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Université Louis Pasteur, Strasbourg 1, France

(LSIIT, UMR 7005, CNRS-ULP)

Jean-Paul Armspach

Laboratoire de Neuro-Imagerie in Vivo,
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ABSTRACT

This communication deals with data reduction and regression.

A set of high dimensional data (e.g., images) usually has only

a few degrees of freedom with corresponding variables that

are used to parameterize the original data set. Data under-

standing, visualization and classification are the usual goals.

The proposed method reduces data considering a unique

set of low-dimensional variables and a user-defined cost func-

tion in the multidimensional scaling framework. Mapping of

the reduced variables to the original data is also addressed,

which is another contribution of this work. Typical data re-

duction methods, such as Isomap or LLE, do not deal with

this important aspect of manifold learning. We also tackle the

inversion of the mapping, which makes it possible to project

high-dimensional noisy points onto the manifold, like PCA

with linear models. We present an application of our approach

to several standard data sets such as the SwissRoll.

Index Terms— Unsupervised learning, regression, data

reduction, multidimensional scaling

1. INTRODUCTION

Data (or dimensionality) reduction consists in determining a

set of reduced dimensionality variables capturing the major

features of a given set of high dimensionality data, which in

the present case are images. These original (noisy) data are

assumed to lie close to a (nonlinear) manifold whose dimen-

sion is the dimension of the reduced variables. The reduced

variables may be mapped onto the original data. We will call

the succession of data reduction and mapping (regression)

procedures manifold learning.

The usual goals of manifold learning are data understand-

ing (the few degrees of freedom are given a physical interpre-

tation, such as pose angle, giving a better understanding of the

data generation process), visualization (a scatter plot of the re-

duced variables is displayed, where each point is labeled with

the original data) and classification (classification is achieved

in a more robust manner in the space of reduced variables).

Application fields of data reduction and manifold learning are

face and character recognition, shape analysis and target clas-

sification, to mention a few examples.

Principal Component Analysis (PCA) typically addresses

the manifold learning issue, but its limitations are severe and

well-known: only linear manifolds may be handled (for ex-

ample, the SwissRoll [fig.1(a)], which is a nonlinear mani-

fold, can obviously not be described by PCA), and data re-

duction and regression are achieved in a quadratic framework

(i.e., the noise is assumed to be Gaussian [1]). Moreover, it

is also well-known that PCA does not always deal satisfy-

ingly with classification problems. Our goal is to propose a

method that is not restricted to linear manifolds, whose under-

lying cost function may be user-defined, and which is flexible

enough to adapt to a large class of classification problems.

Let y be any element of the original data set. The goal

is to determine the corresponding reduced vector x, the map-

ping f and the noise ε such that y = f (x)+ε. An additional

hypothesis is that the mapping f preserves distances (which

will be defined precisely later). There is no unique solution

to this problem, since any isometry I will yield another solu-

tion in the form
(

x′ = I (x) ; f ′ = f ◦ I
−1

)

. This undeter-

mination has no impact on the usual goals of data reduction

(i.e., data understanding, visualization, classification and the

computation of means). The noise distribution is assumed to

be known up to its parameter values. Determination of x and

f will be achieved sequentially (we will estimate piecewise

linear f ’s).

The most straightforward extension of PCA, with a view

to handling nonlinear manifolds, is local PCA [2]. The orig-

inal data are processed groupewise, each group yielding its

own PCA-reduced variables. Though this approach is able

to adapt to nonlinear manifolds, the question of the determi-

nation of the initial groups of variables remains. This deter-

mination should be able to adapt to the shape of the man-

ifold. Moreover, the different sets of reduced variables are

unrelated, and the method is cast in a quadratic framework.

All these features obviously severely hamper the approach.

The problem must clearly be addressed globally (i.e., the data

cannot be processed groupewise) so that classification may

operate simultaneously on all data.
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Fig. 1. SwissRoll example. (a) the original SwissRoll, (b) the

reduction with Isomap, (c) the reduction with LLE, (d) the

reduction with our cost function. A given point has the same

color on all graphs.

Typical global compression techniques are Isomap [3] and

LLE [4]. Isomap is a geodesic distance-based classical mul-

tidimensional scaling (MDS) [5], which is aimed at repro-

ducing a given interpoint distance matrix in low dimensional

space. It is to be considered as a global method since all dis-

tances, small and large, are reproduced simultaneously in the

reduced space. This raises the question of the immunity to

noise in the data, due to its quadratic nature [6]. LLE seeks to

preserve the local barycentric coordinates, and is to be con-

sidered as a local method (it proceeds by trying to preserve

the local geometric structure of points).

Several authors [7, 8] reduce the data groupewise and ad-

dress the linking of local reduced variables in coordination to

projection on the manifold. These approaches use a Gaussian

probabilistic framework with a fixed number of local linear

models and, as with our algorithm, do not require the original

sample points after the learning step.

This communication is organized as follows. Our ap-

proach is described in section 2. Several application exam-

ples are given in section 3. finally the conclusion and future

prospects to this work are presented in section 4.

2. DATA REDUCTION AND MANIFOLD LEARNING

In this section, we detail our method, both in its data reduction

and manifold learning (regression) aspects.

2.1. Data reduction

The problem here is to determine the xi’s such that the re-

duced interpoint distances ‖xi − xj‖ match the correspond-

ing data interpoint distances dij
∆
=

∥

∥yi − yj

∥

∥. Since the data

yi are supposed to lie close to a nonlinear manifold, we con-

sider geodesic distances in the original space, following the

Isomap algorithm. Euclidean distances are considered in the

reduced space since the xi’s are supposed to fill this space.

Isomap estimates the xi’s by minimization of a quadratic

stress function
∑

i,j (‖xi − xj‖ − dij)
2
. We suggest esti-

mating the xi’s by minimization of
∑

i,j f (xi, xj), where

f (xi, xj) =

√

ε + (‖xi − xj‖ − dij)
2 dij

σ + dij

, (1)

which fits into the metric multidimensional scaling frame-

work [9, section 9.4.2].

The first factor is a robust (nonquadratic) discrepancy mea-

surement between the candidate distance ‖xi − xj‖ and the

target distance dij , where ε is a small real number whose role

is to ensure the differentiability of the cost function. We con-

sider a robust discrepancy measurement since some geodesic

distances could be estimated with significant error, which should

have limited influence on the estimate. The second factor

weighs the discrepancy, such that nearby points (correspond-

ing to small dij ’s) play no role in the estimate. The motivation

is that small distances dij are highly contaminated by noise of

variance σ2, and hence are not reliable.

Input: original coordinates

Output: reduced coordinates

begin

for each point on the manifold do
Compute the (Euclidean) distances to its

nearest neighbors

end

Estimate the geodesic distances using Floyd’s

algorithm;

Initialize randomly the reduced coordinates;

while not converged do
Optimize all points simultaneously

end

while not converged do
Optimize simultaneously some points drawn

randomly

end

end

Algorithm 1: data reduction algorithm

The optimization of this cost function (referred to as OCF

in the following sections) is achieved by a standard damped

gradient optimizer, where all points xi are updated jointly.

Unfortunately, the algorithm usually gets trapped in a local

minimum. This is why an additional gradient step in which

only some points can be moved jointly is needed (see algo-

rithm 1).



2.2. Regression

The estimation of the mapping of the reduced variables to

the original variables is an unsupervised nonlinear regression

problem, which is quite intricate because of its dimension-

ality. To the best of our knowledge, this general regression

problem (regressing data from R
n to R

m) is not addressed in

the literature. Usual nonlinear regression techniques address

much simpler problems, where the target variable is scalar.

Spline regression may tackle this issue. But processing each

component of the data independently is precluded here be-

cause of the computational cost. Therefore, we process all

components jointly, using locally linear models. The problem

is then to label all xi’s and to estimate the matrices corre-

sponding to the linear models (see algorithm 2).

Input: original and reduced coordinates

Output: point labels and model matrices

begin
while exists a point whose neighbors are not
labeled do

Pick randomly a point whose neighbors are not

labeled;

Compute the matrix W regressing this

neighborhood 1© ;

Update all labels and update all matrices 2©;

Prune any model (labels and matrix) having too

few points 3©;

end

for every remaining unlabeled point do
Search through the neighborhood;

Assign them to nearby planes 4©
end

end

Algorithm 2: piecewise linear regression

Some details are needed for algorithm 2 :

1© Let Y i be the matrix consisting of all yj that are neigh-

bors of yi and Xi the corresponding matrix of all xj . Matrix

W is estimated from the equation Y i ≃ WXi by mean

squares.

2© A point is assigned to a linear model if the norm of

the reconstruction error is less than a given factor times the

standard deviation associated to the linear model. Once all

updates are completed, these variances are computed again

for all linear models and their assigned points.

3© If a linear model has too few points, the matrix that

describes it cannot be computed. In this case, the linear model

is discarded.

4© When no linear model can be added, some points may

remain unassigned. In this case, they are assigned to the linear

model most represented in their neighborhood.

2.3. Projecting a point on the manifold

An important feature of data reduction techniques and mani-

fold learning is the ability to project or to process (e.g., clas-

sify) an incoming point without running all computations from

scratch. Formally, for a given yi, we must determine the cor-

responding xi and εi.

For each linear model W j , a candidate (xij , εij) is com-

puted by mean squares. The variance associated to W j is

used to compute the likelihood of xij . The maximum likeli-

hood estimate is retained (see algorithm 3).

Input: reduced coordinates, point labels and model

matrices

Output:

begin

for each linear model do
Compute corresponding reduced coordinates;

Map the reduced coordinates on the manifold;

Compute its likelihood;

end

Retain the label maximizing the likelihood;

end

Algorithm 3: projection of a new point on the manifold

3. APPLICATION

We apply our data reduction and regression methods to sev-

eral standard data sets. Comparison with other methods is

proposed. We also deal with projecting a new point on the

manifold.

Two types of data are analyzed, on the one hand, large sets

of data (the Swiss Roll) of low extrinsic and intrinsic dimen-

sions, and on the other hand, data sets having far fewer points,

but of high extrinsic dimension (the duck images, from the

COIL-20 [10] data sets).

3.1. Data reduction

Our data reduction approach is compared to a standard method

in the field, namely Isomap. To quantify the quality of the

data reduction step, true geodesic distances (computed ana-

lytically) are compared to Euclidean distances in the reduced

space. Comparison is achieved using correlation. Data are

noise corrupted. Results show that our OCF behaves slightly

better than Isomap (see table 1).Parameter σ is set to the first

percentile of all distances on the manifold. Several runs are

achieved to try to escape from local minima.

3.2. Regression

To assess the quality of the regression, the samples used to

learn the linear models are projected onto the approximated

manifold. Fig. 2 displays the result for the SwissRoll.
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Fig. 2. SwissRoll regression. (a) regression of the SwissRoll,

(b) histogram of the norm of the reconstruction error

Noise Isomap OCF

None 0.9997 0.9997

Gaus. 2.5% 0.9988 0.9992

Exp. 0.3% 0.9996 0.9997

Table 1. Correlation between real distances and estimated

distances for the SwissRoll for Isomap and OCF with an 8-

neighborhood for compression. The percentage indicates the

value of the variance of the data divided by the variance of the

noise.

Low-dimension coordinates computed with Isomap and

with OCF lead to comparable reconstruction errors although

increasing noise levels leads to lower errors with OCF. The

piecewise linear regression algorithm is executed several times

to try to escape from local optima. A higher number of neigh-

bors can generate a higher variance, but a smoother global

manifold, while a lower number of neighbors will lead to a

lower reconstruction error, but can generate a noisy manifold.

We also addressed the reconstruction of an image of the

Coil-20 database (see Fig. 3). We reconstructed one of the

duck images with PCA (6 and 20 principal vectors) and with

our technique (with 2 coordinates only). Our approach clearly

exhibits more flexibility than PCA. Moreover, physical inter-

pretation of the data generating process is impossible in di-

mension 20. This interpretation is possible in dimension 2,

which is the dimension of the reduced variables of our ap-

proach.

(a) (b) (c) (d)

Fig. 3. Reconstruction example. (a) Original duck image,

(b) Projected duck image with the proposed method (reduced

variable of dimension 2) (c, d) Projected duck image with 6

and 20 principal vectors (PCA)

4. CONCLUSION AND FUTURE WORK

We have presented a comprehensive framework for learning a

nonlinear manifold and for projecting new points on this man-

ifold. The framework is divided into two main steps, the first

being a dimensionality reduction process that enables learn-

ing reduced coordinates, and the second being a piecewise

linear mapping of the manifold with the reduced coordinates,

leading to an efficient projection on the manifold.

Work is in progress regarding manifolds linked to shape

representations. The ultimate goal of our study is learning and

classification of brain structures in medical images.
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