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Abstract
Capsule networks aim to parse images into a hi-

erarchy of objects, parts and relations. While

promising, they remain limited by an inability to

learn effective low level part descriptions. To ad-

dress this issue we propose a way to learn primary

capsule encoders that detect atomic parts from a

single image. During training we exploit motion

as a powerful perceptual cue for part definition,

with an expressive decoder for part generation

within a layered image model with occlusion. Ex-

periments demonstrate robust part discovery in

the presence of multiple objects, cluttered back-

grounds, and occlusion. The part decoder infers

the underlying shape masks, effectively filling

in occluded regions of the detected shapes. We

evaluate FlowCapsules on unsupervised part seg-

mentation and unsupervised image classification.

1. Introduction

Humans learn to perceive shapes in terms of parts and their

spatial relationships (Singh & Hoffman, 2001). Studies

show that infants form early object perception by divid-

ing visual inputs into units that move rigidly and sepa-

rately (Spelke, 1990), and they do so in a largely unsu-

pervised way. Inspired by this and recent work on part

discovery, we propose a self-supervised way to learn visual

part descriptors for Capsule networks (Hinton et al., 2011).

Capsule networks represent objects in terms of primary part

descriptors, in a local canonical frame, and coordinate trans-

formations between parts and the whole. As a result of their

architecture, they are robust to various challenges, including

viewpoint changes and adversarial attacks. Stacked cap-

sule network architectures (SCAE) (Kosiorek et al., 2019)

have shown promising results on a number of simple image

datasets. Nevertheless, because they are trained with an im-

age reconstruction loss, foreground-background separation

and part discovery in cluttered images remain challenging.
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Figure 1: Self-supervised training for learning primary

capsules: An image encoder is trained to decompose the

scene into a collection of primary capsules. Learning is

accomplished in an unsupervised manner, using flow esti-

mation from capsule shapes and poses as a proxy task.

This paper introduces a way to learn encoders for object

parts (aka., primary capsules) to address these challenges.

The encoder takes as input a single image (see Fig. 1),

but for training part discovery, it uses motion-based self-

supervision (Bear et al., 2020; Mahendran et al., 2018). Like

the classical literature on perceptual organization and com-

mon fate in Gestalt psychology (Spelke, 1990; Wagemans

et al., 2012), we exploit the fact that regions of the image

that move together often belong together. This is a strong

perceptual cue that facilitates foreground-background seg-

mentation and part discovery, and allows one to disentangle

texture and other aspects of appearance from shape.

The proposed part encoder captures the underlying part

shapes, their relative poses, and their relative depth ordering

(see Fig. 2). The introduction of depth ordering is partic-

ularly useful in order to account for occlusion, as it is in

layered motion models (Wang & Adelson, 1994). In this

way, learning aggregates information about shape over many

images, even though a given part may rarely be visible in its

entirety in any single frame. In essence, the model prefers

simple part-based descriptions, where many variations in

appearance can be explained by a coordinate transform or

by occlusion, rather than by changes in shape per se.

We demonstrate the FlowCapsules approach on several

datasets showcasing challenges due to texture, occlusions,

scale, and instance variation. We compare FlowCapsules

to recent related work including PSD (Xu et al., 2019) and

R-NEM (Van Steenkiste et al., 2018), where part masks and

dynamics are learnt using motion. FlowCapsules provide
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unsupervised shape segmentation, even in the face of tex-

ture and backgrounds, outperforming PSD (Xu et al., 2019).

FlowCapsules also provide a depth ordering to account for

occlusion, with the added benefit that part inference yields

shape completion when parts are partially occluded.

We also report unsupervised classification of images using

FlowCapsules part embeddings. We compare our results on

several datasets with different challenges against SCAE (Ko-

siorek et al., 2019). Experiments show that FlowCapsules

consistently outperform SCAE in unsupervised object clas-

sification, especially on images with textured backgrounds.

2. Related Work

Given the vast literature of part-based visual representations,

we focus here only on the most closely related recent work.

Transforming autoencoders (Hinton et al., 2011) introduced

capsule networks. Sabour et al. (2017) revisited the cap-

sule concept and introduced capsule hierarchies for object

classification, and subsequent work has produced improved

routing algorithms (Hinton et al., 2018; Hahn et al., 2019;

Ahmed & Torresani, 2019). Nevertheless, learning primary

capsules from images has remained largely untouched. An

analogy to text understanding would be a language with a

well defined grammar and parser, but no good definition

or representation of words. We introduce a technique for

learning primary capsules to address this shortcoming.

Unsupervised capsule learning with an image reconstruction

loss for part discovery has been explored by (Kosiorek et al.,

2019) and (Rawlinson et al., 2018). Several works learn

capsule autoencoders for 3D objects from point clouds (Sri-

vastava et al., 2019; Zhao et al., 2019; Sun et al., 2020). But

with the exception of capsule models trained with class la-

bels (Hinton et al., 2018) or segmentation masks (LaLonde

& Bagci, 2018; Duarte et al., 2018), previous methods strug-

gle with natural images. Object-background discrimination

with cluttered, textured scenes is challenging for an image

reconstruction loss. With self-supervised training and vi-

sual motion, FlowCapsules achieve part discovery without

ground truth labels or segmentation masks.

Recent approaches to object-centric learning, e.g., MONet

(Burgess et al., 2019), IODINE (Greff et al., 2019), and

Slot-attention (Locatello et al., 2020), focus on learning

object representations via image reconstruction. Beyond the

need to reconstruct image backgrounds, they require itera-

tive refinement for symmetry breaking and forcing scenes

into slots. In contrast, FlowCapsule learning relies on recon-

struction of the flow rather than the image, and with motion

as the primary cue, scenes are decomposed into parts with-

out needing iterative refinement. Most recently, (Bear et al.,

2020; Veerapaneni et al., 2020) extend such networks to

incorporate motion, but still rely on iterative refinement.

FlowCapsule encodings further disentangle shape and pose,

enabling shape completion during partial occlusion.

FlowCapsules currently represent 2D objects, reminiscent

of layered models but with a feedforward encoder. Classi-

cal layered models (Wang & Adelson, 1994; Jojic & Frey,

2001) used mixture models and assigned pixels to layers

independently, often failing to capture the coherence or com-

pactness of object occupancy. Some methods use MRFs to

encourage spatial coherence (Weiss, 1997). Others enforce

coherence via local parametric masks (Jepson et al., 2002).

Visual motion is well-known to be a strong cue for self-

supervised learning. For example, (Vijayanarasimhan et al.,

2017) learn to infer depth, segmentation, and relative 3D mo-

tion from consecutive frames using self-supervised learning

with photometric constraints. These and related methods

use optical flow or multiple frames as an input. FlowCap-

sules use video frame pairs during training, but the part en-

coder (see Fig. 2), takes as input a single frame. In essence,

it learns to decompose images into movable objects.

S3CNNs (Mahendran et al., 2018) take a similar approach,

but do not learn per-part shape encoders or coordinate

frames. Rather, they learn to group pixels using patch-wise

affine flow, rather than expressing flow in terms of coherent

parts and their coordinate frames. A closely related method

is PSD (Xu et al., 2019), which uses optical flow to learn

hierarchical part-based models of shape and dynamics in

a layered image model. It trains a VAE flow encoder and

an image encoder to predict the next frame. Both PSD

and S3CNNs require ground truth flow during training and

lack an explicit canonical part descriptor like FlowCapsules.

There also exist related methods applied to point could data;

e.g., SE3Net (Byravan & Fox, 2017) uses a part-based repre-

sentation, taking a point cloud and an action vector as input

and predicts the point cloud in the next frame.

KeypointNet (Suwajanakorn et al., 2019) addresses the prob-

lem of keypoint discovery. One might view Flow-Capsules

as a generalization from a sparse to a dense setting, and

from a single object to multiple objects,

Our work is also related to generative shape models. Huang

& Murphy (2016) learn parts in a layered model with depth

order and occlusion. Given an image, variational inference

is used to infer shape and foreground/background separation.

FlowCapsule encoders, by comparison, are trained as auto-

encoders and are therefore easier to learn. Several recent

papers learn generative models that disentangle shape and

deformation (Skafte & Hauberg, 2019; Deng et al., 2021).

FlowCapsules disentangle shape and transformations from

canonical to image coordinates. In doing so they decompose

shapes into multiple near-rigid parts with occlusions. Flow-

Capsules thereby disentangle shape at a finer granularity.

Also, Skafte & Hauberg (2019) and Deng et al. (2021) use
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Figure 2: Inference architecture. (left) The encoder Eω parses an image into part capsules, each comprising a shape vector

sk, a pose θk, and a scalar depth value dk. (right) The shape decoder Dω is an implicit function. It takes as input a shape

vector, sk, and a location in canonical coordinates and returns the probability that the location is inside the shape. Shapes

are mapped to image coordinates, using θk, and layered according to the relative depths dk, yielding visibility masks.

Figure 3: Encoder architecture. The encoder comprises

convolution layers with ReLU activation, followed by down-

sampling via 2×2 AveragePooling. Following the last con-

volution layer is a tanh fully connected layer, and a fully

connected layer grouped into K, C-dimensional capsules.

an image reconstruction loss, much like SCAE, while Flow-

Capsules only encode shape silhouettes, which simplifies

training and the disentangled representation.

3. Model

Our goal is to learn an encoder that parses images of familiar

shapes into parts. To facilitate training, and downstream

tasks, we also learn a decoder capable of generating segment

masks for the parts in the image. Below we describe the

form of the proposed capsule encoder and the mask decoder.

We then describe the objective and training procedure.

Image encoder. The capsule encoder Eω , with parameters

ω, encodes a given image as a collection of K primary cap-

sules. The architecture we propose is depicted in Figure 3.

Each capsule, ck, comprises a vector sk that encodes the

shape of the part, a pose vector θk, and a depth scalar dk:

Eω(I) = {c0, . . . , ck}, ck = (sk,θk, dk) . (1)

Capsule shapes are encoded in a canonical coordinate frame.

The scalar dk specifies relative inverse depth (larger for

foreground objects). The pose vector specifies a mapping

from part-centric coordinates v to image coordinates u (or

scene coordinates more generally), i.e., u = Pθk
v.

As we focus on planar layered models with depth d, we

define Pθk
to be a conformal map. Accordingly, let θk∈R

4,

where [θk]0,1 represents the translation, [θk]2 is the rotation

angle, and [θk]3 is the change in scale. More concretely

(subscript k is dropped for readability):

Pθ =





θ3 cos(θ2) −θ3 sin(θ2) θ0

θ3 sin(θ2) θ3 cos(θ2) θ1

0 0 1



 (2)

Taken together, ck∈R
C , where θk∈R

4, dk∈R, and there-

fore sk∈R
C−5.

Mask decoder. A mask decoder facilitates self-supervised

learning of the encoder, as well as downstream segmen-

tation tasks. It allows one to visualize parts and connect

them to image observations. As depicted in Figure 2, the

mask decoder Dω generates an object silhouette (or mask)

in canonical coordinates, which is then mapped to image

coordinates, incorporating occlusion and visibility.

Our current decoder architecture is depicted in Figure 5.

The mask decoder, given the latent code sk, represents the

part shape in a canonical coordinate frame, Dω(v; sk). This

is then mapped into image coordinates according to the pose

vector θk, yielding the shape mask Λk in the image frame:

Λk(u) = Dω(P
−1
θk

u ; sk) , (3)

where the map Pθk
has parameters θk. We also note that

Λk is a function of spatial position and a latent code (Chen

& Zhang, 2019; Mescheder et al., 2019), but unlike previous

work, our encoder disentangles individual part shapes and

their poses with respect to canonical coordinates.

Occlusion: With opaque objects, parts will not always be

visible in their entirety. To account for occlusion, part masks

are layered according to their depth order, thereby determin-

ing the visible portion of each part in a given image. To

ensure differentiable image formation, enabling gradient-

based learning, we treat the scalar dk as a logit, and apply

a softmax across the logits (depths) of all parts at every

pixel to generate the visibility masks (Gadelha et al., 2019);

see Fig. 2. The visible portion of the k-th part is given by

Λ+
k (u) =

edkΛk(u)

∑

k′ edk′Λk′ (u)
(4)
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Figure 4: Self-supervised training – Training uses a proxy motion task in which the capsule encoder is applied to a pair

of successive video frames, providing K primary capsule encodings from each frame. Visible part masks, Λ+
k , and their

corresponding poses, Pθ , determine a flow field Φ that is used to warp image I to predict I′ in the loss Lrender in (7).

Figure 5: Decoder architecture. A neural implicit function

(Chen & Zhang, 2019) is used to represent part masks. An

MLP with SELU activations (Klambauer et al., 2017) takes

as input a shape vector s and a pixel position u. Applied to

a pixel grid, it produces a logit grid for the mask.

As the gap between the largest dk and other values grows,

the softmax approaches the argmax, ideal for opaque layers.

A typical auto-encoder might reconstruct the image in terms

of these masks, to formulate an image reconstruction loss.

The problem with such an approach is that the encoder

would also need to encode other properties of the images,

such as texture, lighting and the background, with pixel level

accuracy. To avoid this problem, here we aim only to learn

an encoder for the part shapes, positions and depth layering.

To this end we consider a form of self-supervised learning

that relies on primarily on motion (optical flow) between

consecutive frames in video. The use of flow provides a

strong image cue for the segmentation of parts, without

the need to model texture, lighting and other fine-grained

properties tied to appearance.

4. Self-Supervised Learning

Training the capsule encoder exploits motion as a visual cue

for separating objects and their parts from the immediate

background. To that end, we assume that the training data

comprises pairs of adjacent video frames. Given an image

pair, the encoder provides an ordered set of capsules for each

of the two images. The poses from corresponding capsules

and their visibility masks then determine a deformation that

is used to warp one frame to predict the other. This allows

use of brightness constancy and other common objectives

in optical flow estimation as a self-supervised training loss.

In more detail, let the two images of a training pair be de-

noted I and I
′. As shown in Figure 4, the capsule encoder ex-

tracts an ordered set of capsules from each image. The part

capsules are denoted ck=(sk,θk, dk) and c
′

k=(s′k,θ
′

k, d
′

k),
for k ∈ {1, ...,K}. From corresponding part capsules we

then compute the predicted flow Φ from the capsule poses,

yielding a mapping Tk from one image to the next,

Tk = Pθ′

k
◦ (Pθk

)−1 . (5)

This transform maps image locations in I to the canonical

coordinate frame of part k, and then into the next frame I
′.

When combined with the layered visibility masks, this pro-

vides the flow field:

Φ(u | Eω(I), Eω(I
′)) =

K∑

k=1

Λ+
k (u)

︸ ︷︷ ︸

visibility

[Tk(u)− u]
︸ ︷︷ ︸

flow of k-th capsule

(6)

where u ∈ [−1, 1]2 denotes 2D normalized image coordi-

nates. Note that the use of [Tk(u)− u] in (6) ensures that

the generation of an identity flow is the easiest prediction

for the network Tk(u) to make (like a residual connection).

Given the estimated flow between a given training pair, we

warp the pixels of I according to Φ, providing a prediction

for I′. Then we optimize an L2 brightness constancy loss on

the residual errors between our warped version of the first

frame and the second frame,

Lrender = E
u∼[0,1]2 ‖ I(u+Φ(u))− I

′(u) ‖22 , (7)

where we abbreviated Φ(u | Eω(I), Eω(I
′)) by Φ(u) for no-

tational simplicity.

We also exploit two simple but effective regularizers on flow

and the canonical shape representation. They are useful as

we do not make use of ground truth segmentation masks or

flow fields during training. The first regularizer, Lsmooth, is a

smoothness term often used in optical flow estimation (Jason

et al., 2016) to enhance gradient propagation through larger

movements and regions with negligible image gradients:

Lsmooth =

∥
∥
∥
∥

∂Φ

∂ux

,
∂Φ

∂uy

∥
∥
∥
∥

2

2

. (8)
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The second regularizer encourages part shapes to be cen-

tered at the origin in the canonical coordinate frame; i.e.,

Lcenter =
1
K

K∑

k=1

∑

v
‖vΛk(v)‖

2
2

∑

v
′ Λk(v′)

(9)

Keeping parts centered at (0, 0) improves the inference of

rotations. For example, a part located far from the origin

can easily be projected outside the image during training.

Keeping it near the center tends to produce a smoother loss

function. The final loss is a weighted sum of the render loss

and the two regularizers.

5. Experiments

We evaluate FlowCapsules on images with different dynam-

ics, shapes, backgrounds and textures.

Geo. For this synthetic dataset, we use the same code

and setup as (Xu et al., 2019), generating 100k images for

training, 1k for validation, and 10k for testing. Images have

different background colors, with geometrical shapes (circle,

triangle, square) of various colors, scales and positions.

Objects in Geo undergo translation from frame to frame.

Geo+. This variant of Geo incorporates natural image

backgrounds (random images from ImageNet (Deng et al.,

2009)), and textured foreground shapes. Textures are ran-

dom samples from the Brodatz dataset (Picard et al., 1993).

Exercise. This dataset contains natural images of trainers

demonstrating exercises, with articulated and out of plane

motion (used by Xu et al. (2019)). It has 49356 pairs of

images for training, extracted from 20 exercise demo videos.

The test set has 30 images, for which Xu et al. (2019) pro-

vided ground truth segmentation masks.

Experimental setup. Models are trained using the Adam

optimizer (Kingma & Ba, 2014) with a fixed learning rate

of 1e−4 for 150 epochs. We use C=32 and K=8 for Geo

models and C=16 and K=16 for Exercise model. Reg-

ularization constants for Lcenter and Lsmooth are 1e−2 and

1e−4. To calculate the intersection-over-union (IoU) perfor-

mance measure on visibility masks, we normalize and then

threshold the masks at 0.5 to get a binary mask.

5.1. Estimated Part Motion (Figure 6 and Figure 7)

To verify that the model estimates flow effectively in an

unsupervised manner we first inspect the quality of the flow

inferred by FlowCapsules after training on each dataset.

Figure 6 shows estimated flow Φ alongside the ground truth

Φgt for training image pairs from Geo and Geo+. The flow

is accurate for both datasets. Comparing the warped version

of the first frame I (last column) with the other frame I ′

(second column), one can appreciate some of the challenges

in unsupervised flow estimation. Because our prediction

Figure 6: Estimated flows and predicted next frames on

training data from Geo (first row) and Geo+ (rows 2– 4).

of I′ using Φ does not account for unoccluded pixels, Lrender

is not expected to reach 0. We note that while the model

uses conformal transformations from frame to frame, these

datasets only have translation; for these data our model

correctly estimates zero rotation and unit scale.

Figure 7 shows examples of model flow estimates for the

Exercise dataset. The true flow here reflects the articulated

motion of the people, and it is notable that the parts here

are much smaller than those in Geo/Geo+. Although the

estimated flows are somewhat blurred, they still capture

the movements of the different parts reasonably well, even

though the model is limited to conformal deformations from

one frame to the next.

5.2. Unsupervised Part Segmentation

One effective way to evaluate FlowCapsules is to see how

well it learns to decompose a single image into its movable

parts. We view this as an unsupervised part segmentation

task and we note that, while trained on image pairs, in-

ference is performed on a single test image, yielding part

shapes and a coordinate transform for each part. Conversely,

methods relying on optical flow only generate masks for

parts in motion, as these models effectively build masks by

segmenting the flow (Xu et al., 2019).

Qualitative analysis on Geo (Figure 8). Masks shown

in Fig. 8 demonstrate that FlowCapsules learn to detect

meaningful part shapes (e.g., a triangle or circle). Indeed,

the model tends to explain a given image in terms of a

small number of generic shapes and occlusion of overlap-

ping parts, effectively performing part completion (Singh

& Hoffman, 2001). This is particularly interesting because

the model does not include an explicit regularizer that en-
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Figure 7: Estimated flows and predicted frames on randomly

selected images from the Exercise validation set. Ap-

proximating articulated motion with conformal maps yields

reasonable flow fields. The goal is not the best possible

flow estimation, but rather, as long as different parts have

different flow estimates, our encoder is be able to learn the

correct part decomposition.

courages the model to learn a specific number of shapes, or

sparsity in the space of shapes. One might not expect the

model to learn to represent the entire shapes (e.g. an entire

circle). For example, one might have expected the model to

have learned a large number of different shapes from which

the observed shapes are constructed, especially with occlu-

sion where the entire shape is often not observed in a single

image. Nevertheless, the model opts to explain the images

with relatively few parts, and hence the capsule masks tend

to cover all the pixels of a shape in the Geo dataset. This can

be attributed to the architecture we use for mask decoders,

and the inductive bias of MLPs in generating low-frequency

functions (Tancik et al., 2020; Atzmon & Lipman, 2020;

Basri et al., 2020; Rahaman et al., 2019).

Geo is synthetic, so correct masks for the full shapes are

known. Since FlowCapsules provide both the part shapes,

via Λk, and the associated visibility masks Λ+
k taking oc-

Figure 8: Inferred FlowCapsule shapes and corresponding

visibility masks on Geo (rows 1–3), and Geo+ (rows 4–6).

The third row for each dataset shows an instance with only

two objects present, so one mask is empty. The last row

shows an interesting case in which the triangle is detected

by the encoder even though it shares the color of the back-

ground, reminiscent of subjective contours (Kanizsa, 1976).

clusion into account, we can compare Λk to the full ground

truth shapes. One can then quantify performance using the

usual intersection over union (IoU) measure. FlowCapsules

achieves segments with an IoU of 0.96 on all the shapes,

circle, square, and triangle (see Table 1). This result indi-

cates how well the model encodes the full shape, effectively

filling in occluded portions of shapes in test images.

Qualitative analysis on Exercise (Figure 11). On the

Exercise dataset, FlowCapsules learn to segment the body

into roughly rigid parts. Fig. 11 illustrates the segmentation

masks of some of the part capsules. The masks for indi-

vidual capsules consistently capture the pixels associated

with meaningful body parts, such as the head or right leg,

regardless of the input image. As such, capsule identities

are tied to semantic parts rather than spatial position. We

also note that the capsules tend to delimit parts at joints, and

separate the hips (lower torso) from the legs and from the

upper torso, even though we do not use a kinematic prior.

SCAE (Figure 10). The most relevant prior work to Flow-

Capsules vis-a-vis part discovery is SCAE (Kosiorek et al.,

2019). Figure 10 shows part templates and image recon-
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Figure 9: The ground truth segment masks along with sample FlowCapsule masks Λ+
k on Exercise test data.

R-NEM PSD Flow Capsules

Geo

Circle 0.54 0.93 0.94

Square 0.56 0.82 0.98

Triangle 0.58 0.90 0.98

All 0.56 0.88 0.95

Exercise

Torso 0.32 0.57 0.62

Left Leg 0.29 0.37 0.59

Right Leg 0.23 0.34 0.54

All 0.28 0.43 0.58

Table 1: Quantitative / Segmentation – IoU of inferred

segment masks w.r.t ground truth on Geo and Exercise data.

structions generated by SCAE. Even in simple cases without

backgrounds or texture, SCAE fails to segment images into

meaningful parts, unlike FlowCapsules, Fig. 8. This failure

becomes markedly worse for Geo+ when object textures

and background are added. FlowCapsules are able to detect

and focus on foreground objects with coherent part masks.

But SCAE has to reconstruct the background, so the part

shapes become blobs.

PSD and R-NEM (Table 1). We compare the IoU of

our masks against PSD and R-NEM (Van Steenkiste et al.,

2018). Although PSD additionally receives the ground truth

flow during training, FlowCapsules consistently outperforms

with equal or better IoUs during testing, on both the Geo

and Exercise datasets (see Tab. 1). One difference between

PSD and FlowCapsules stems from the way they generate

shape masks. PSD generates segmentation masks directly

using convolutional layers with no encoding of the shape per

se. In contrast, FlowCapsules uses a low-dimensional shape

code to explicitly model the shape, from which the decoder

generates the mask. As such the FlowCapsules encoder

disentangles meaningful shape and pose information.

Figure 10: (left) SCAE reconstructions after training on

Geo and Geo+. (right) The learned part templates. SCAE

approximately reconstructs the image but the part templates

are not coherent parts. Comparing Geo+ and Geo, the

learned parts loose all shape information to enable recon-

structing the color, texture and background in the images.

On Geo+, FlowCapsule IoU performance degrades approx-

imately 10% to 0.85 (circle), 0.93 (square), 0.90 (triangle)

and overall to 0.89. But compared to results in Table 1, they

remains as good or better than PSD on the simpler Geo data;

we were not able to train PSD effectively on Geo+.

5.3. Unsupervised Classification (Table 2)

To evaluate FlowCapsules in the broader context of capsule

classification, we replace the primary capsule autoencoder

(bottom of the stack) in SCAE (Kosiorek et al., 2019) with

FlowCapsules. We call the new model FlowSCAE. We then

train the top SCAE object capsules to reconstruct the pose

of FlowCapsules, following the original SCAE paper. We
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Geo Geo+

N=4 N=100 N=4 N=100

SCAE 0.48 0.59 0.49 0.51

FlowCapsule 0.79 0.99 0.52 0.74

Table 2: Quantitative / Classification: K-means clus-

tering accuracy with 4 or 100 clusters for Geo and Geo+.

FlowCapsule part representations yields higher classifica-

tion accuracy than those learned from SCAE.

compare the results against SCAE trained on reconstructing

images from Geo and Geo+. SCAE training was modified

slightly to produce coloured templates for the GEO dataset,

and to produce textured templates in the primary capsules

for Geo+ (see supplementary material for details).

Table 2 reports unsupervised classification results using k-

means clustering with N clusters, for which the predicted

label is set to the most common label in a given cluster. We

report the accuracy with N=4 and N=100 clusters. Note

that even though we trained the K-means of FlowSCAE

with N=100 on the Geo data, the learnt representations

contained only 28 clusters.

5.4. Ablation Studies

To better understand and analyze the significance of our de-

sign elements we perform ablations on various parameters.

Number of capsules (K). Results in Tab. 3 show that

increasing the number of capsules tends to improve IoU per-

formance. Given that our model does not have an explicit

sparsity regularizer on the capsules, this result is intriguing.

Even with large numbers of capsules available, FlowCap-

sules does not break shapes into smaller pieces. Rather, it

learns one capsule per shape, relying more heavily on the

layer occlusion to explain observed shape variation.

Encoding length |sk|. The models are quite robust with

Geo and Geo+ data. As the encoding dimension decreases

from 27 to 11, IofU performance changes by only 2%.

Degradation occurs mainly with the circle class, where the

circle boundary appears locally linear in places. The degra-

dation becomes worse with |sk| = 3, although even then,

FlowCapsules still outperforms PSD.

Number of hidden layers in Dω . One can hypothesize

that deeper decoders can offset issues due to shorter shape

encodings. Table 3 shows that increasing decoder depth

from 2 to 6 improves IoU scores. With Geo, the deeper

decoder produces smoother circles.

Occlusion inductive bias. Finally, we consider the effect

of depth ordering in Eq. (4) for occlusion handling. Without

depth ordering, Tab. 3 shows a significant drop in perfor-

mance. In this case the masks become smoother and less

K |sk| Geo Geo+

4 11 0.94 0.77

8 11 0.93 0.83

16 11 0.94 0.88

8 3 0.91 0.86

8 27 0.96 0.89

Depth Decoder Geo

No 6-Layer 0.54

Yes 2-Layer 0.87

Yes 6-Layer 0.96

Table 3: IoU on Geo and Geo+ for different number of

capsules, encoding lengths, decoder depths, and depth or-

dering.

certain in local regions, and the flow fields appear to be the

result of mixing a larger number of capsules, which tend to

fit the observations less well in most cases.

6. Conclusion

We introduce FlowCapsules, an unsupervised method for

learning capsule part representations (i.e., primary capsules).

The capsule encoder takes as input a single frame and esti-

mates a set of primary capsules, each comprising a shape

mask in canonical coordinates, a pose transformation from

canonical to image coordinates, and a scalar representing

relative depth. Training is done in a self-supervised manner

from consecutive video frames. We use a Siamese archi-

tecture to estimate a parametric optical flow field between

two frames, for which the flow is parameterized in terms of

the poses of corresponding part capsules in the two frames.

Given a single frame, our capsule encoder learns to detect

and encode the movable parts in an image. This approach

differs significantly from other approaches that essentially

segment the flow field itself into moving parts (vs. movable

parts in FlowCapsules).

Empirical results show that motion self-supervision in Flow-

Capsules is effective on real and synthetic data, learning

meaningful representations, completing shapes when par-

tially occluded. While formulated and tested within a spe-

cific capsule framework, our approach to self-supervised

parts discovery is applicable to myriad encoder architec-

tures, and to other approaches that currently use an image-

reconstruction loss or rely on optical flow as input. Com-

bining motion-based self-supervision with attention-based

encoders (Locatello et al., 2020) would enhance composi-

tionality, allowing scenes with different numbers of objects.

Future work will also include scaling to larger video datasets

and 3D parts. To that end it will be important to extend the

approach to include camera motion, and to handle large mo-

tions of small objects for which more sophisticated losses

for self-supervised learning will be necessary. Alternatively,

the FlowCapsules framework should be directly applicable

to 3D observations, like point cloud data (Zhao et al., 2019).
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7. Supplemantary Material

7.1. SCAE Training Details

While comparing FlowCapsules against SCAE, we updated

SCAE training at various spots to make it more suitable for

Geo and Geo+ datasets. Here we detail these changes. First,

We resized input images to 48×48 for memory reasons. Sec-

ond, we added the option of inferring the background color

as well as background image using a two level MLP. Simi-

larly, we added the option of adding color or texture to each

template. To enable colorization and texturization based

on input image, the primary capsule features are passed to

the template decoder. The color/texture is generated by a

2 layer MLP (32 dimensional hidden representation). The

original fixed templates are used as masks and multiplied to

the output of the color/texture MLP.

For generating a background template, we use the second

to last hidden representation of the primary encoder as the

image embedding. We pass the image embedding through a

2 layer MLP (32 dimensional hidden representation). We

mix this background template with a presence probability

of 0.5.

All the other parameters, including training schedule is kept

the same as the original SCAE.

7.2. Exercise masks

Figure 11: The ground truth segment masks along with

sample FlowCapsule masks Λ+
k on Exercise test data.


