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Abstract—Detection and removal of outliers in a dataset is a fundamental preprocessing task without which the analysis 

of the data can be misleading. Furthermore, the existence of anomalies in the data can heavily degrade the performance 

of machine learning algorithms. In order to detect the anomalies in a dataset in an unsupervised manner, some novel 

statistical techniques are proposed in this paper. The proposed techniques are based on statistical methods considering 

data compactness and other properties. The newly proposed ideas are found efficient in terms of performance, ease of 

implementation, and computational complexity. Furthermore, two proposed techniques presented in this paper use only 

a single dimensional distance vector to detect the outliers, so irrespective of the data’s high dimensions, the techniques 

remain computationally inexpensive and feasible. Comprehensive performance analysis of the proposed anomaly 

detection schemes is presented in the paper, and the newly proposed schemes are found better than the state-of-the-art 

methods when tested on several benchmark datasets. 

Index Terms—Anomaly/Outliers Detection, Advanced Statistical Methods, Computationally Inexpensive 

Methods, High Dimensional Data. 

1 INTRODUCTION

N observation in a dataset is considered an outlier if it differs significantly from the rest of the observations. 

The problem of finding patterns in data that deviate from the expected behavior is called the anomaly detection or 

the outliers’ detection problem. Outliers in data can occur due to the variability in measurements, experimental 

errors, or noise [1], and the existence of outliers in data makes the analysis of data misleading and degrades the 

performance of machine learning algorithms [2][3].  

A 
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Several techniques have been developed in the past to detect outliers in data [4]–[6]. The techniques for outlier 

detection can be broadly classified as methods based on: (i) Clustering [7], (ii) Classification [8], (iii) Neighbor 

based [9], (iv) Statistical [10], (v) Information-Theoretic [11], and (vi) Spectral methods [12]. The working of 

classification-based methods mostly relies on a confidence score, which is calculated by the classifier while making 

a prediction for the test observation. If the score is not high enough, the observation is not assigned any label and 

is considered an outlier. Some clustering-based methods identify the outliers by not forcing every observation to 

belong to a cluster, and the observations that are not assigned to any cluster are identified as outliers. The nearest 

neighbor techniques are mostly based on a calculation of the distance or similarity measure between the observation 

and its neighboring observations. Suppose the calculation is greater than a certain threshold, that means that the 

observation lies far apart from the rest of the observations and is considered as an outlier. Statistical methods 

usually fit a statistical distribution (mostly normal distribution) to the data and conduct a statistical inference test 

to see if the observation belongs to the same distribution or not. If not, the observation is marked as an outlier. 

Information-theoretic techniques use different information theoretic measures for example entropy, relative 

entropy, etc., to analyze the information content of the data. These techniques are based on an assumption that the 

outliers or anomalies in the data induce irregularities in the information content. Spectral methods transform the 

data to a new dimensional space such that the outliers are easily identified and separated from the data in the new 

space. Furthermore, some outlier detection techniques are also based on geometric methods [13] and neural 

networks [14]. 

All the techniques mentioned above are based on some assumptions and all the techniques have some pros and 

cons. The ideas proposed in this work are based on the novel statistical methods considering data properties like 

compactness. The aim here is to utilize the power of some statistical methods and to enhance the performance of 

the outlier detection algorithms in an unsupervised way, while keeping their implementation easy and 

computationally efficient. The newly proposed methods are based on boxplot adjustment, probability density 

estimation and neighborhood information. The proposed methods are evaluated using both the synthetic and the 

real datasets and are found better in scenarios where the traditional approaches fail to perform well. Especially the 

cases where the data is contaminated with a mixture of different noise distributions. 

The rest of the paper is organized as follows: Background (Section 2), Proposed Methods (Section 3), Evaluation 
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on synthetic datasets (Section 4), Evaluation on real data (Section 5), Comparison with State-of-Art (Section 6) 

and Conclusions (Section 7). 

2 BACKGROUND 

After the initial pivotal works for outlier detection based on the distance measure [15], [16], several new methods 

based on the distance measure were also proposed by different authors in literature [17][18]. The difference 

between the latterly proposed methods and the previous studies is the use of nearest neighbors in distance 

calculation. Among the variants of the actual work, either a single distance based on the kth closest neighbor is 

calculated [19] or the aggregate of the distance of k closets points is calculated [20]. Among other unsupervised 

outlier detection algorithms are the local approaches originated from the concept of Local Outlier Factor [21]. 

Furthermore, boxplot outlier detection scheme is also one of the fundamental unsupervised approach and the 

concept of univariate boxplot analysis was first proposed by Tukey et. al. [22]. In a univariate boxplot, there are 

five parameters specified as: (i) the upper extreme bound (UE), (ii) the lower extreme bound (LE), (iii) the upper 

quartile Q3 (75th percentile), (iv) the lower quartile Q1 (25th percentile) and (v) the median Q2 (50th percentile). 

The best way to estimate the extreme boundaries is to estimate Probability Density Function (PDF), 𝑓(𝑥), at first 

step from where the boundaries will be defined, as follows: 

%𝑈𝐸: )* = 𝑃(𝑋 > 𝑈𝐸) = ∫ 𝑓(𝑥)𝑑𝑥1234𝐿𝐸: )* = 𝑃(𝑋 < 𝐿𝐸) = ∫ 𝑓(𝑥)𝑑𝑥7482       (1) 

Where 𝜏  is the significance level, the region of suspected outliers is defined for 𝜏 = 0.05 and the region of 

extremely suspected outliers is defined for  𝜏 = 0.01. The equation (1) estimates well the boundaries only if the 

distribution is unimodal, i.e., a distribution that has single peak or at most one frequent value. 

However, in a standard boxplot the UE and LE values are computed and well estimated only under the assumption 

that the PDF is symmetric, as: 

>𝐿𝐸 = 𝑄1 − 1.5(𝐼𝑄𝑅),𝑈𝐸 = 𝑄3 + 1.5(𝐼𝑄𝑅).           (2) 

where, the term IQR is defined as the Inter Quartile Range and is given by: 



 4 

 

	𝐼𝑄𝑅 = 𝑄3 − 𝑄1.      (3) 

A common practice to identify the outliers in a dataset using a boxplot is to mark the points that lie outside the 

extreme values, that is, the points greater than UE and less than LE are identified as outliers. This version of outlier 

detection scheme works well for the symmetric data. However, for skewed data different other schemes are 

proposed in the literature. For example, different authors have used the semi-interquartile range i.e. 𝑄3 − 𝑄2 and 

𝑄2 − 𝑄1 to define the extreme values as: 

> 𝐿𝐸 = 𝑄1 − 𝑐I(𝑄2 − 𝑄1),𝑈𝐸 = 𝑄3 + 𝑐*(𝑄3 − 𝑄2).		         (4) 

Where, 𝑐I and 𝑐* are the constants and different authors have adjusted their values differently for example, 𝑐I =
𝑐* = 1.5 [23], 𝑐I = 𝑐* = 3 [24] or calculation based on the expected values of the quartiles [25] and few more 

adjustments to the boxplot for outliers detection are also available, for example [26]. 

The traditional methods of boxplot for detecting the outliers sometimes fails in situations where the noise in the 

data is a mixture of distributions, multimodal distribution, or in the presence of small outlier clusters. In this paper, 

some novel statistical schemes based on (i) the boxplot adjustments, and (ii) a new probability density estimation 

using k-nearest neighbors’ distance vector are proposed to overcome the problem faced by traditional methods. 

These proposed methods are described in detail in the next section. 

3 PROPOSED METHODS 

3.1 Boxplot Adjustments using D-k-NN (BADk) 

Rather than using the traditional boxplot to identify the outliers from the unique dimensions, one useful idea is to 

calculate the distance between all the data points considering all the dimensions and use the resulting single 

dimension distance vector to identify the outliers. The idea of using a single dimension distance vector is useful 

not only for avoiding problem of sorting data in high dimension but also in terms of computational cost, and can 

be further enhanced in terms of performance by extending it to consider k number of neighbors in the distance 

calculation. This idea of boxplot adjustment based on the Distance vector considering k number of Nearest 

Neighbors (D-k-NN) is presented here and the resulting extreme values estimation from the modified boxplot are 

found to be quite useful in identifying the right outliers. Furthermore, the proposed scheme is useful in the cases 
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where the distribution of the noise is not normal or is a mixture of different distributions, and can identify small 

outlier clusters in the data.  

Consider a case of data in ℝK, the 𝑁 dimensional data can be transformed in a single vector representation using a 

distance measure for example ‘Euclidian distance’, which computes the distance of each observation in ℝK to its 

𝑘NO closest neighbor, named 𝑑P. The concept of transformation can be summarized as the following function:  

𝑑P:	ℝK →ℝ       (5) 

where, 𝑑P ∈ ℝ	is a vector containing the distance of each observation in ℝK 	to its 𝑘NO closest neighbor and it is 

used to compute the boxplot with extreme values computed as: 

S𝐿𝐸TU = 𝑄1TU − 𝑐IV𝑄2TU −𝑄1TUW,𝑈𝐸TU = 𝑄3TU + 𝑐*V𝑄3TU −𝑄2TUW.      (6) 

Similar to the traditional method, now the outliers can be identified as the observations that lie outside the defined 

extreme values in (6). The constants 𝑐I and 𝑐* can either be tuned for better performance or can be kept constant 

as equal to 1.5 or 3 as suggested by different authors in the literature. The resulting box-whisker plot is easy to 

implement and can identify the underlying outliers in the dataset accurately.  

Furthermore, another useful idea to identify the outliers in a data is to adjust the UE and LE values of a boxplot as 

follows: 

⎩⎨
⎧𝐿𝐸 = 𝑄1TU − 𝑐I × \𝑣𝑎𝑟 `𝑋. 1abc*dUe ,
𝑈𝐸 = 𝑄3TU + 𝑐* 	× \𝑣𝑎𝑟 `𝑋. 1afc*dUe .

     (7a) 

or 

⎩⎨
⎧ 𝐿𝐸 = 𝑄1TU − 𝑐I × \𝑣𝑎𝑟 `𝑋. 1abcIdUe ,	
𝑈𝐸 = 𝑄3TU + 𝑐* 	× \𝑣𝑎𝑟 `𝑋. 1afcgdUe .		

     (7b) 

where, 𝑣𝑎𝑟 is defined as the variance and the quartiles are computed from the distance vector 𝑑P ∈ ℝ. The extreme 

values can also be estimated based on the calculation of the separation threshold between centers of two variances, 

see equation (9), as: 
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> 𝐿𝐸 = 𝑀 − 𝑐I × 𝑣𝑎𝑟(𝑋. 1abi),𝑈𝐸 = 𝑀 + 𝑐* 	× 𝑣𝑎𝑟(𝑋. 1afi).      (8) 

where, 𝑀 is a value that separate the one-dimension region in order to calculate the variance of two centers. Let 

𝑥	𝜖	ℝ be any random variable with PDF 𝑓(𝑥);  and  the values of 𝜇I and 𝜇* are calculated such that: 

⎩⎪⎨
⎪⎧(𝜇I∗ , 𝜇*∗) = arg(qr,qs) t mini,qr,qs x∫ (𝑥 − 𝜇I)*𝑓(𝑥)𝑑𝑥 +i82 	∫ (𝑥 − 𝜇*)*𝑓(𝑥)𝑑𝑥2i yz ,

𝑉𝑎𝑟I = ∫ (𝑥 − 𝜇I)*𝑓(𝑥)𝑑𝑥,i82𝑉𝑎𝑟* = ∫ (𝑥 − 𝜇*)*𝑓(𝑥)𝑑𝑥2i .
   (9) 

Both, 𝑉𝑎𝑟I and 𝑉𝑎𝑟* can be partially differentiated with respect to 𝜇I and 𝜇* respectively, to find the minimum. 

After simplification the minimization occurs when: 

% 𝜇I = 4(a|)}(a|) ,𝜇* = 4(a~)}(a~),			       (10), 

where, 𝑋8 = 	𝑋. 1abi and 𝑋1 = 	𝑋. 1afi. and the value of 𝑀	 is calculated as: 

𝑀 = x4(a|)}(a|) + 4(a~)}(a~)y . I*       (11) 

For further details on the idea proposed in (8)-(11), the readers are referred to [27].  

Detecting outliers based on Boxplot is efficient only if the data is unimodal distribution. To overcome the 

drawbacks of the boxplot estimation, some other statistical methods based on the probability density estimation 

computed from either the distance vector 𝑑P ∈ ℝ or the actual data 𝐷 ∈ ℝK are also proposed for outlier’s 

detection, which are discussed below. 

3.2 Joint Probability Density Estimation using D-k-NN  

The methods proposed in this section compute the distance vector 𝑑P	from the actual data and utilize it for 

estimating some parameters of the joint distribution function. Three different schemes are proposed here which are 

described as follows: 
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Scheme 1: 

Normal distributions are often used for representing the real value random variables with unknown distributions 

[28] [29]. The joint probability density function of independent and identically normal distribution is given as: 

𝑓(𝑥I, … , 𝑥K) = IV�√*�W� 𝑒∑ 8rs`��|��� es���r      (12) 

where, 𝜁 is the standard deviation modeled differently in (15) and (17), 𝜇 is the mean of the random variable and 

N is the dimension of the data. Here, some functions based on the normal distribution to identify the outliers in a 

dataset are proposed. Suppose a two-dimensional dataset 𝐷(𝑥, 𝑦), we can define a separation threshold 𝑇 based on 

the normal distribution for detecting the outliers such that: 

>𝑍 = ∑ 𝑓(𝑥� , 𝑦�)���I ,𝑇 = 𝛼	𝑚𝑎𝑥(𝑍).       (13) 

where, Z is joint probability distribution function after normalization, 𝑛 is the total number of observations and the 

function 𝑓(𝑥, 𝑦) can be defined as: 

𝑓(𝑥, 𝑦) = I*��� 𝑒8�V�|��W
s~V�|��Wss�s �; 𝑖 = 1,2, … , 𝑛. ; 𝐼 = 0,1,2.   (14) 

The 𝜎 in equation (14) can be computed as: 

𝜁 = 𝛽𝑄3TU .      (15) 

where, 𝑄3TU  is the third quartile computed from the distance vector 𝑑P	as defined in equation (5) and 𝛽 is a constant 

value. The points below the threshold value 𝑇 defined in equation (13) are considered as outliers and the points 

above 𝑇 are considered normal inlier data points. The 𝛼 used in equation (13) is the significance value and it can 

be used to control the percentage amount of data to be removed as outliers.  

Scheme 2: 

To better detect the outliers, a better function 𝑓(𝑥, 𝑦) needs to be constructed in order to weaken the position of the 

outlier in terms of support and amplitude of the function. Furthermore, another scenario can be defined to detect 

the outliers based on the threshold defined in (13) by using the below function: 
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𝑓(𝑥, 𝑦) = �s� 𝑒8�V�|��W
s~V�|��Ws�s �; 𝑖 = 1,2, … ,𝑁.    (16) 

𝜁 = �(I1TU)s      (17) 

where, 𝑘 defines the 𝑘NO closest neighbor for the distance vector and 𝛾 is a constant whose value can be adjusted 

to control the smoothness of the gaussian distribution. The concept is demonstrated in Fig 1, where (a) shows the 

effect of traditional gaussian approach on compression and (b) shows the effect of proposed scheme 2 on 

compression. 

Both of the above schemes proposed in this section are based on a single gaussian distribution and are expected to 

work well for the datasets which can be well approximated using a single gaussian distribution. However, if a 

dataset can be better approximated using multiple gaussians then a better idea is to use a model based on the 

variable number of gaussians. A new and robust estimation of multiple gaussian distribution is proposed in the next 

subsection. 

Scheme 3: 

The scenarios where the data is estimated using a gaussian distribution, the outliers are identified as the points 

lying on the extreme tails of the gaussian distribution, as shown in Fig 2 (a). However, if the better estimation of 

underlying data is possible through multiple gaussians, the outliers located at the connecting points of different 

gaussians might remain unidentified using a single gaussian estimation. In order to identify the outliers existing at 

                    (a)                                           (b)        

Fig 1. (a) Effect of traditional gaussian approach on compression. (b) Effect of proposed scheme 2 approach on 

compression in x and y axes. 
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the connecting points of the multiple gaussians, an idea based on multiple gaussian estimation is proposed, where 

a Rejection Area (RA) is defined and computed as: 

>𝑅𝐴 = {𝑥⃗: 𝑓(𝑥⃗) ≤ 𝐶𝑣},𝑓(𝑥 ∈ 𝑅𝐴) = 𝜏.       (18) 

where, 𝐶𝑣 is defined as a critical value or a threshold value below which is the rejection area or where the outliers 

are identified, and 𝜏 is the significance level. The concept is shown in Fig 2 (b), where as an example a single 

dimensional data is estimated using two gaussians and the outliers can be identified as the points below 𝐶𝑣. 
In order to find the optimum number of gaussians that better approximate the joint probability distribution for a 

given dataset the sorted values of the vector 𝑑Pcan be utilized. For example, in Fig 3 the graph of sorted values of 

the vector 𝑑Pis shown and the best value of number of gaussians can be estimated by taking the value where the 

graph takes off sharply.  

 

dk 

Num
ber	o

f	Gau
ssian

s 

0 1000 2000 3000 4000 5000 6000 7000 8000

0

2

4

6

8

10

12

Fig 3. Plot of sorted values of the vector 𝒅𝒌 
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Fig 2. An Example of Gaussian estimation and marking of critical value for outlier detection. (a) Points those lie outside 

the red boundaries are considered outliers. (b) The points below the critical value are identified as outliers. 
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Each estimated gaussian represent a region and for each gaussian inside a region the values of mean and variance 

can be computed as: 

𝜇� = ∑ ²��∈³´�� , j=1, 2, …., m     (19) 

𝑉𝑎𝑟(𝑥) = ∑ (²�8q�)s�∈³�́�8I  , j=1, 2, ..., m     (20) 

where 𝑅µ  represents the jth region, m is the total number of estimated gaussians and 𝑛� is the total number of 

elements in the respective region. The combined multiple gaussians model is then estimated by: 

𝑥~∑ 𝛼�𝑁(𝜇� , 𝐶�)·��I       (21) 

where, 

𝛼� = ¸¹ºT(»�)K  and ∑𝛼� = 1.      (22) 

In order to determine the regions, lets define an application 𝑆3 that sorts any given sequence 𝑈� , 𝑖 = 1,… . , 𝑁 such 

that 𝑈½¾(I) ≤ 𝑈½¾(*) ≤ ⋯ ≤ 𝑈½¾(K). For any given data 𝑋⃗, the sorted data can be represented as 𝑋⃗½¾(�) and suppose 

that ∆𝑋ÁÁÁÁÁ⃗ ½¾(�) represents the difference between two consecutive elements of 𝑋⃗½¾(�). Similarly, the sorted difference 

can be represented as ∆𝑋ÁÁÁÁÁ⃗ ½∆Â(½¾(�)). In order to define the regions, the elements are grouped together sequentially 

until  ∆𝑋½∆Â(½¾(�)) ≤ ∆𝑋ÁÁÁÁÁ⃗ ½∆Â(½¾(K8·1I)), once this condition is not true, start grouping the remaining elements as a 

new region until all the elements are assigned to a region. 

4       EVALUATION USING SYNTHETIC EXAMPLES 

The ability of proposed methods is demonstrated here by the use of some two-dimensional synthetic datasets. The 

results for each of the proposed method are discussed in the following subsections. 

4.1 Evaluation Boxplot Adjustments using D-k-NN (BADk) 

Fig 4 (a) shows an example of the data used for evaluating the proposed methods to detect the outliers. From the 

data shown in Fig 4 (a), it can be seen that the actual data is composed of different clusters with different shapes 

and is contaminated by a mixture of sinusoidal and gaussian distribution of noise. The aim here is to detect the 
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noise as outliers and different shape clusters as inliers. The traditional boxplot is used to detect the outliers from 

the data and the resulting boxplot is shown in Fig 4 (b). It can be seen from the boxplot in Fig 4 (b) that the 

traditional boxplot is unable to identify any outliers in the data. 

  

 

The same dataset is used to evaluate the proposed adjusted boxplot with extreme values define in equation (6) and 

the results are shown in Fig 5. Different values of 𝑘 are used to see how it effects the outcome in identifying the 

outliers. It can be observed from the results shown in Fig 5 that for the smaller values of 𝑘 only the gaussian noise 

is identified and while we keep on increasing the value of 𝑘 the outliers with sinusoidal distribution are also 

identified. 

However, after a certain value of 𝑘 the data points from the actual clusters (inliers) are also marked as the outliers, 

while the outliers started to reappear as the inliers. This shows that although the selection of value of k is flexible 

in this case, still an optimum value of 𝑘 has to be selected for the optimum performance based on the data. Another 
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Fig 4. (a) Original data representing clusters with different shapes and a mixture of sinusoidal and gaussian noise. 

(b) Traditional boxplot showing no outliers/anomalies. 
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example shown in Fig 6(a) with a different distribution of noise is also tested for evaluating the ability of the 

proposed method in (6) for outlier detection. The results for this example are shown in Fig 7 using three different 

values of 𝑘. It can be seen from the results in Fig 7 that the selection of value of k is very flexible and still the 

proposed method performs well in terms of outlier’s detection. During all the experiments performed, the values 

of constants are fixed to 𝑐I = 𝑐* = 1.5. 

 

Fig 5. Outliers detection from the data shown in Fig 4(a), using the proposed boxplot with extreme values defined in 

equation (6) for different values of 𝑘. The data in red is identified as the inliers while the data in green is identified as 

the outliers.    
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Fig 6. (a) An example of dataset having different shapes of inlier clusters contaminated with noise. (b) Traditional 

boxplot showing no outliers/ anomalies.  

Fig 7. Outliers detection from the data shown in Fig 6 (a), using the proposed boxplot with extreme values defined in 

equation (6) for different values of 𝑘. The data in red is identified as the inliers while the data in green is identified as the 

outliers. 
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4.2 Evaluation (Joint Probability Density Estimation) Scheme 1 

The density estimation refers to estimation of an unobservable Probability Density Function (PDF) associated with 

an observable data. The PDF gives an estimate of the density according to which a large population in a data is 

distributed. In this proposed method, the PDF is computed by placing a gaussian density function at each data 

point, and then summing the density functions over the range of data, and a threshold value α defines the margin 

between the inlier data and the outliers. The value of α is computed as a percentage amount of the maximum value 

of the PDF. The value of 𝜎 in equation (14) is computed utilizing the 𝑑P vector as defined in equation (15). 

The results for scheme 1 when evaluated using the same example data as shown in Fig 4(a) are given in Fig 8. The 

example is evaluated using only two different values of α and a fixed value of 𝛽. The outliers are shown in green 

color and the inlier data is shown in red color. Figure 8 also shows the associated 3D plots of the probability density 

estimations computed using equation (14). For α = 0.1 the proposed method is able to identify the outliers having 

gaussian distribution only while placing α = 0.3 the proposed method has identified both the gaussian and the 

sinusoidal outliers in the data. Fig 9 shows the results for the second example with a different noise distribution 

with fixed values of α and 𝛽 using equation (14).  

4.3 Evaluation (Joint Probability Density Estimation) Scheme 2 

The results for scheme 2 proposed in equations (16) - (17) with different value of parameters are shown in Fig 10. 

It can be observed from the results in Fig 10 that the small value of γ produces sharp density distribution while a 

larger value of γ produced a smoother distribution.  For a small value of γ the inlier data points are also identified 

as the outliers which is not the case with a comparatively larger value of γ for this particular dataset. However, 

optimum values for the parameters need to be tuned to get the optimum results using this scheme.  

4.4 Evaluation (Joint Probability Density Estimation) Scheme 3 

The idea proposed in equation (18) based on the different ways of estimation of gaussians of the distance vector 

𝑑P is evaluated on three different synthetic examples having different distribution of noise and the results are shown 

in Fig 11. It can be seen from the visual results depicted in Fig 11 that this scheme is successful in identifying the 

outliers of different distributions and even the noisy data that lies in close proximity to the inlier data. The value of 

G represents the number of gaussians estimated from the 𝑑P. 
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Fig 8. Outlier Detection results using Scheme 1 with two different values of α=0.1 and α=0.3. Outliers are shown in 

green and the inlier data in red.  
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5      EVALUATION OF BOXPLOT ADJUSTMENTS USING A REAL EXAMPLE 

The ideas proposed for boxplot adjustments in equation (6) and equation (7) are also evaluated on a real dataset. 

The dataset used is a subset of the original KDD Cup 1999 dataset from the UCI machine learning repository, the 

subset used is still a large data containing 95,156 observations and three attributes. The dataset is publicly available 

online1. The ground truth of the dataset used is shown in Fig 12 (a), where the blue data points represent the actual 

inliers and the yellow points represent the actual outliers. The results for boxplot using extreme values defined in 

equation (6) are shown in Fig 12 (b) and the achieved value for Area Under Curve (AUC) evaluation parameter is 

0.83 for this dataset. 

 

                                                             
1 http://odds.cs.stonybrook.edu/smtp-kddcup99-dataset/ 

Fig 9. Second example of Outlier Detection results using Scheme 1 with α=0.3, β=3 and   k=1. Outliers are shown in green 

and the inlier data in red. Row 1: I=1, Row 2: I=2 and Row 3: I=0. 
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Fig 10. Outlier detection results using scheme 2 with different values of α, γ and k. Green points represent outliers and red 

points represent the normal data points. 
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Fig 11. Results achieved on three different datasets with different distribution of noise using the proposed multiple gaussians 

estimation of 𝑑P . The data points in red are the inliers and the green data points are identified as the outliers. 

Fig 12. (a) Ground truth of the real data used to evaluate the proposed methods, blue data points are inliers and yellow are the outliers. 

(b) Results achieved using the boxplot with extreme values proposed in equation 6. Red points are inliers and green are outliers. 



 19 

 

The results achieved for the proposed idea in (7) are shown in Fig 13 (a) and (b), respectively for equation 7 (a) 

and (b). The detected outliers are shown in green color and the inliers are shown in red color. The achieved value 

of AUC using both equations 7(a) and 7(b) is 0.833. 

6      COMPARISON WITH STATE-OF-ART 

The proposed schemes are compared with several state of the art unsupervised outlier detection algorithms of 

similar kind, using a variety of benchmark datasets reported in [30]. The proposed schemes are found better in 

most of the cases as compared to the existing algorithms. The algorithms used for comparison include kNN [19], 

kNN-weight (kNNW) [31][20], Outlier detection using Indegree Number (ODIN) [32], Local Outlier Factor (LOF) 

[21], Simplified LOF (SLOF) [33], Connectivity based Outlier Factor (COF) [34], Influenced Outlierness (INFLO) 

[35], Local Outlier Probabilities (LoOP) [36], Local Distance-based Outlier Factor (LDOF) [37], Local Density 

Factor (LDF) [38], Kernel Density Estimation Outlier Score (KDEOS) [39] and Fast Angle-Based Outlier 

Detection (FastABOD) [40]. 

Initially, some of the fundamental outlier detection algorithms are compared with the proposed algorithms using 

the same three synthetic datasets. To test the unsupervised outlier detection methods, the most popular evaluation 

measure proposed in literature is based on the Receiver Operating Characteristics (ROC) and is computed as the 

Area Under Curve (AUC) [30]. The ROC AUC is computed for these three datasets using the proposed schemes 

Fig 13. (a) Results achieved using the boxplot with extreme values proposed in equation 7(a). Red points are inliers and green are outliers. 

(b) Results achieved using the boxplot with extreme values proposed in equation 7(b). Red points are inliers and green are outliers. 
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and are compared with some of the fundamental state-of-art algorithms in Table I. Hyperparameters of all the 

methods are tuned and the best results are reported. It can be seen from the results in Table I that the proposed 

schemes are performing better than the existing algorithms. As these three datasets are only two dimensional the 

visual comparison is also possible which is provided in Fig 14. From the visual inspection it is clearer that the 

newly proposed methods are better than the existing ones in identifying the outliers lying in close proximity to the 

inliers.  

Furthermore, for a more comprehensive comparison, ten more benchmark datasets and twelve state-of-art methods 

reported in [30] are used and are compared with newly proposed unsupervised outlier detection methods. The 

results for state-of-art methods and the newly proposed methods for the ten benchmark datasets are given in Table 

II.  It can be seen from Table II that the newly proposed methods are outperforming the existing algorithms in most 

of the cases. Furthermore, the two newly proposed methods reported in Table II make use of the distance vector 

only for detection of outliers, so irrespective of the dimensions of the input data the computational complexity of 

these proposed algorithms remains low. 

A visual comparison of proposed methods with the existing state-of-art methods is also provided in Fig 15. From 

the results in Fig 15, it is clearer that the newly proposed scheme 3 is outperforming rest of the methods in terms 

of AUC. Furthermore, the required computational cost for the proposed method is also low because of using the 

𝑑P vector for outlier detection, instead of using the entire input data dimensions. As the proposed method is using 

only a single dimension distance vector of outlier detection, this makes it independent of the dimensions of the 

input data in terms of computational cost, which in turn makes it more feasible for high dimensional data.

TABLE I 

COMPARISON USING THREE SYNTHETIC DATASETS 

 State-of -the-Art  Proposed 

Dataset KNN ABOD FastABOD COF LOF BADk Scheme 1 Scheme 2 Scheme 3 

1 0.6222 0.7692 0.7431 0.9081 0.9240 0.9466 0.9655 0.9524 0.9574 

2 0.5527 0.8526 0.8368 0.9047 0.9527 0.9776 0.9816 0.9779 0.9799 

3 0.7281 0.8903 0.8951 0.8839 0.9435 0.9514 0.9025 0.9030 0.9520 
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Fig14: Visual comparison for outlier detection using three synthetic datasets. Row 1-5: state-of-art methods and Row 

6-9: the newly proposed methods. 
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TABLE II 

ROC AUC VALUES COMPUTED ON DIFFERENT BENCHMARK DATASETS USING STATE-OF-ART ALGORITHMS AND 

THE PROPOSED SCHEMES 

 State-of-art Proposed 

Dataset KNN KNNW LOF SLOF LoOP LDOF ODIN FABOD KDEOS LDF INFLO COF BADk Scheme 3 

Arrhythmia 0.7930 0.7674 0.7674 0.7500 0.7500 0.7551 0.7663 0.7715 0.6680 0.8565 0.7950 0.7663 0.8074 0.8770 

heartdisease 0.8644 0.8311 0.8533 0.7800 0.7977 0.7577 0.8544 0.8911 0.6844 0.8933 0.8333 0.8955 0.8467 0.9400 

hepatits 0.8955 0.8706 0.9452 0.8806 0.8905 0.8706 0.9228 0.8408 0.8706 0.9403 0.9005 0.8955 0.8393 0.9403 

parkinson 0.9895 0.9895 0.9895 0.9895 0.9895 0.9895 0.9895 0.9895 0.9895 1 0.9895 0.9791 0.9583 1 

spambase40 0.5734 0.5661 0.4738 0.5011 0.4965 0.4796 0.5191 0.4372 0.4766 0.5364 0.4738 0.4994 0.6034 0.6125 

Glass 0.8748 0.8832 0.8666 0.8650 0.8395 0.7788 0.7292 0.8579 0.7420 0.9035 0.8037 0.8953 0.9122 0.9293 

pendigit 0.9868 0.9854 0.9168 0.9107 0.9039 0.7181 0.9225 0.9610 0.8113 0.9545 0.8908 0.9609 0.9826 0.9819 

shuttle 0.9890 0.9861 0.9896 0.9869 0.9869 0.9775 0.9888 0.8381 0.9810 0.9922 0.9863 0.9920 0.9865 0.9895 

WBC 0.9929 0.9920 0.9906 0.9835 0.9737 0.9582 0.9563 0.9892 0.6023 0.9929 0.9821 0.9863 0.9842 0.9989 

WPBC 0.5409 0.5319 0.5254 0.5018 0.5018 0.5034 0.5072 0.5341 0.5185 0.5829 0.4957 0.5568 0.5427 0.5801 
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Fig15: Comparison of the proposed schemes with the state-of-art methods using 10 benchmark datasets for outlier 

detection. Y-axis represents the computed ROC AUC values.  
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7        CONCLUSIONS 

Outlier detection is one of the most important preprocessing steps in data analytics, and for best performance 

consideration, it is considered a vital step for machine learning algorithms. Different methods are presented in this 

paper, keeping in view the need for a robust and easy-to-implement outlier detection algorithm. The newly 

proposed methods are based on novel statistical techniques considering data compactness, which resulted in an 

added advantage of easy implementation, improved accuracy, and low computational cost. Furthermore, to 

demonstrate the proposed ideas' performance, ten benchmark multidimensional datasets and three complex 

synthetic two-dimensional datasets containing the different shapes of clusters contaminated with a mixture of 

varying noise distributions are used. The proposed methods are found accurate and better in terms of outlier 

detection as compared to the state-of-art. It is also an observation that some of the fundamental state-of-art methods 

cannot detect the outliers in scenarios where the outliers are a mixture of two different distributions. Moreover, two 

of the newly proposed schemes use only a single dimension distance-vector instead of utilizing the entire data 

dimensions for outlier detection. This makes the proposed methods more feasible and computationally inexpensive, 

irrespective of the input data's large sizes.
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LIST OF ABBREVIATIONS: 

ABOD: Angle-Based Outlier Detection. 

AUC: Area Under Curve. 

BADk: Boxplot Adjustments using D-k-NN. 

COF: Connectivity based Outlier Factor. 

D-k-NN: Distance vector considering k number of Nearest Neighbors. 

INFLO: Influenced Outlierness. 

KDEOS: Kernel Density Estimation Outlier Score 

LDF: Local Density Factor. 

LDOF: Local Distance-based Outlier Factor. 

LE: Lower Extreme Bound. 

LOF: Local Outlier Factor. 

LoOP: Local Outlier Probabilities. 

ODIN: Outlier Detection using Indegree Number. 

PDF: Probability Density Function. 

ROC: Receiver Operating Characteristics. 

SLOF: Simplified LOF. 

UE: Upper Extreme Bound. 
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Figures

Figure 1

a) Effect of traditional gaussian approach on compression. (b) Effect of proposed scheme 2 approach on
compression in x and y axes.

Figure 2

An Example of Gaussian estimation and marking of critical value for outlier detection. (a) Points those lie
outside the red boundaries are considered outliers. (b) The points below the critical value are identi�ed as
outliers.



Figure 3

Plot of sorted values of the vector ฀฀



Figure 4

(a) Original data representing clusters with different shapes and a mixture of sinusoidal and gaussian
noise. (b) Traditional boxplot showing no outliers/anomalies.



Figure 5

Outliers detection from the data shown in Fig 4(a), using the proposed boxplot with extreme values
de�ned in equation (6) for different values of ฀. The data in red is identi�ed as the inliers while the data in
green is identi�ed as the outliers.



Figure 6

Outliers detection from the data shown in Fig 4(a), using the proposed boxplot with extreme values
de�ned in equation (6) for different values of ฀. The data in red is identi�ed as the inliers while the data in
green is identi�ed as the outliers.



Figure 7

Outliers detection from the data shown in Fig 6 (a), using the proposed boxplot with extreme values
de�ned in equation (6) for different values of ฀. The data in red is identi�ed as the inliers while the data in
green is identi�ed as the outliers.



Figure 8

Outlier Detection results using Scheme 1 with two different values of α=0.1 and α=0.3. Outliers are shown
in green and the inlier data in red.



Figure 9

Second example of Outlier Detection results using Scheme 1 with α=0.3, β=3 and k=1. Outliers are shown
in green and the inlier data in red. Row 1: I=1, Row 2: I=2 and Row 3: I=0.



Figure 10

Outlier detection results using scheme 2 with different values of α, γ and k. Green points represent outliers
and red points represent the normal data points.



Figure 11

Results achieved on three different datasets with different distribution of noise using the proposed
multiple gaussians estimation of ฀P. The data points in red are the inliers and the green data points are
identi�ed as the outliers.



Figure 12

(a) Ground truth of the real data used to evaluate the proposed methods, blue data points are inliers and
yellow are the outliers. (b) Results achieved using the boxplot with extreme values proposed in equation
6. Red points are inliers and green are outliers.

Figure 13

(a) Results achieved using the boxplot with extreme values proposed in equation 7(a). Red points are
inliers and green are outliers. (b) Results achieved using the boxplot with extreme values proposed in
equation 7(b). Red points are inliers and green are outliers.



Figure 14

Visual comparison for outlier detection using three synthetic datasets. Row 1-5: state-of-art methods and
Row 6-9: the newly proposed methods.



Figure 15

Comparison of the proposed schemes with the state-of-art methods using 10 benchmark datasets for
outlier detection. Y-axis represents the computed ROC AUC values.


