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Abstract
Object recognition is computationally challenging because each object produces myriad retinal
images. Neurons at the highest cortical stage of the primate ventral visual stream (inferior
temporal cortex; IT) likely underlie the ability of the visual system to tolerate that image variation
-- their responses are selective to different objects, yet tolerant (“invariant”) to changes in object
position, scale, pose, etc. (1-6). Understanding object recognition will require solving the mystery
of how the brain constructs this neuronal tolerance. Here we report a novel instance of neuronal
learning that suggests the underlying solution. Specifically, we show that targeted alteration of the
natural temporal contiguity of unsupervised visual experience causes specific changes in the
position tolerance (“invariance”) of IT neuronal selectivity. This unsupervised temporal tolerance
learning (UTL) is substantial, increases with experience, and is significant even in single IT
neurons after just one hour. Coupled with previous theoretical work (7-9) and the finding that this
same experience manipulation changes the position tolerance of human object perception (10), we
speculate that UTL may reflect the mechanism by which the ventral visual stream builds and
maintains tolerant object representations. The relatively fast time-scale and unsupervised nature of
UTL open the door to advances in systematically characterizing the spatiotemporal image statistics
that drive it, understanding if it plays a role in other types of tolerance, and perhaps connecting a
central cognitive ability -- tolerant object recognition -- to cellular and molecular plasticity
mechanisms.

When presented with a visual image, primates can rapidly (<200 ms) recognize objects even
in the face of large variation in object position, scale, pose, etc., even without attentional
pre-cueing (11,12). This ability likely derives from the responses of neurons at high levels of
the primate ventral visual stream (1,3,13). But how are these powerful “invariant” neuronal
object representations built by the visual system? Based on theoretical (e.g. (7,8)) and
behavioral (9,10) work, one possibility is that tolerance (“invariance”) is learned from the
temporal contiguity of object features during natural visual experience, potentially in an
unsupervised manner. To look for evidence of that hypothesis, we focused on arguably the
simplest tolerance that the visual system achieves -- position tolerance. Our overarching
logic was as follows (also see (10)): During natural visual experience, objects tend to remain
present for seconds or more, while object motion or viewer motion (e.g. eye movements)
tend to cause rapid changes in the retinal image cast by each object over shorter time
intervals (hundreds of ms). In theory, the ventral visual stream could construct a position-
tolerant object representation by taking advantage of this natural tendency for temporally
contiguous retinal images to belong to the same object. If so, it might be possible to uncover
the signature of this learning by using targeted alteration of those spatiotemporal statistics.
In particular, if two objects consistently swapped identity across temporal-contiguous
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changes in retinal position then, following sufficient experience in this “altered” visual
world, the visual system might incorrectly associate the neural representations of those
objects viewed at different positions into a single object representation. To look for this
signature, we focused on the top level of the primate visual object recognition pathway (IT).
In the adult brain, many individual IT neurons have somehow achieved neuronal position
tolerance -- they respond preferentially to different objects, their object selectivity is largely
maintained across changes in object retinal position, even when images are simply presented
to a fixating animal (5,6). Thus, our key prediction was that targeted alteration of natural
temporal contiguity of real-world visual experience would produce a specific change in IT
position tolerance (see Fig. 1C).

In this study, we tested a strong, “online” form of the temporal contiguity hypothesis -- we
allowed two monkeys to visually explore an altered visual world for up to two hours
(described below), while we intermittently tested the position tolerance of their IT neurons
to look for any ongoing change in tolerance produced by that altered experience.
Specifically, once we isolated a neuron, we determined its object selectivity among a set of
100 objects (Supplemental Fig. S2), and we selected two objects that elicited strong (object
“P”, preferred) and moderate (object “N”, non-preferred) spiking responses from the neuron.
We then tested the position-tolerance of that object selectivity (Test Phase in Fig. 1A) by
briefly presenting each object at 3° above, below or at the center of gaze (see (14) and Fig.
S1). (All neuronal data reported in this study were obtained in the Test Phase: task unrelated
to the test stimuli, no attentional cuing, and completely randomized presentations of test
stimuli, see (14)). Following the first Test Phase, we allowed the animal to explore the
statistically altered visual world for ~15 minutes (Exposure Phase), and we then re-tested
the position tolerance (Test Phase). We continued to alternate between these two phases
(Test Phase ~5 min; Exposure Phase ~15 minutes) until neuronal isolation was lost. In
formulating our study, we reasoned that, even if the temporal contiguity hypothesis were
true, the ~1 hr period we could isolate each IT neuron might not allow us to provide enough
experience to produce a strong change in its position tolerance. Thus, we designed our
experiments so that, the more neurons we studied, the more power we gained to test our
hypothesis (i.e. a pooled neuronal “subject” design).

To create the altered visual world (Exposure Phase in Fig. 1A), we focused on just three
retinal positions (the center of gaze, 3° below, and 3° above) and two objects for each
neuron (P and N). We took advantage of the fact that changes in the position of an object’s
retinal image occur naturally as rapid eye movements sample the visual scene (saccades) --
each monkey freely viewed the video monitor on which isolated objects appeared
intermittently, and its only task was to freely look at each object. This exposure “task” is a
natural, automatic primate behavior in that it requires no training. Importantly however, by
using real-time eye-tracking ((15)), the images that played out on the monkey’s retina during
exploration of this world were under precise experimental control (see (14)). Specifically,
even though the monkey was free-viewing, the objects were placed on the video monitor so
as to (initially) cast their image at one of two possible retinal positions (+3° or −3°). One of
these retinal positions was pre-chosen for targeted alteration in visual experience (the
“swap” position; counterbalanced across neurons, see Fig. 1B and (14)); the other position
acted as a control (the “non-swap” position). Of course, the monkey quickly saccaded to
each object (mean: 108 ms after object appearance), which rapidly brought the object image
to the center of its retina (mean saccade duration 23 ms). For cases in which the object had
appeared at the “non-swap” position, its identity remained stable even as the monkey
saccaded to it, typical of real-world visual experience (“Normal exposure”, Fig. 1A, see
(14)). Critically however, for cases in which the object had appeared at the “swap” position,
it was always replaced by the other object (e.g. P->N) precisely as the monkey saccaded to it
(Fig. 1A, “Swap exposure”). This manipulation of experience took advantage of the fact that
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primates are effectively blind during the brief time it takes to complete a saccade (16). Most
importantly, it consistently made the image of one object at a peripheral retinal position
(“swap” position) temporally contiguous with the retinal image of the other object at the
center of the retina (see Fig. 1A,B).

The main prediction of the temporal contiguity hypothesis is that, confronted with this
altered world, each IT neuron that prefers object P over object N should tend to change its
initial position-tolerance (i.e. its ability to maintain that object selectivity across retinal
position) in a specific way: it should tend to alter its object selectivity primarily at the
“swap” position so that it begins to respond less to object P and more to object N (given
enough experience, the neuron might even begin to reverse it object selectivity; see Fig. 1C).
Indeed, we found that, the longer the monkey was exposed to the altered visual world, the
more its IT neurons changed their position tolerance in the predicted manner (n=50 IT
neurons in Monkey 1; 51 in Monkey 2). Specifically, for each neuron, we measured its
object selectivity at each position as the difference in response to the two objects (P-N; all
key effects reported below were also found with a contrast index of selectivity, see
Supplemental Fig. S6). At the “swap” position, IT neurons (on average) decreased their
initial object selectivity for P over N, and this change in object selectivity grew
monotonically stronger with increasing numbers of “swap” exposure trials (Fig. 2).
However, while that change was occurring, the same IT neurons showed no average change
in their object selectivity at the control (“non-swap”) position, and little change in their
object selectivity among two other control objects that were never shown to the animals
during Exposure Phase (Fig. 2A; also see below).

Because each IT neuron was tested for different amounts of exposure time, to quantify the
IT object selectivity change across the entire single-unit population (n=101), we computed
object selectivity change, Δ(P-N), between the first and last available Test Phase for each IT
neuron. Following the logic outlined above, the prediction is that Δ(P-N) should be negative
(i.e. in the direction of object preference reversal), and greatest at the “swap” position.
Again, we found that, on average across the IT population, this prediction was born out by
the data (Fig. 3A). The position-specificity of the experience-induced changes in object
selectivity was confirmed by two different statistical approaches: 1) direct comparison of
Δ(P-N) between the swap and non-swap position (n=101; p=0.005, one tailed paired t-test);
2) a significant interaction between position and exposure – that is, object selectivity
decreased (i.e. moved in the direction of object preference reversal) at the swap position
with increasing amounts of exposure (p=0.009 by one-tailed bootstrap; p=0.007 by one-
tailed permutation test; tests were done on (P-N), see details in Supplementary).

The changes in object selectivity at the swap position were not only position-specific, but
were largely shape-specific. For 88 of the 101 neurons, we monitored the neuron’s
selectivity among two control objects not shown to the animal during the Exposure Phase
(chosen in similar way as the P and N objects, fully-interleaved testing in each Test Phase;
see (14)). Across the IT population, control object selectivity at the swap position did not
significantly change (Fig. 2A), and swap object selectivity changed significantly more than
control object selectivity (Fig. 3B; n=88 neurons, p = 0.009 one tailed paired t-test of swap
vs. control objects at swap position).

These changes in object selectivity were substantial in magnitude and grew ever larger with
increasing amounts of exposure (average change of ~5 spikes/s per 400 exposures at swap
position; Figs. 2C, 3C), and, at the population level were visibly obvious and highly
significant (above). In the face of well-known Poisson spiking variability (17,18), these
effects were only weakly visible in most single IT neurons recorded for short durations, but
were much more apparent over the maximal one hour exposure time that we could hold
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these isolated neurons (Fig. 2C, lower panels). So we asked, would the object selectivity
change at the swap position continue to grow even larger with longer periods of exposure?
To answer this question, we recorded multi-unit activity (MUA) during ten new experiment
sessions in one animal (Monkey 2), which allowed us to record from a number of (non-
isolated) neurons around the electrode tip (which all tend to have similar selectivity(19,20),
see (14)) while the monkey was exposed to the altered visual world for the entire
experimental session (~2+ hrs). Just like the single-unit data, the MUA data showed a
change in object selectivity only at the swap position (Fig. 2C; “position × exposure”
interaction: p=0.03 one-tailed bootstrap; p=0.014 one-tailed permutation test, n=10 sites).
This shows that just ten MUA recording sessions are sufficient to replicate the main effect
we first observed in the single-unit population. Furthermore, the MUA data revealed that the
object selectivity change at the swap position continued to increase as the animal received
even more exposure to the altered visual world, followed a very similar time course in the
rate of object selectivity change (~5 spikes/s per 400 exposures; see Fig. 3C), and even
showed a slight reversal in object selectivity (N>P in Fig. 4D).

Our main results were similar in magnitude (Fig. 3A, B) and statistically significant in each
of the two monkeys (Monkey 1: p=0.019; Monkey 2: p=0.0192; one-tailed t-test). Because
each monkey performed a different task during the Test Phase (unrelated to the rapidly-
presented test stimuli; see (14)), this suggests that these neuronal changes are not task
dependent. Moreover, the response changes were present in the earliest IT spikes (~100ms,
see Supplemental Fig. S4). Thus the observed learning most likely reflects changes in the
feed-forward response properties of the ventral stream.

Because we selected the objects P and N so that they both tended to drive the neuron (see
(14)), the population distribution of selectivity for P and N at each position was very broad
(95% range: [−5.7 spikes/s to 31.0 spikes/s] pooled across position; n=101). However, our
prediction (and result, above) assumes that the IT neurons we recorded from were initially
object-selective (i.e. response to object P greater than object N). Consistent with this, we
found that neurons in our population with no initial object selectivity at the center of gaze
showed little average change in object selectivity with exposure (see Supplemental Fig. S5).
To test the learning effect in the most selective IT neurons, we selected the neurons with
significant object selectivity (n=52 of 101; two-way ANOVA test (2 objects × 3 positions),
p<0.05, significant main object effect or interaction). Even among just these neurons, the
learning effect remained highly significant and still specific to the swap position (p=0.002
by t-test; p=0.009 by bootstrap; p=0.004 by permutation test; see above).

To further characterize the changes in response to individual objects, we closely examined
the selective neurons held for at least 300 exposures (n=28/52) and the multi-unit sites
(n=10). For each neuron/site, we used linear regression to measure any trend in the neuron’s
responses to each object as a function of exposure time (Fig 4A). Changes in response to P
and N at the swap position were visibly obvious in a fraction of single neurons/sites (Fig.
4A), and statistically significant object selectivity change was encountered on 32% of
instances (12/38; Fig. 4C; see (14)). Across our neuronal population, the change in object
selectivity at the swap position was due to both a decreased response to object P and an
increased response to object N (approximately equal change; Fig. 4B). These response
changes are highly visibly in the single-units and multi-units held for the longest exposure
times (Fig. 4D).

These neuronal changes in the position profile of IT object selectivity (i.e. position
tolerance) cannot be explained by changes in attention or retinotopic adaptation. First, a
simple fatigue-adaptation model cannot explain the position-specificity of the changes
because, during the recording of each neuron, each object was experienced equally often at
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the “swap” and “non-swap” positions. Second, we measured these object selectivity changes
with briefly presented, fully randomized stimuli while the monkeys performed tasks
unrelated to the stimuli (see (14)), arguing against an attentional account. Third, both of
these explanations predict a decrease in response to all objects at the swap position, yet we
found that the change in object selectivity at the swap position was due to an increase in
response to object N (+2.3 spikes/s per 400 swap exposures) as well as a decrease in
response to object P (−3.0 spikes/s per 400 swap exposures; see Fig. 3D, S4). Fourth, neither
possibility can explain the shape-specificity of the changes. In sum, even when the animal is
doing a task unrelated to the test objects, we used briefly presented stimuli to reveal
position-specific, shape-specific changes in IT responses to those objects consisting of
increased responses to some objects (N) and decreased responses to others (P). This cannot
be explained by any known form of “adaptation” or “attention”.

We term this effect “unsupervised temporal tolerance learning” (UTL), because the
tolerance changes depend on the temporal contiguity of object images on the retina.
Although, such temporal contiguity of images on the retina may be all that is required to
drive UTL, our current data cannot rule out the possibility that the brain’s saccade
generation mechanisms (or the associated attentional mechanisms (21,22)) may also be
needed (e.g. to internally signal “when” to learn and the saccade target/direction, which
could make tolerance learning more efficient). Interestingly, eye-movement signals are
present in the ventral stream (23,24), and our previous results showing alteration in human
perception with a similar paradigm (see below) suggested that temporal contiguity alone was
not sufficient (10). The relatively fast time-scale and unsupervised nature of UTL may allow
rapid advances in answering these questions, systematically characterizing the
spatiotemporal sensory statistics that drive it, and understanding if and how it extends to
other types of image tolerance (e.g. changes in object scale, pose (25,26)).

It has been shown that IT neurons “learn” to give similar responses to different visual shapes
(“paired associates”) when reward is used to explicitly teach monkeys to associate those
shapes over long time scales (1-5 sec between images, e.g.(27,28)), in some cases without
explicit instruction (29,30). UTL might be an instance of the same underlying plasticity
mechanisms: here the “associations” are between object images at different retinal positions
(which, in the real world, are typically images of the same object). However, UTL is
qualitatively different – the changes here are position-specific, do not require external
supervision (the “reward” was only used to motivate visual exploration), and operate over
the much shorter time scales of natural visual exploration (~200 ms). These distinctions are
important because we naturally receive orders of magnitude more such experience (e.g. ~108

unsupervised temporal-contiguity saccadic “experiences” in just one year of life).

In summary, our results show that targeted alterations in natural, unsupervised visual
experience change the position tolerance of IT neurons in the manner predicted by the
hypothesis that the brain employs a temporal contiguity learning strategy to build that
tolerance in the first place. That is, visual features that co-occur across short time intervals
are, on average, likely to correspond to different images of the same object. We do not yet
know if UTL reflects mechanisms than are fundamental to building tolerant representation.
However, we have previously found these same experience manipulations change the
position tolerance of human object perception -- producing a tendency to (e.g.) perceive one
object to be the same identity as another object across a “swap” position (10). Moreover,
given that the animal had a lifetime of visual experience to potentially build its IT position
tolerance, the strength of UTL is substantial (~5 spikes/s change per hour). For comparison,
the change in IT selectivity over just one hour is comparable to attentional effect sizes (31),
and is more than double that observed in previous IT learning studies over much longer
training intervals (32-34). We do not yet know how far we can push this learning, but we se
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that just two hours of (highly targeted) unsupervised experience begins to reverse the object
preferences of IT neurons (Fig. 4D). This discovery re-emphasizes the importance of
plasticity in vision (1,30,32,33,35-38) by showing that it extends to a bedrock property of
the adult ventral visual stream -- position tolerant object selectivity (also see (39-41)), and
studies along the post-natal developmental time line are now needed.

Several computational models have shown how temporal contiguity strategies can build
tolerance (7-9), and these models can be implemented using Hebbian-like learning rules (9)
that are consistent with spike-timing-dependent plasticity (42). For example, one can
imagine IT neurons using almost-temporally-coincident activity to learn which sets of its
afferents correspond to features of the same object at different positions. The time-course
and task-independence of UTL is consistent with synaptic plasticity (36,43), but our data do
not constrain the locus of plasticity. Based on previous work, changes at multiple levels of
the ventral visual hierarchy are likely (37,44). In sum, we speculate that UTL may be a
neuronal learning signature of underlying brain algorithms for building position tolerant
object representation, and it may provide a new bridge to connect a central cognitive ability
-- tolerant object recognition -- to cellular and molecular plasticity mechanisms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Experimental design and predictions. (A) For each visually responsive neuron encountered,
a preferred object (P) and less-preferred object (N) were chosen from a set of 100 objects.
We then alternated between a Test Phase and Exposure Phase for as long as we could record
from the neuron. In the Test Phase, the neuron’s response to P and N was measured with
fully randomized images while each monkey performed a task unrelated to the object images
(see (14)). In the Exposure Phase, free viewing monkeys spontaneously saccaded to objects
that initially appeared either 3° above or below the center of gaze. For half of these
appearances (“Normal exposure”), the peripheral object remained unchanged as the
monkey’s natural eye movement brought it to the center of its retina (until it was removed
200 ms later). For the other half (randomly interleaved; “Swap exposure”), the peripheral
object (e.g. P) was always replaced by the other object (e.g. N) as the monkey brought it to
the center of its retina (see (14)). All aspects of the stimulus presentation were otherwise
identical for the two exposure types. Stimulus size was 1.5°, and is only schematic in this
figure (see Supp. Fig. S2). Each Exposure Phase consisted of 100 normal exposures (50
each of P->P and N->N) and 100 “swap” exposures (50 each of P->N and N->P). (B) Each
box shows the Exposure Phase design for a single neuron. Arrows show the saccade-
induced temporal contiguity of retinal images (arrow head points to the retinal image
occurring later in time, i.e. at the end of the saccade). Note the crossed red arrows from the
“swap” position (red) indicating the key manipulation -- experience with spatiotemporal
image statistics that are consistently different than the real-world (non-crossed) black
arrows. The “swap” position was strictly alternated (neuron-by-neuron) so that it was
perfectly counterbalanced across neurons. (C) Prediction: if the visual system builds
tolerance using temporal contiguity (here driven by saccades), the “swap” exposure should
cause incorrect grouping of two different object images (here P and N). Thus, the predicted
effect is a decrease in object selectivity at the “swap” position (red dot) that increases with
increasing exposure (in the limit, reversing object preference), and little or no change in
object selectivity at the “non-swap” position.
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Fig. 2.
Change in the population object selectivity. (A) Mean population object selectivity at the
swap and non-swap position, and for the control objects at the swap position. The control
objects were never shown to the animals during the Exposure Phase. Neuronal responses to
all objects and positions were obtained during fully-randomized testing in the Test Phase
(see Fig. 1). Each row of plots show neurons held for different amount of time, (e.g. the top
row shows all neurons held for over 100 swap exposures -- including the neurons from the
lower rows; the second row shows the neurons held for over 200 exposures; etc). The object
selectivity for each neuron was the difference in its response to object P and N. To avoid any
bias in this estimate, for each neuron we defined the labels “P” and “N” (P is the preferred
object in summed response across position) by splitting the pre-exposure response data and
used a portion of it (10 repetitions) to determine these labels. All remaining data were used
to compute the displayed results in all analyses using these labels. (B) Mean population
object selectivity of ten multi-unit sites plotting in the same format as (A). Error bars (A, B)
are standard error of the mean. (C) Histograms of the object selectivity change at the swap
position, Δ(P-N) = (P − N)post–exp osure − (P − N)pre–exp osure. The arrow and text indicate
the mean of the distribution. The mean Δ(P-N) at the non-swap position was: −0.01, −0.5,
−0.9, −0.9 spikes/s respectively (not shown). (D) Object selectivity change at multi-unit
sites. The mean Δ(P-N) at the non-swap position was 1.6 spikes/s (not shown).
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Fig. 3.
Position-, object-specificity and time course. (A) Mean object selectivity change, Δ(P-N), at
the swap, non-swap, and central (0°) retinal position; data from all neurons are included (by
using each neuron’s last available Test Phase, mean ~200 swap exposures). Δ(P-N) was
computed as in Fig. 2c. The insets show the same analysis performed separately for each
monkey. (B) Mean object selectivity change for the (exposed) swap objects and (non-
exposed) control objects at the swap position. Error bars (A, B) are standard error of the
mean. The swap object selectivity change at the swap position is statistically significant (*)
in the pooled data as well as in individual animals (p<0.05, one-tailed t-test against 0). (C)
Mean object selectivity change as a function of the number of swap exposures for all single-
units (n=101) and multi-units (n=10). Each data point shows the average across all the
neurons/sites held for a particular amount of time. Gray line is best linear fit with a zero
intercept; slope is mean effect size: −5.6 spikes/s per 400 exposures. The slope at the non-
swap position using the same analysis was 0.6 spikes/s (not shown).
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Fig. 4.
Responses to objects P and N. (A) Response data to object P and N at the swap position for
three example neurons and one multi-unit sites as a function of exposure time. The solid line
is the best-fit linear regression. The slope of each line (ΔP and ΔN) provided a measure of
the change in response to object P and N for each neuron. Some neurons showed a response
decrease to P, some showed a response enhancement to N, while others showed both (see
examples). (B) Histograms of the slopes obtained for the object selective neurons/sites tested
for at least 300 exposures (see main text). The slope values indicate the change in response
per 400 exposures (~1 hr). The dark-colored bars indicate neurons with significant change in
response by a permutation test (p<0.05; see (14)). (C) Histograms of the slopes from linear
regression fits to object selectivity (P-N) as a function of exposure time, same units as in
(B). Arrow indicates the mean of the distribution, (for comparison, the mean Δ (P-N) at the
non-swap position was −1.7 spikes/s, p=0.38). The black bars indicate instances (32%;
12/38) that showed a significant change in object selectivity by permutation test (p<0.05).
(D) Data from all the neurons/sites tested for the longest exposure time. The plot shows the
mean normalized response to object P and N as a function of exposure time. (see
Supplemental Fig. S3 for data at the non-swap position and for the control objects). Error
bars (A, D) are standard error of the mean.
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