data by leveraging names of high
certainty, which can be fixed, or removed, during the
learning process. By doing so, we can take advantage
of high certainty knowledge to resolve lesser certain sit-
uations. We intend to investigate such models in future
research.

Furthermore, as noted in previous works [5], the
IMDB actor-to-actor network is variant of a random
network with strong clustering features. In order to test
disambiguation on a larger scale, we expect to test our
methods on other types of social networks.

5.3 Making Search Engines More Social.
Though there are limitations to the disambiguation re-
search set forth in this paper, the results are promising
and there exist potential applications for the next gen-

eration of search engines. This is especially so for search
engines which archive and retrieve documents with large
numbers of names. Clustering webpages based on their
disambiguation properties can assist in making retrieval
responses to queries more meaningful. Rather than rank
pages by relevance using methods based on spectral de-
composition properties, which are simply bag of words
similarity comparisons, pages of relevance could be par-
titioned into clusters regarding the particular entities of
interest. When results are displayed to the user, each
ambiguous name could be qualified by key words ex-
tracted from the documents in the cluster. Obviously,
this is speculation into an approach for search engines;
nonetheless, the methods evaluated in this paper can
provide a basis for future research and development of
socially cognizant search engines.

6 Conclusions

This paper evaluated several methods for disambiguat-
ing names in a relational environment (actor collabora-
tions in the Internet Movie Database) were presented.
The first method was based on hierarchical clustering of
sources in which ambiguous names are observed. The
second method leveraged social networks constructed
from all sources, such that random walks originating
from ambiguous name nodes, were used to estimate pos-
terior distributions of relations to partition the graph
into components. We controlled social networks to
study a single ambiguous name, and our findings suggest
methods which leverage community, in contrast to ex-
act, similarity provide more robust disambiguation ca-
pability. This research served as proof of concept for
social network-based disambiguation, and in the future
we will generalize our methods to account for networks
that consist of more than one ambiguous names.
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