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ABSTRACT Autoencoder based methods are the majority of deep unsupervised outlier detection methods.

However, these methods perform not well on complex image datasets and suffer from the noise introduced

by outliers, especially when the outlier ratio is high. In this paper, we propose a framework named Trans-

formation Invariant AutoEncoder (TIAE), which can achieve stable and high performance on unsupervised

outlier detection. First, instead of using a conventional autoencoder, we propose a transformation invariant

autoencoder to do better representation learning for complex image datasets. Next, to mitigate the negative

effect of noise introduced by outliers and stabilize the network training, we select the most confident inliers

likely examples in each epoch as the training set by incorporating adaptive self-paced learning in our TIAE

framework. Extensive evaluations show that TIAE significantly advances unsupervised outlier detection

performance by up to 10% AUROC against other autoencoder based methods on five image datasets.

INDEX TERMS Deep Learning, unsupervised outlier detection, autoencoder, transformation invariant

autoencoder.

I. INTRODUCTION

Outlier detection refers to finding patterns in data that do

not conform to expected normal behavior [1], [2]. Instances

in these patterns are often referred to as outliers, anomalies,

faults, defects, novelty, or errors in different contexts of lit-

erature. Outlier detection has a wide range of applications

in many different domains such as financial fraud detec-

tion [3], cybersecurity intrusion detection [4], [5], sensor

network fault detection [6]–[8]. Many solutions have been

proposed to tackle outlier detection. Labels indicate whether

a chosen data example is an inlier or an outlier. Based on the

availability of labels, outlier detection can be classified into

three categories [1]. (1) Supervised outlier detection (SOD)

involves training a supervised binary or multi-class classifier,

using labels of both normal and anomalous data instances.

(2) Semi-supervised outlier detection (SSOD) uses only nor-

mal data to separate outliers. The labels of normal samples are

far easier to obtain than outliers, so solutions in this category

are more widely adopted. (3) Detecting outliers based on

intrinsic of the data instances, unsupervised outlier detec-

tion (UOD) handles unlabeled data, including both normal
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and anomalous data. Note that this classification criterion

is not comprehensive. Weakly supervised outlier detection

[9]–[11] is another promising area.We focus on unsupervised

outlier detection in this paper as most data are unlabeled, and

labeling is problematic or cost unacceptable.

Surge in image and video data in this data era has recently

inspiredmany important unsupervised outlier detection appli-

cations in the computer vision field, e.g. the refinement

of image query results and video abnormal event detec-

tion. With the advances in deep neural networks, deep

learning-based outlier detection algorithms have become

increasingly popular and show huge advantages compared

with traditional methods such as principal component anal-

ysis (PCA) [12], support vector machine (SVM) [13] and

isolation forest (IF) [14] in image/video outlier detection

tasks. Autoencoders are the core of most unsupervised outlier

detection models [15]–[18]. These models use autoencoder

for reconstructing images and assume that inliers and outliers

could result in significantly different latent embeddings, and

thus differences in the corresponding reconstruction errors

can be used to distinguish the two types of samples [19].

However, autoencoders are not good at handling datasets

with more complex texture and structure information like

SVHN, CIFAR-10. Experiment results from [20] show that
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even a sophisticated deep convolutional autoencoder with

isolation forest only performs slightly better than random

guessing (AUROC = 50%). Applications of autoencoders to

other unsupervised tasks (e.g., deep clustering) report similar

results [21], [22]. The reason behind this is the use of mean

square error (MSE) loss. Autoencoders typically use MSE

as a supervise signal, focusing on low-level pixel features

rather than high-level semantic features. The assumption of

autoencoder based outlier detection may hold when the data

is simple. As the data complexity grows, inliers and outliers

sharemore low-level features learned by autoencoder, leading

to similar reconstruction error for both inliers and outliers

[23], [24], making the model fail to distinguish outliers from

inliers.

To address this issue, some scholars attempt to intro-

duce more efficient loss functions rather than the pixel-wise

MSE loss. Sabokrou et al. [25] introduce adversarial train-

ing loss by adding a discriminator after autoencoders to

classify whether it is original or reconstructed image.

Zaheer et al. [26] propose a new adversarial training scheme.

Instead of using reconstruction loss, they use a discriminator

to distinguish between good and bad quality reconstructions.

Akcay et al. [27] add another encoder after autoencoders

and leverages an extra MSE loss between the two differ-

ent embeddings. These attempts to alleviate the problems

of autoencoders, but the improvements are limited or not

suitable for unsupervised outlier detection.

Inspired by recent progress in unsupervised representation

learning, especially contrastive learning [28]–[31], we pro-

pose Transformation Invariant Autoencoder to learn a better

representation of data instead of finding a better loss function

for autoencoder training. Fig. 1 provides a brief illustration

of the proposed Transformation Invariant Autoencoder. The

cat image in Fig. 1 is an unlabeled training example. During

the training phase, we first apply transformations based on

human priors to the original images and get a set of trans-

formed images (grayscaled and rotated cat images in Fig. 1).

Then we feed the transformed images to the TIAE. We opti-

mize the TIAE by minimizing the restoration loss between

the restored images and the original images. To alleviate the

noise introduced by outliers during training TIAE, we also

use the restoration loss to derive self-paced learning weight.

During the testing phase, we feed test data to the trained

TIAE and expect outliers and inliers leading to different

restoration errors. Above all, we can distinguish outliers from

inliers by restoration error. We call this pipeline the Trans-

formation Invariant AutoEncoder for unsupervised outlier

detection.

To validate the effectiveness of TIAE, we conduct exten-

sive experiments on five popular benchmarks and compare

them with other autoencoder based methods. Our experiment

results show that TIAE outperforms these methods by a large

margin (10% on average on CIFAR-10). We summarize our

main contributions of this paper as follows:

1) To learn high-level semantic features instead of

low-level features, we propose a simple but effective

FIGURE 1. An illustrative comparison between conventional autoencoder
and transformation invariant autoencoder. In TIAE scenario, the encoder’s
inputs are transformed images (transformations are based on human
priors). The decoder is forced to restore the transformed images to the
original images.

deep outlier detection framework named Transforma-

tion Invariant Autoencoder.

2) We derive an adaptive self-paced learning algorithm

without extra hyper-parameters. By using adaptive

self-paced learning, our model can mitigate the nega-

tive effect of outliers in the process of feature learning.

3) We conduct extensive experiments, and the results val-

idate the effectiveness of our Transformation Invari-

ant Autoencoder framework. The ablation study shows

how adaptive self-paced learning affects the proposed

unsupervised outlier detection method and provides

possible ways to extend existing deep unsupervised

outlier detection algorithms.

The rest of this paper is organized as follows.

Section II outlines the related work of outlier detection.

Section III presents the proposed Transformation Invariant

AutoEncoder. Section IV shows the experiment results with

evaluation. Section V) concludes the paper.

II. RELATED WORK

Our proposed method falls into the category of deep unsuper-

vised outlier detection and incorporates self-paced learning

and representation learning. To facilitate the description of

our method, we shall review the existing deep unsupervised

outlier detection model, self-paced learning, and representa-

tion learning techniques in turn.

A. DEEP UNSUPERVISED OUTLIER DETECTION

Deep unsupervised outlier detection represents a family of

unsupervised outlier detection methods that adopt deep neu-

ral networks. Many deep methods have been proposed due

to the success of deep learning. In this paper, we focus

on unsupervised outlier detection on still image datasets.
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Based on the type of network structure, the majority of

existing deep unsupervised outlier detection methods can

be divided into two categories: Autoencoder-based and

self-supervised based methods. Autoencoders are the fun-

damental unsupervised deep architectures used in unsuper-

vised outlier detection. Recently, self-supervised methods are

showing promising results.

Autoencoder based deep unsupervised outlier detection

has been extensively studied. These models use autoencoder

for reconstructing images and assume that inlier and out-

lier could lead to significantly different latent embeddings,

and thus we can leverage differences in the correspond-

ing reconstruction errors to distinguish the two types of

samples. Sakurada et al. [19] indicate that the latent embed-

dings in the hidden layer of autoencoders are distinguish-

able between inliers and outliers. Zhou and Paffenroth [32]

propose a decoupled solution that combines a deep autoen-

coder with Robust PCA, which decomposes the inputs into

a low-rank part from inliers and a sparse part from outliers.

Xia et al. [33] use deep autoencoder directly and propose a

model that estimates inliers by finding a threshold that maxi-

mizes the inter-class variance of autoencoder’s reconstruction

loss. A loss function is designed to encourage the separation

of estimated inliers/outliers. Zong et al. [23] jointly optimize

a deep autoencoder and an estimation network to perform

simultaneous representation learning and density estimation

for unsupervised outlier detection.

Self-supervised based methods for unsupervised out-

lier detection shows promising results recently. Golan and

El-Yaniv [34] use several image geometric transformations

and create a self-labeled dataset for transformation classifica-

tion pretask, assuming that the pretask model cannot classify

transformations of anomalous data properly. Wang et al. [20]

introduce more self-label methods like patch rearranging

and irregular affine transformations to strengthen supervision

further.

B. SELF-PACED LEARNING

Self-paced learning (SPL) [35] simulates the procedure of

human learning: from easy to hard. Its core idea is to generally

start with learning easier aspects of a task, then gradually

consider more complex examples. This strategy of learning

is deemed to be more effective. The critical problem is how

to define ‘‘easiness’’. Depending on the current knowledge

we have, the closer the answer we give gets to the correct

answer, the easier the example (or problem) should be.

In machine learning problems, the value of loss func-

tion often serves as the measure of ‘‘easiness’’. A thresh-

old λ controls what examples should be used in the

current step. Formally, given training examples D =

{f (x1, y1), (x2, y2), . . . , (xn, yn)} and a learning model f (·)

with parameters w, the original machine learning problem is

min
w

∑

x∈D

L(fw(xi), yi) . (1)

Then the objective of self-paced learning is

min
u,w

∑

x∈D

viL(fw(xi), yi) + g(λ, vi)

s.t. vi ∈ [0, 1] , (2)

where v = [v1, v2, . . . , vn]
⊤ are weights of examples and

g(λ, vi) is called self-paced regularization term. The w and v

can be optimized using Alternative Search Strategy (ASS).

Considering the simple hard-weighting self-paced learning

where g(λ, vi) = −λvi and vi ∈ {0, 1}, the new objective is

min
u,w

∑

x∈D

viL(fw(xi), yi) − λvi

s.t. vi ∈ {0, 1} . (3)

Given example weights v, the minimization over w is

a weighted loss minimization problem. When the model

parameterw is fixed, the optimal vi has a closed-form solution

vi =

{

0 if Li < λ ;

1 otherwise .
(4)

Self-paced learning has been successfully used in various

applications, including co-saliency detection [36], mix-

ture of regressions [37], person re-id [38], Object local-

ization and segmentation in weakly labeled videos [39],

category-specific 3D object shape models [40], weakly

supervised object detection [41] and deep clustering [42].

Kumar et al. [35] demonstrate that self-paced learning algo-

rithm outperforms the state-of-the-art methods for learning

a latent structural SVM on four applications: object localiza-

tion, noun phrase coreference, motif finding, and handwritten

digit recognition. Han et al. [40] propose to use self-paced

learning to alleviate data ambiguity under weak supervision

of co-saliency detection, leading to a robust learning manner

in complex scenarios. Experiments demonstrate the superi-

ority of the proposed framework beyond the state-of-the-art

methods. Huang et al. [38] propose a novel video-based

person re-id method via self-paced weighting (SPW) and

get the state-of-the-art performance on two public datasets.

Guo et al. [42] incorporate self-paced learning and data aug-

mentation into deep clustering autoencoder, outperforming

the state-of-the-art methods on four image datasets.

Self-paced learning algorithms cannot avoid searching

the best values for hyper-parameters, threshold λ, and step

size δ that controls the amount of increasing λ at each

iteration. However, hyper-parameters are hard to set in the

unsupervised scenario. This limits the application of self-

paced learning in unsupervised outlier detection. Inspired by

Guo et al. [42], we propose an adaptive self-paced learning

variant that is hyper-parameter free for unsupervised outlier

detection.

C. TRANSFORMATION INVARIANT REPRESENTATION

LEARNING

Transformation invariant representation learning is a special

case of transformation equivariant representation learning,
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which can be defined as

E(t(x)) = ρE(x) , (5)

where E(·) denotes representation learning model, t(·)

denotes transformation and ρ is a coefficient. In transfor-

mation invariant representation learning, the coefficient is

the identity matrix, which means the representations learned

from original samples and transformed samples are the same.

Learning transformation-equivariant representations can

trace back to the seminal work on training capsule nets

[43]–[45]. Recently, contrastive learning [28]–[31] as a novel

unsupervised representation learning method, shows promis-

ing results on downstream tasks, which is exactly trying to

learn transformation invariant representations.

Tadashi et al. propose a similar method to our TIAE to

separate the input into transform invariant descriptor and

transform parameters, which is efficient for extracting typ-

ical spatial subpatterns. Then they demonstrate the imita-

tion of a human hand by a robot hand as an example of a

regression-based on spatial subpatterns.

To our best knowledge, our proposed TIAE is the first

method to connect transformation invariant representation

learning with unsupervised outlier detection.

III. THE PROPOSED TIAE FRAMEWORK

We first formulate the problem of unsupervised outlier detec-

tion in Section III-A. Then we give a brief introduction of

transformation in Section III-B. In Section III-C, we intro-

duce the basic model of Transformation Invariant Autoen-

coder. Furthermore, we incorporate an adaptive self-paced

learning algorithm into the basic model in Section III-D.

A. PROBLEM FORMULATION

We first formulate the problem of unsupervised outlier detec-

tion. Considering a data space X (in this context, the space

of images), an unlabeled data collection X = {xi ∈

R
C×H×W }Ni=1 ⊆ X , where N denotes the total number of

samples in X , C, H, and W denote the dimensions of image

channels, height, and width. X consists of an inlier set Xin
and an outlier set Xout , which originate from fundamentally

different underlying distributions [46]. Our goal is to build a

model M (·) for discriminating whether x ∈ Xin or x ∈ Xout .

B. TRANSFORMATIONS

In this section, we introduce the selection standards of image

transformation used in the proposed framework. Transfor-

mations are widely used in deep learning literature, such as

the data augmentation technique. Deep neural networks are

easy to overfit the data, which can be solved by acquiring

more training data. Data augmentation is an effective way

of expanding training datasets. We consider several com-

mon augmentations here. One type of augmentation involves

spatial/geometric transformation of data, such as cropping

and resizing (with horizontal flipping), rotating, shifting. The

other type of augmentation involves appearance transfor-

mation, such as color distortion (including color dropping,

brightness, contrast, saturation), Gaussian blur, and Sobel

filtering [31], [42].

To capture high-level features of training data and achieve

effective outlier detection, the transformations we choose

need to satisfy some conditions based on human priors and

other literature results. First, transformation composition or

transformation group is far better than single transforma-

tion [31]. Second, transformation should erase specific infor-

mation, which is the key to differentiate inliers and outliers.

The erased information of transformation should be much

shared among inliers, and little shared among outliers [47].

Above all, in the TIAE framework, we recommend choos-

ing multiple transformations based on dataset characteristics.

After choosing appropriate transformations, we get a set of

transformations T = {ti(·) | i = 1, 2, . . . ,T }, where ti(·)

denotes the ith transformation and T denotes the total number

of transformations.

Based on results from [31], we choose color distor-

tion and rotation in our experiments. Details are shown

in Section IV-A.

C. MODEL ARCHITECTURES

In this section, we present the Transformation Invariant

Autoencoder (TIAE) framework in detail. TIAE is based on

an encoder-decoder framework to capture high-level features

by restoring the samples from transformed images. We stack

a decoder network hu(·) on the top of the encoder network

fw(·) to build an autoencoder.

Given an original image x from the dataset X , we derive a

transformed image ti(x) using transformation ti(·) from the

transformation set T . The proposed TIAE takes the trans-

formed images as the inputs and attempts to restore the

original image x. Mathematically, given x, the restored image

x̂ is formulated as x̂ = hu(fw(ti(x))).

To train the TIAE for effective outlier detection, we use

ℓ2 loss to measure the distance between restored images and

targets (original images). We formulate the restoration loss

can as

Lrestoration =
1

N

1

T

∑

x∈X

∑

t∈T

‖x − hu(fw(t(x)))‖
2
2 , (6)

where ‖·‖2 denotes the ℓ2 norm. Our objective is to minimize

the restoration loss and can be formulated as

min
u,w

1

N

1

T

∑

x∈X

∑

t∈T

‖x − hu(fw(t(x)))‖
2
2 . (7)

As for the testing phase, we design a restoration error based

score to distinguish whether a test sample is an inlier or an

outlier. We notice that restoration errors vary a lot among

different transformations, so transformation-wise normaliza-

tion is necessary for score calculation. We choose ℓ1 loss to

measure the distance between the restored image and target

in this phase [47]. For each ti in the transformation set T ,

we first calculate the expectation ℓ1 based restoration error of

training data using the trained TIAE model. Then we use this

global error to normalize restoration corresponding to each

43994 VOLUME 9, 2021



Z. Cheng et al.: Unsupervised Outlier Detection via TIAE

transformation in the transformation set. Finally, we calculate

the expectation of restoration errors across all the transforma-

tions, which we use as the outlier score. Let one specific test

sample as x0, we formulate the outlier score S as

S(x0) =
1

T

T
∑

i=1

‖x0 − hu(fw(ti(x0)))‖1

Ex∼X ‖x − hu(fw(ti(x)))‖1
. (8)

D. INCORPORATING ADAPTIVE SELF-PACED LEARNING

Unsupervised outlier detection is harder than semi-supervised

learning because of the existence of outliers in training

data. All autoencoder based models suffer from the noise

introduced by outliers. With the training process going on,

the model can remember enough information for constructing

both inliers and outliers well, which leads to poor perfor-

mance for outlier detection. The TIAE model proposed in

Section III-C also has this problem.

To mitigate the negative effect of outliers, we incorporate

self-paced learning to select the most confident examples

(inliers most likely) gradually. By substituting (7) into (3),

we get the new objective

min
u,w,v

1

N

1

T

N
∑

i=1

T
∑

j=1

vi
∥

∥xi − hu(fw(tj(xi)))
∥

∥

2

2
− λvi

s.t. vi ∈ [0, 1] , (9)

where v = [v1, v2, . . . , vn]
⊤ are weights of training exam-

ples, and λ is the age parameter which controls the number of

selected examples.

Typical self-paced learning selects all examples into a

training set at the end of model training. However, outliers

in our problem are harmful to model performance. We shall

prevent the self-paced learning algorithms from selecting

outliers, even at the end of the training. Traditional self-paced

learning introduces two additional hyper-parameters: the age

parameter λ for controlling the learning pace and step size

δ for increasing λ during training. A typical way is to set λ

to the median of losses at the beginning, then to increase it

by a step size δ every several iterations. Different from the

typical method, we propose to set λ according to the statistics

of outlier scores during training

λ = µ(Sk ) +
k

K
σ (Sk ) , (10)

where Sk denotes all scores at the k-th iteration, K is the

number of maximal iterations, µ(·) and σ (·) are average and

standard deviation of scores. AsK is determined by the learn-

ingmodel, the λ now is adaptive to the losses of examples, not

an independent hyper-parameter any more.

IV. EXPERIMENTS

In this section, we extensively evaluate our approach and

compare it with other autoencoder based unsupervised out-

lier detection methods. We also conduct an ablation study

to explore the effect of each part of our TIAE frame-

work. Our experiment codes and results can be verified at

https://github.com/wogong/pt-tiae.

A. EXPERIMENT SETUP

1) UOD PERFORMANCE EVALUATION ON IMAGE

BENCHMARKS

We follow the standard procedure from the previous image

UOD literature [20], [32], [33], [48] to construct an image

set with outliers: Given a standard image benchmark, all

images from one class with the same semantic concept

(e.g., ‘‘airplane’’) are retrieved as inliers, while outliers

are randomly sampled from the rest of the classes by an

outlier ratio ρ. We shift ρ from 5% to 25% by a stage

of 5%. The assigned inlier/outlier labels are unknown to

UOD methods and only used for evaluation. We use each

class of a benchmark as inliers in turn and report the overall

UOD performance as the average performance on all classes.

Every experiment is repeated five times to report the average

results.

Raw pixels are directly used as inputs with their intensity

normalized into [❂1, 1]. As for evaluation, we adopt the

commonly-used Area under the Receiver Operating Charac-

teristic curve (AUROC) and Area under the Precision-Recall

curve (AUPR) as threshold-independent metrics [49]. We

evaluate the proposed approach on five public datasets, and

briefly introduce them as follows:

• MNIST [50] is a well-known digit recognition dataset,

consisting of 70,000 handwritten grayscale digit images

with each in size of 28 × 28.

• Fashion-MNIST [51] is a more challenging dataset

compared to MNIST, consisting of a training set

of 70,000 examples. Each example is a 28×28 grayscale

image, associated with a label from 10 classes.

• SVHN [52] is a real-world digit image dataset obtained

from house numbers in Google Street View images,

consisting of over 600,000 digit images. We use the

training set of 73,257 digits in this paper.

• CIFAR-10 [53] is a natural image dataset. The objects

in images come from objects in our daily life. It con-

sists of 60,000 color images in size of 32 × 32, with

6,000 images per class.

• CIFAR-100 [53] is like the CIFAR-10, except it has

100 classes containing 600 images each. There are

500 training images and 100 testing images per class.

The 100 classes in the CIFAR-100 are grouped into

20 superclasses. Each image comes with a ‘‘fine’’ label

(the class to which it belongs) and a ‘‘coarse’’ label (the

superclass to which it belongs).

For RGB datasets, such as SVHN, CIFAR-10, and CIFAR-

100, we use both graying and random rotation operations,

together with some widely used standard data augmenta-

tions (flipping/mirroring/shifting). For grayscale datasets like

MNIST and Fashion-MNIST, we only use rotation transfor-

mation without any data augmentation.

2) IMPLEMENTATION DETAILS

Similar to previous image restoration method [56] and other

autoencoder based outlier detection methods [47], [57], [58],
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TABLE 1. AUROC/AUPR-in/AUPR-out (%) for UOD methods. The best performance is in bold.

Our TIAE adopt the U-Net [59] like structures. We use

four blocks for the encoder and four blocks for the decoder.

Each block has a max-pooling or an upsampling operation,

following two 3 × 3 convolutional layers. We use upsam-

pling instead of deconvolution for efficiency. The ability

to recover image details for upsampling is limited, so we

add skip-connection operations to pass input details from

top layers to bottom layers, which improves the network’s

performance of image restoration.

Since we augment original data by T times, we train TIAE

for 800/T epochs with a batch size of 32. We use Stochastic

Gradient Descent (SGD) optimizer with default settings in

PyTorch for all datasets. We set the initial learning rate to

0.1 and drop the learning rate by half every 80/T epochs. We

delay the incorporating of self-paced learning by ten epochs

to get a better initial example weights.

As introduced in Section III-B, we choose color distortion

and rotation in the experiments:

• Color Distortion: average each pixel value along the

channel dimension of images.

• Rotation: rotate the original images by one of {0◦, 90◦,

180◦, 270◦ }.

3) COMPARED METHODS

We compare our approach with existing state-of-the-art

autoencoder based UOD methods: (1) Convolutional

AutoEncoder (CAE) [54], CAE serves as a baseline for

autoencoder based UODmethods. (2) Discriminative Recon-

struction based AutoEncoder (DRAE) [33]. (3) Robust Deep

AutoEncoder (RDAE) [32]. (4) DeepAutoencodingGaussian

Mixture Model (DAGMM) [23]. (5) Memory-augmented

deep AutoEncoder (MemAE) [24]. (6) Robust Subspace

Recovery based AutoEncoder (RSRAE) [55].

For MemAE, we use exactly the same autoencoder struc-

ture reported in the original paper. For CAE, DRAE, RDAE,

DAGMM, and RSRAE, we use the same CAE architecture
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FIGURE 2. UOD performance (AUROC) comparison with varying ρ from 5% to 25%.

FIGURE 3. Visualization analysis comparing with CAE on MNIST. ‘‘Ori’’, ‘‘I’’
and ‘‘O’’ represent original images, transformed inputs, and outputs,
respectively. Cases with outputs similar to ‘‘Ori’’ are considered inliers,
otherwise outliers. All visualization results are based on the number ‘‘6’’
as inliers.

from [34] with a 4-layer encoder and 4-layer decoder. We do

not use more complex CAE (e.g., CAE using skip con-

nection or more layers) since they usually lower outliers’

reconstruction error but do not contribute to CAE’s UOD

performance [20]. Our ablation study in Section IV-D also

verifies this.

B. UOD PERFORMANCE COMPARISON AND DISCUSSION

We report the numerical results on each benchmark under

ρ = 10% and 20% in Table 1, and UOD performance

by AUROC under ρ from 5% to 25% is shown in Fig. 2.

AUPR-in and AUPR-out in Table 1 denote the AUPR cal-

culated when inliers and outliers are used as positive classes,

respectively. To compare the performance for each individual

image class, we also report the AUROC results for each class

of the five benchmark datasets in Table 2. From these results,

we have the following observations:

• On four of all five involved datasets with varying ρ from

5% to 25%, experiment results present that the proposed

FIGURE 4. Visualization analysis comparing with CAE on CIFAR-10. ‘‘Ori’’,
‘‘I’’ and ‘‘O’’ represent original images, transformed inputs and outputs,
respectively. Cases with outputs similar to ‘‘Ori’’ are considered as inliers,
otherwise outliers. All visualization results are based on the class ‘‘horse’’
as inliers.

TIAE framework outperforms existing state-of-the-art

autoencoder based UOD methods. On MNIST,

TIAE achieves comparable performance with RSRAE

(<1% AUROC gap).

• As Table 2 shows, for each individual image class,

we also obtain competitive performances, showing

the effectiveness of TIAE for unsupervised outlier

detection.

• For complex datasets like SVHN, CIFAR-10, and

CIFAR-100, TIAE performances much better than com-

pared methods (∼10% AUROC gain). As introduced

in Section I, conventional autoencoder based methods

are not good at handling datasets with more complex

texture and structure information. Our proposed TIAE

can handle more complex datasets compared with other

autoencoder based methods and achieve a large perfor-

mance gain.
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TABLE 2. AUROC (%) for UOD methods when ρ = 0.1. The best performance is in bold.
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FIGURE 5. UOD performance (AUROC) in different training epochs. We plot the results of experiments on Fashion-MNIST and CIFAR10 with ρ = 10%.
With Fashion-MNIST, we show the results of the following classes as denoted in the caption: (a) ankle boot, (b) sandal, (c) trouser. With CIFAR10,
we show the results of the following classes as denoted in the caption: (d) automobile, (e) horse, (f) dog. The proposed TIAE with the self-paced learning
module achieves higher and more stable AUROC on all experiments compare with TIAE without the self-paced learning module. The results of other
experiments show the same pattern.

Themodel stability of unsupervised outlier detectionmeth-

ods is essential. Validation during the training phase is impos-

sible due to the lack of supervised labels. There is no way

to obtain the best checkpoint for an unsupervised outlier

detection model without validation. A stable model can

make sure the performance of the final model is acceptable.

The stability of model performance is mainly reflected in

three aspects [47]: 1) Whether the model can reach conver-

gence after acceptable training epochs in one training attempt.

2) Whether the model can reach a stable performance level in

multiple training attempts using the same training configu-

ration. 3) Whether the model can achieve good performance

stably in various datasets and training configurations.

To assess the stability of our proposed TIAE model,

we measure the UOD performance when the TIAE is being

trained. Fig. 5 shows the AUROC in different training epochs.

In general, the UOD performance is improved at the initial

stage of training and then stabilizes as the training epochs

continue to increase. Thus, through our TIAE, we can achieve

a highly reliable model through acceptable training epochs in

this task without validation.

C. VISUALIZATION ANALYSIS

In this part, we conduct visualization analysis on MNIST

and CIFAR-10 to demonstrate the effectiveness of TIAE

for outlier detection. Fig. 3 shows the inputs and restora-

tion/reconstruction outputs from both TIAE and CAE on

MNIST during the testing period. Fig. 4 shows the inputs and

restoration/reconstruction outputs from both TIAE and CAE

on CIFAR-10 during the testing period.

The first row ‘‘Inlier’’ represents the inlier class.

In both MNIST and CIFAR-10, we use the rest nine

classes as outlier classes, corresponding to the ‘‘Outlier’’

rows. The first column ‘‘Ori’’ represents original images.

‘‘OCAE ’’ column means the reconstruction output from CAE.

‘‘I1, I2, I3, I4’’ mean the transformed images input to TIAE.

‘‘O1,O2,O3,O4’’ mean the restoration outputs from TIAE

for corresponding transformed inputs. We force restoration

outputs similar to original images but not transformed inputs.

According to our score strategy, cases with outputs similar to

‘‘Ori’’ are considered as inliers, otherwise outliers.

The last row in Fig. 3 shows the restoration outputs of

the number ‘‘9’’. All the four outputs are far different from
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‘‘Ori’’ and thus detected as an outlier. However, all the out-

puts from CAE are similar to the original images, which

makes CAE less capable of distinguishing between inliers

and outliers. We can get similar results on CIFAR-10 from

Fig. 4. Besides, we can observe a more significant difference

between the restoration outputs and original images in out-

liers on CIFAR-10 due to the color distortion. By comparing

‘‘Ori’’ and ‘‘OCAE ’’, we find that reconstruction outputs of

CAE share more similar color patterns with original images,

which is bad for outlier detection.

Above all, we conclude that our TIAE is effective for unsu-

pervised outlier detection and work much better on complex

datasets like CIFAR-10 compared with conventional autoen-

coder based methods.

D. ABLATION STUDY

In this part, we perform an ablation study to analyze the

contributions of two parts of the proposed TIAE framework:

transformation invariant autoencoder and self-paced learn-

ing module. We conduct experiments on all five involved

datasets. Table 3 shows experiment results. TIAE (w/o sp)

denotes our proposed TIAE without the self-paced learn-

ing module, TIAE denotes our proposed TIAE with the

self-paced learning module, CAE (unet) denotes the CAE

method with the same backbone autoencoder with TIAE.

To evaluate the contribution of the backbone network of CAE,

we also copy CAE’s UOD performance from Table 1 to

Table 3.

TABLE 3. AUROC (%) for UOD methods when ρ = 10%. The best
performance is in bold. TIAE (w/o sp) denotes our proposed TIAE without
self-paced learning module, TIAE denotes our proposed TIAE with
self-paced learning module. CAE (unet) denotes method CAE with U-Net
like structure, the same as our TIAE.

When we use a more complex structure for the CAE

method, UOD performance decreases instead of improving.

A more complex structure of CAE contributes to lower

reconstruction error but causes a lower UOD performance.

By comparing the results of CAE (unet) and TIAE (w/o sp),

we can verify the effectiveness of the transformation invariant

autoencoder.

When we add the self-paced learning module, the perfor-

mance (AUROC) improves on all five datasets. To further

look into the mechanism of the self-paced learning module,

we plot the AUROC in different epochs of TIAE with and

without the self-paced learning module in Fig. 5. In the initial

training phase, both TIAE and TIAE (w/o sp) reach a high

AUROC value. With the training going on, the performance

of TIAE (w/o sp) is decreasing, while the performance of

TIAE is much more stable. This is because the autoencoder

can catch features of both inliers and outliers with the training

going on, making it challenging to distinguish inliers and

outliers based on restoration error. The self-paced learning

module can effectively filter out outliers during representa-

tion learning.

Based on the above analysis, The proposed TIAE with a

self-paced learning module achieve higher and more stable

AUROC on all experiments. Besides, our self-paced learning

module can be easily incorporated into other reconstruction-

based unsupervised outlier detection methods.

V. CONCLUSION

In this paper, we propose a framework named Transforma-

tion Invariant Autoencoder (TIAE) for unsupervised outlier

detection. By feeding transformed examples and trying to

restore the original examples, the TIAE framework learns

high-level semantic features instead of low-level features of

conventional autoencoder based methods. To mitigate the

negative effect of outliers during the representation learning

phase, we incorporate self-paced learning to select inlier

likely examples during training. We show that TIAE can

achieve a promising performance gain compared to other

autoencoder based unsupervised outlier detection methods.

For future research, it is meaningful to explore more trans-

formations, which are likely to increase performance further.

Which transformation group is more suitable for representa-

tion learning and the downstream task is also worth further

exploration. As an open framework, different network archi-

tectures, different transformations, and scoring strategies can

also be explored for TIAE. Though this paper focus on image

outlier detection, the TIAE can be easily applied to video

outlier detection.
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