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ABSTRACT

We perform completely unsupervised one-sided image to image translation be-
tween a source domain X and a target domain Y such that we preserve relevant
underlying shared semantics (e.g., class, size, shape, etc). In particular, we are
interested in a more difficult case than those typically addressed in the litera-
ture, where the source and target are “far” enough that reconstruction-style or
pixel-wise approaches fail. We argue that transferring (i.e., translating) said rele-
vant information should involve both discarding source domain-specific informa-
tion while incorporate target domain-specific information, the latter of which we
model with a noisy prior distribution. In order to avoid the degenerate case where
the generated samples are only explained by the prior distribution, we propose to
minimize an estimate of the mutual information between the generated sample and
the sample from the prior distribution. We discover that the architectural choices
are an important factor to consider in order to preserve the shared semantic be-
tween X and Y . We show state of the art results on the MNIST to SVHN task for
unsupervised image to image translation.

1 INTRODUCTION

Unsupervised image to image translation is the task of learning a mapping from images in a source
distribution X to images in a target distribution Y without the use of any extrinsic information
that can match the two distributions (e.g., labels). Some works (Liu et al., 2017; Zhu et al., 2017;
Benaim & Wolf, 2017; Almahairi et al., 2018) have proposed solutions to this problem using intrinsic
properties of the transfer. In order to preserve the relevant semantics, a common approach in all of
these methods is to use pixels-wise consistency metrics. For example, CycleGAN (Liu et al., 2017)
proposes a cycle consistency-loss between the input image and its reconstruction. Moreover, we
assert that using pixel-wise consistency is unreasonably strong for problems where the source and
target domains vary in relevant spatial characteristics.

The general problem statement and our solution is depicted in Figure 1 and 2, respectively. The
translator takes two inputs, one is the source input that we wish to translate and the second is the
independent noise meant to model statistical variation of the target not present in the source. In
order to ensure the output of this translator resembles the target, we train this whole model as the
generator in a generative adversarial networks (GAN, Goodfellow et al., 2014).

An important aspect of this problem is precisely what is meant by translation. Information content
is one way to think of this, but unfortunately this quantity doesn’t distinguish between things we
care about (e.g., salient qualities such as shape, size, class, color, etc) and things we don’t (noise).
Furthermore, these semantics can be case-driven and can dependent on the end-goal of designing a
translator. We assert in this paper that structural assumptions must be incorporated into our model.
This insight is nothing new, recent works on representation learning as well as numerous works from
computer vision and generative models (Doersch et al., 2015; Pathak et al., 2016; Hjelm et al., 2018;
Oord et al., 2018) all operate on this assumption. Therefore, we perform our transfer in a way that
forces the maintenance of spatial characteristics across transfer (i.e., by architecture choice).

That said, in order to encourage transfer between the source and target domains, we use mutual
information as an additional objective for the translator. While the mutual information is intractable
to compute for continuous variable, Mutual Information Neural Estimation (MINE, Belghazi et al.,
2018) showed that this is not only possible, but this same estimator can be used to provide a gradient
signal for a generator. We observe that using MINE to either minimize (between the independent
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Figure 1: Formulation of the image to image translation problem. Given two domains X and Y ,
presented as cat and dog images, we postulate that these two domains are in part explained by
random variables U, V from the shared semantic space and random variables ψ and ξ independent
of U, V that explain features specific to X and Y , respectively.

noise and the output) or maximize (between the source and target variables) mutual information
performs reasonably well on completely unsupervised tasks that models that rely on pixel-wise
consistency performs poorly on, in our case MNSIT to SVHN, obtaining 71% accuracy on the
transfer task.

The contribution of this paper are the following:

• We formalize the problem of unsupervised translation

• We propose an augmented GAN framework that takes two input and demonstrate compet-
itive results on the image to image translation tasks

• We propose to use the mutual information to avoid the degenerate case where the generated
images are only explained by one of the inputs by using the information theory

2 PROBLEM FORMULATION

In this section, we attempt to formalize the problem of unsupervised translation. The following
can be seen as a minimal addition to the set of hypotheses usually assumed (overtly or not) in the
machine learning literature.

Given distributions PX and PY on the domains X and Y , respectively, we assume that there exist
random variables U, V on a measurable space (S,Σ) such that,

(A) Given U and V , X and Y are conditionally independent:

PX|(U,V ) ⊗ PY |(U,V ) = P(X,Y )|(U,V )

(B) Distributions PU |X and PV |Y are deterministic.

(C) supp(U) = supp(V ).

We would call (S,Σ) a shared semantics between X and Y . In other words, we postulate that the
observed data was generated by a directed probabilistic graphical model (PGM) shown in Figure 1
(i.e., would contain the directed edgesX ← U, V → Y ). Note that this PGM is simply a conceptual
tool to help us understand more deeply the task we are trying to solve.

It is important to ask why variables U and V need to be different. As an example, one can imagine
that if X and Y represent two completely different visual representations of digits, say one from
MNIST (LeCun & Cortes, 2010) and the other a uniformly drawn typeset digits with two possible
fonts (e.g., Helvetica and Times). Y is therefore a discrete variable with equally probable 20 different
values. Intuitively, the shared semantics between X and Y is the notion of digit. Yet, the different
classes in MNIST dataset are not evenly distributed. Therefore, the shared semantics cannot be
modelled with a single random variable on the set {0, 1, . . . , 9}. In fact, if we consider any variable
Y ′ with the support {0, . . . , 9} × {Helvetica,Times}, it’s shared semantics with MNIST would
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stay the same. Therefore, we model shared semantics through measurable space (S,Σ), while
probabilities of certain modes in Σ by separate variables U and V , as they may differ between
source and target variables.

Assumption (B) requires each of the variables X and Y to have a single representation (semantics)
in the shared semantics space. Assumption (C) essentially says that these semantics are shared, i.e.
for each set of semantics of X with non-zero probability, there exists a set if samples of Y with
nonzero probability and the same semantics.

Given those assumptions, we can now define the general Domain Transfer problem. Given (possibly
empirical) distributions PX ,PY on domains X ,Y the learner attempts to find a (possibly) non-
deterministic mapping T : X → Y and a shared semantics (S,Σ) such that,

1. supp(T (X)) = supp(Y ) (covering modes),

2. PU |X ≡ PU |T (X) (shared semantics),

3. Σ is sufficiently large (capacity).

Although the last assumption is somewhat vague in generality, if we fix sufficiently large S ⊂ R
n,

the σ-algebras on S can be ordered by inclusion. We postulate that the quality of transfer depends
on the expressiveness of the shared semantics Σ.

2.1 INDIVIDUAL FEATURES

Shared semantics assumption implies existence of features in X that do not depend on Y and vice
versa. This directly related to many-to-many transfer: each sample from X corresponds to a set
of samples drawn from PY |X and each sample from Y corresponds to many samples from PX|Y .
Therefore, modelling a domain transfer from X to Y can be done with the use of additional variable
ξ ∈ Ξ that captures the variability of Y |X , so that there exists a deterministic map G : S ×Ξ→ Y .
This idea has been employed before by Almahairi et al. (2018).

On the other hand, the individual features of X that should stay independent of Y , need to be
forgotten in the domain transfer, and the shared semantics should not include such features.

2.2 INHERENT DIFFICULTY OF LEARNING A DOMAIN TRANSFER

The fact that shared semantics between the translated domains cannot in general be expressed as a
random variable causes inherent difficulties in training a transfer mapping. As respective modes of
variables X and Y may have different probabilities, any mapping

T : X × Ξ ∋ (x, ξ)→ y ∈ Y (1)

that is trained to match the distribution of Y would suffer from the imbalance between frequencies
of modes in the input and the target.

Although we do not propose a solution to this problem, we want to raise awareness of it in the re-
search community. A possible solution of this problem would require a loss function of a generative
model to penalize the distance of generated samples yi from the support of Y independently of their
likelihoods with respect to PY

2.3 ENSURING THE EXPRESSIVENESS OF THE SHARED SEMANTICS

The postulated shared semantics is not unique. In fact a trivial space (S,Σ) = ({0}, {{0}}) satisfies
assumptions (A)-(C), while a random transfer from X to Y satisfies covering modes and shared
semantics conditions. Therefore, having a shared semantics space of sufficient capacity is crucial
for the quality of the transfer.

Even with large enough space S , learning a mapping 1 we bear a risk of it ignoring the actual source,
inferring the Y only from ξ. This is equivalent to trivial σ-algebra Σ = {∅,S} and again leads to a
random transfer.

We believe that one particular factor that may reduce this risk is the choice of the architecture of
the T network, as this architecture in fact models the shared semantics space S . For instance, if T
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is a neural network that takes two arguments, x and ξ, the shared semantics lays in the last hidden
layer representation of x that do not depend on ξ. However, if the following layer ignores this
representation, we again end up with trivial shared semantics.

Hence, we also propose to use Mutual Information (Belghazi et al., 2018) to reduce the above risk.
In particular, one may encourage the network to keep dependence between X and Y by maximizing
the MI between X and Y . Alternatively, T can be penalized for inferring X from noise ξ, by
minimizing I(X; ξ). We discuss both approaches in Section 4.2 and present empirical evidence of
their efficacy.

2.4 PAIRED TRANSFER

As opposed to unsupervised domain transfer, in paired transfer, the learner has access to pairs
(xi, yi) i = 1, ..., n independently sampled from the joint distribution PX,Y . Note that this set-
ting can be reduced to supervised learning.

3 RELATED WORK

3.1 GENERATIVE ADVERSARIAL NETWORK

Generative Adversarial Networks (GANs; Goodfellow et al. (2014)) form a family of powerful im-
plicit generative models that allow one to generate samples that mimic the target distribution, given
only a sample from the latter. GANs have been the cornerstone of many advances in unsupervised
learning and generative models.

In a GAN framework, two functions, a generator G and a discriminator D, are trained simultane-
ously. The generator aims to generate sample in such a way that the discriminator cannot tell if the
generated samples come from the true distribution. The discriminator is trained to distinguish the
real samples from the generated samples. The orginal GAN objective function is defined as:

min
G

max
D

V (D,G) = E
x∼Px

[logD(x)] + E
z∼pz(z)

[log(1−D(G(z)))]. (2)

Numerous variants and improvements of GAN’s have since been proposed, including Wasserstein
GAN (Arjovsky et al., 2017; Gulrajani et al., 2017), Spectral-Normalization GAN (Miyato et al.,
2018), Conditional GAN (Mirza & Osindero, 2014).

3.2 IMAGE TO IMAGE TRANSLATION

CycleGAN (Zhu et al., 2017) adapts the GAN framework to domain transfer, learning two genera-
tors GY : X → Y and GX : Y → X between domains X and Y , and corresponding discriminators
DX andDY . The transfer functions are trained together using combined loss that includes GAN ob-
jectives and a Cycle Consistency Loss. ALICE (Li et al., 2017) has shown that, in essence, this con-
straint is a lower-bound on the conditional entropy. However, maximizing the conditional entropy
is not enough to assure alignment. Moreover, this consistency loss has side effects as shown in Chu
et al. (2017) and prevents from learning a one-to-many mapping. Augmented CycleGAN (Almahairi
et al., 2018) propose to transfer a pair of image and noise sample in order to learn a one-to-many
mapping. Distance propose to preserve the L1 distance between each pairs of samples.

In the context of shared semantics defined in Section 2. CycleGAN through its deterministic
character assumes that all semantics are shared between domains X and Y , effectively setting
(S,Σ) ≡ (Y, σ(Y )).

3.3 MUTUAL INFORMATION AND MINE

Mutual information is a natural way to think about information transfer in this setting, and recent
models have leveraged estimating mutual information for learning deep representations (Hjelm et al.,
2018; Oord et al., 2018). In information theory, the Mutual Information between two random vari-
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Figure 2: Computation graph of the transfer network T . First, normal noise z is sampled and fed
through F . We sample x from the real data distribution PX and fed through E. F (ξ) and E(x) are
concatenated and fed through G to get a generated sample y′.

ables X and Y with joint distribution PX,Y is defined as,1

I(X;Y ) , E
PX,Y

[

log
dPX,Y

d(PX × PY )

]

where Px,Py are marginal densities of X and Y , respectively. Mutual Information can equivalently
be expressed as I(X;Y ) = H(X) − H(X|Y ), where H(X) is the entropy of X and H(X|Y ) is
the conditional entropy of X given Y . In essence, it measures the expected reduction in entropy of
X introduced by the observation of Y . Yet another useful formulation of the Mutual Information
relates it to the Kullback-Leibler divergence,

I(X;Y ) = DKL(PXY ||PX ⊗ PY )

between the joint distribution PXY of (X,Y ) and the product of marginal distributions PX ⊗ PY .

In the usual GAN setting, none of those p.d.f. are tractable rendering exact computation and even
MC estimation of the mutual information impossible. Since we can sample from those distributions,
it is natural to transfer knowledge from the GAN literature to estimate this divergence.

That is exactly what Belghazi et al. (2018) propose with their Mutual Information Neural Estimation
(MINE):

IΘ(X;Y ) , sup
θ∈Θ

E
PX,U

[Sθ(X,Y )]− log E
PX×PY

[eSθ(X,Y )] (3)

where Sθ is the statistics network which is a neural network parameterized by θ. Belghazi et al.
(2018) provides a proof that I(X;Y ) ≥ IΘ(X;Y ). In practice, the expectations on the r.h.s. of 3
are estimated via standard Monte Carlo sampling.

4 METHOD

In this section, we present our method for solving unpaired image to image translation as described in
Section 2. We consider searching among a family of parametric mappings T̄ = {T : X ×Rk 7→ Y},
such that T̄ is a family of all possible parameterizations of a given neural network architecture (see
Figure 2). The process for generating translated sample y′ of an input x we do the following:

1. First, sample x ∼ PX

2. Sample ξ ∼ ξ = N (0, I)

3. Feed (x, ξ) through T to get y′ = T (x, ξ).

Note that by searching into T̄ , we are effectively searching in a s pace of stochastic mappings,
namely T = {TZ |TZ = T (·, Z) for T ∈ T̄ and Z ∼ N (0, I)}. Specifically, we model T as the
composition of networks E, F and G, where

1Note here we assume that PX,Y is absolutely continuous w.r.t. PX × PY , which is trivially true.
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• E : X → S is modelled as a convolutional network and can be interpreted as an encoder,

• F : Ξ→ I is a network composed of a linear layer and transposed convolutions,

• G : (S, I) → Y is a mapping from the concatenation of S a I to the target Y , and can be
interpreted as a decoder.

We perform our search by using stochastic gradient descent and back-propagation with objectives
described in the following sections.

4.1 ADVERSARIAL LOSS

In order to generate realistic looking samples in Y we use an adversarial loss similar as the one
presented in presented in Equation 2,

min
G

max
D

V (D,G) = E
y∼PY

[logD(y)] + E
ξ∼N(0,I),x∼PX

[log(1−D(T (x, ξ)))] (4)

4.2 MUTUAL INFORMATION ESTIMATION

As mentioned in Section 2.3, the transfer network can fall into a failure mode where Y ′ is generated
using Ξ only. We have also observed that in some of our experiments. Figure A shows an example
where the generated samples are only explained by the prior noise distribution. In order to avoid
this possible failure case, we propose to use the estimated mutual information from Mutual Informa-
tion Neural Estimation (MINE, Belghazi et al., 2018) to encourage Y ′ to depend on X . In order to
encourage the translator, T , to use the source, X , we have two choices: minimize the mutual infor-
mation, I(Z;T (X,Z)), or maximize the mutual information I(X;T (X,Z)). The former is what is
used in information bottleneck found in MINE, while the latter is found in their mode-regularizing
experiments as well as recent papers on representation learning (Hjelm et al., 2018).

4.3 NETWORK ARCHITECTURE

The network architecture and the inductive bias associated to the networks decision is an important
factor on the Image-to-Image translation. Given enough capacity, a network can find a transforma-
tion that satisfy our generation objective while not preserving the shared semantic. In other words,
given two domains with the sames modalities. Given that theses modalities are not paired and unla-
beled, it is impossible to guarentee a perfect mapping between each modalities. Therefore, we rely
on the inductive bias coming from the choice of the architecture, constraining the family of function
that the network can learn to functions that are close to the identity.

The transfer network and the discriminator are inspired from DCGAN. The statistic networks used
to compute the mutual information are inspired from MINE. The downsamples are done using 4× 4
kernels with stride 2. ReLU activations are used on the transfer network and on the discriminator.
ELU activations are used on the statistics network. Spectral Normalization is used in the statistic
network and the discriminator to stabilize the training.

We also carried out additional experiments using U-Net architecture (Ronneberger et al., 2015);
details are presented in Appendix A.

4.4 TRAINING DETAILS

We use the non-saturating GAN loss as described in (Goodfellow et al., 2014). Other than the spec-
tral normalization mentioned in the previous section, we do not use any other stabilizing technique.
We use Adam with a learning rate of 0.0001 and default values of other hyperparameters for all the
experiments. The factor of the mutual information penalty depends on the task.

5 EXPERIMENTS

In this section, we study two types of Image to Image translation. The first one consist of translation
where the alignment does not require any geometric changes. We pick the edge to shoes dataset to
study this type of translation and show that only a GAN loss is necessary to preserve the alignment
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– anything else is unnecessary for this task. The second type of translation that we present consist
of an alignment that requires geometric changes. To our best knowledge, none of the unsupervised
image to image translation have been able to tackle this task. In order to evaluate this type of domain
adaptation, we will look at the MNIST to SVHN task.

5.1 EDGE TO SHOES

Edge to shoes is a dataset of paired edges and shoes pictures. The training set is composed of 50000
pairs of edges and shoes. We do not consider the pairing when we are training or validating. We use
images of dimension of 64× 64.

Figure 3 and figure 4 compare the qualitative results on the edges to shoes dataset. We compare
TI-GANwith and without the MI penalty with CycleGAN. CycleGAN has been trained using the
code from the authors. We see that clearly, we can achieve good qualitative results using only the
GAN loss. Each row represent a source that we wish to transfer. Each column is a different samples
from the prior distribution. Because CycleGAN is a one-to-one mapping, we present only one result
for this model.

In this task, the shoes domain is the same as the edge domain, but colored. Hence, the network can
learn the identity mapping and learn to generate the colors using the information from Z. This is
what we observe from the results from Figure 4. We can see that the MI penalty does not serve a
purpose for this task. The GAN objective alone is enough to perform the transfer. Moreover, it looks
like the cycle consistency blurs the quality of the sample. This is most likely the effect of the l1 loss.

When looking at Figure 3, we see that the noiseZ has no effect with our model, because the mapping
is many-to-one. Again, only a GAN loss was necessary to achieve such results.

(1) (2)
(3)

Figure 3: 64 × 64 Edge to shoes samples generated using (1) TI-GANmaximizing ˆI(X;Y ′), (2)
Only a GAN penalty, (3) Using CycleGAN recommended architecture

(1) (2) (3)

Figure 4: 64× 64 Edge to shoes samples generated using (1) TI-GANmaximizing I(X;T (X,Ξ)),
(2) Only a GAN penalty, (3) TI-GANusing CycleGAN recommended architecture
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5.2 MNIST TO SVHN

MNIST to SVHN is a harder task because it requires a geometric transformation. For example, the
typography of the SVHN digits is different from the MNIST digits, not all SVHN digits are centered,
etc. Hence, learning a function close to the identiy mapping will not yield a good transfer. To our
knowledge, no technique was able to perform well on this task.

Figure 5 compares the qualitative results on the MNIST to SVHN task from our method with and
without the mutual information objective. Each row represents a MNIST digit that we wish to
transfer. Each column use the same sample from a prior distribution. Samples in (1) are generated
using only a GAN loss. Samples in (2) uses a GAN loss while minimizing I(Ξ;T (X,Ξ)). The
shared semantic is well transferred and the independent factors of variations are explained by the
prior distribution for the two experiments.

We can see SVHN to MNIST on figure 8. In this case, we noticed that regularizing the network
using the mutual information, as described in section 4.2, helped to prevent this failure case.

Table 1 compares the transfer accuracy on MNIST to SVHN and on SVHN to MNIST. The transfer
accuracy is obtained when evaluating the accuracy of the transferred samples using the labels from
the source doomain and a classifier pre-trained on the target dataset. For this task, we pre-trained
the classifiers using the architecture proposed in Simonyan & Zisserman (2014). We achieve an
accuracy of 95.56% on the SVHN classification task and 99.6% on the MNIST classification task.
We see an improvement in accuracy when using TI-GAN when minimizing I(Ξ;Y ′). Overall, we
see an important improvement of using our technique against CycleGAN. However, we note a lower
accuracy on the SVHN to MNIST transfer task. We hypothetize that this is because even if we force
the transfered MNIST samples to be dependent on SVHN, the translation networks has other factor
of variation that it can pick to generate the MNIST digit (e.g. the color).

(1) (2)

Figure 5: MNIST to SVHN using TI-GAN. The first column represent the source images to transfer.
Each subsequent columns are different samples from the prior distribution used to transfer. (1) is
our technique using only the GAN objective. (2) is our technique using the GAN objective while
minimizing the mutual information of the generated samples and the samples from the prior

(1) (2)

Figure 6: SVHN to MNIST using TI-GAN. The first column represent the source images to transfer.
Each subsequent columns are different samples from the prior distribution used to transfer. (1) is
our technique using only the GAN objective. (2) is our technique using the GAN objective while
minimizing the mutual information of the generated samples and the samples from the prior
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Table 1: Transfer accuracy on MNIST to SVHN and SVHN. The accuracy is obtained by using
a classifier trained only using the sample of the target dataset. Evaluation is performed using the
validation set of source dataset transfered to the target dataset.

Method SVHN (%) MNIST (%)

CycleGAN 19.6 21.2
Ours + min I(Ξ;T (X,Ξ)) 71.87 38.4
Ours 63.6 11.56

For MNIST to SVHN translation task, we carried out additional experiments using U-Net architec-
ture (Ronneberger et al., 2015) with WGAN-GP (Gulrajani et al., 2017) as a noise function for the
generative model. Results from these experiments are discussed in Appendix A.

6 CONCLUSION

In this paper, we present an unsupervised image to image translation framework. We formalize the
problem of domain translation. We show that one to many image translation can be achieved without
using any consistency loss. We explore the more complicated translation task where geometric
changes are needed with the MNIST to SVHN task. We notice that the SVHN to MNIST task is
harder. We hypothetize that this is due to the fact that SVHN has more factors of variation that the
network can pick to generate the MNIST digits.
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3, i.e. the skip connections were present at representations of size (64×16×16) and (128×8×8),
and (2564×4) in the latter case. The results were generally worse than with the default architecture
explained earlier, (we obtained accuracy of up to 45%) but we still believe these results are worth
sharing. For instance, impact of Mutual information on the learnt model is very clear; in addition
our model still performs much better than Cycle GAN with the same architecture.

All TI-GAN UNet models were trained with WGAN-GP (Gulrajani et al., 2017) and penalization of
the mutual information between the noise and the output (i.e. min-max MINE setting).

Figures A and A present samples drawn from different UNet models.

(1) (2)

Figure 7: SVHN to MNIST using TI-GANwith UNet architecture. The first column represent the
source images to transfer. Each subsequent columns are different samples from the prior distribution
used to transfer. (1) is our technique using only the WGAN-GP objective. (2) is our technique using
the WGAN-GP objective while minimizing the mutual information of the generated samples and
the samples from the prior
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(1)

(2)

Figure 8: (1) SVHN to MNIST using TI-GANwith UNet architecture with higher weight of MI
penalty. The first column represent the source images to transfer. Each subsequent columns are
different samples from the prior distribution used to transfer. The higher MI penalty results with the
network completely neglecting the noise and inferring all SVHN features from MNIST. (2) Cycle
GAN with UNet architecture. Each row and three consecutive columns represent MNIST image,
translation to SVHN and MNIST reconstruction.
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