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ABSTRACT
Bedside clinicians routinely identify temporal patterns in
physiologic data in the process of choosing and administer-
ing treatments intended to alter the course of critical illness
for individual patients. Our primary interest is the study of
unsupervised learning techniques for automatically uncover-
ing such patterns from the physiologic time series data con-
tained in electronic health care records. This data is sparse,
high-dimensional and often both uncertain and incomplete.
In this paper, we develop and study a probabilistic clustering
model designed to mitigate the effects of temporal sparsity
inherent in electronic health care records data. We evaluate
the model qualitatively by visualizing the learned cluster pa-
rameters and quantitatively in terms of its ability to predict
mortality outcomes associated with patient episodes. Our
results indicate that the model can discover distinct, recog-
nizable physiologic patterns with prognostic significance.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Statistical

General Terms
Algorithms, Experimentation

Keywords
Probabilistic Models, Clustering, Time Series, Electronic
Health Records, Critical Care, Pediatrics

1. INTRODUCTION
Providing critical care requires highly time-sensitive de-

cision making. Patients in the intensive care unit (ICU)
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produce a stream of data from a variety of physiologic mon-
itors, laboratory tests and subjective assessments. Small
changes in the data over time can precede large catastrophic
events. Recognizing potentially modifiable patterns in phys-
iology can lead to better treatment and more efficient care,
and potentially prevent death and disability. Intensive care
physicians are charged with integrating and interpreting this
stream of data in the context of their training and years of
experience. This process may be understood as recognizing
similarities between new patients and representative previ-
ous cases. A long standing goal in the area of medical in-
formatics is the development of decision support tools that
can automate aspects of this process, but efforts have largely
focused on rules-based expert systems, which are ill-suited
to the pattern recognition nature of the task.

More modern approaches based on techniques from com-
putational statistics and machine learning hold great promise
but require the availability of large amounts of clinical data
for estimating models [25]. There are currently a variety of
efforts underway to make massive stores of high dimensional,
granular clinical data easier to collect, manage and share in
clinical and research settings [19, 2, 6]. Until recently, such
repositories were highly uncommon, since building them re-
quired either prospective collection or labor-intensive review
of paper charts. With the adoption of electronic health
care records (EHRs), much of this data is already captured
and available digitally, increasing the feasibility of develop-
ing rich data repositories. Nevertheless, the cost and risk
of building, maintaining, and sharing these repositories are
high enough that many institutions are reluctant to invest
in them. If researchers can demonstrate the potential of
analyzing such large stores of clinical data, regulators and
institutions may be motivated to adopt policies that encour-
age the development and sharing of such repositories.

However, analyzing real clinical data presents challenges
that go far beyond data acquisition and management. First,
all data must be treated as fundamentally uncertain. Many
observations are recorded manually, introducing the pos-
sibility of various kinds of human error. Even physiologi-
cal measurements that can be captured automatically from
monitoring equipment are subject to uncertainty introduced
by sensor noise, malfunctions and other unexpected events.



Second, data are recorded at a wide variety of sampling fre-
quencies, ranging from high frequency heart rate waveforms
to the results of invasive lab tests ordered by clinical staff.

In this paper, we analyze moderate-frequency EHR data
collected over a ten year period in the pediatric intensive
care unit (PICU) at Children’s Hospital Los Angeles. This
data is sparse, high-dimensional and uncertain, necessitating
the use of specialized algorithms derived from probabilistic
models. We describe a probabilistic clustering model that
includes an empirical prior distribution on the model param-
eters designed specifically to mitigate the sparsity inherent
in physiological data extracted from real EHRs. Using ex-
ploratory analysis and visualization, we show that the clus-
ters are associated with recognizable physiologic and diag-
nostic patterns. Finally, we demonstrate that the clusters
have prognostic significance by constructing cluster-based
mortality prediction models that achieve superior perfor-
mance compared to treating all patient episodes as a single
group.

2. RELATED WORK
There is a tremendous body of work in pediatric criti-

cal care focused on using physiologic measurements, such as
heart rate and blood pressure, to characterize critical illness
severity. Much of this work has focused on the construction,
validation and application of severity of illness (SOI) scores,
such as the Paediatric Index of Mortality 2 (PIM) [22], the
Paediatric Logistic Organ Dysfunction (PELOD) score [10]
[9] and the Pediatric Risk of Mortality III (PRISM III) [17]
score. Their development preceded the common use of dig-
ital data in ICUs and was largely driven by two priorities:
early detection of severe illness (within hours of admission to
a unit) and economy of data required for calculation. These
scores are routinely used to stratify patient risk to bench-
mark PICU performance. They are not designed, however,
for making predictions about or informing the care of indi-
vidual patients [14]. Moreover, they do not take advantage
of the abundant, granular data found in EHRs. From a ma-
chine learning perspective, these scores can be viewed as an
application of supervised classification using features care-
fully chosen by experts. They largely ignore the temporal
nature of the data and are sensitive to missing values.

More recent work attempts to take advantage of the rich
data captured by medical devices and EHRs, particularly
high frequency time series recorded from bedside monitors.
Lehman, et al., combine manually designed features meant
to capture temporal information (e.g., gradients and trends)
with a Gaussian mixture model for clustering episodes from
the MIMIC-II database [8], showing great success in “search
by example” and classification tasks. The main drawback of
this work is the reliance on manually defined features.

Other recent work has focused on the problem of unsu-
pervised discovery of meaningful patterns and features from
raw data. One example is Lin and Li, who convert continu-
ous values to discrete symbols and then build“bag-of-words”
representations of each physiologic time series, similar to the
way documents are modeled in information retrieval tasks
[11]. They demonstrate that this representation outperforms
other published results in classification and clustering tasks
performed on data sets from Physionet. While this approach
captures certain higher-level structure of physiological time
series, it discards important information related to temporal
order. Saria, et al., propose another method that directly

models the heterogeneous, temporal nature of physiological
time series using a switching latent “topic” model similar to
those used widely in natural language processing [20]. They
show that such a model can be used to construct interest-
ing features for use in other tasks, such as their proposed
neonatal SOI score, PhysioScore [21].

This more recent work makes effective use of the rich data
generated in ICUs, but it depends on the availability of com-
plete, high frequency time series. While stores of such data
are increasingly common at large, cutting edge research in-
stitutions, it is still largely uncaptured and unavailable at
many hospitals and clinics, even those who have adopted
EHR systems. By contrast, our work specifically addresses
the uncertain and sparsely sampled time series data that is
common in EHRs, as well as the variety of challenges this
data presents.

3. DATA SET
Recording clinical data during the delivery of care (not

prospectively or intentionally for research) has several key
implications that make working with it challenging. First, it
is incomplete. We do not have observations of every variable
for every patient. Rather, we have observations of only those
phenomena recorded by caregivers during treatment. For ex-
ample, if a clinician chooses not to order blood tests, we may
not have measurements of pH or glucose. This constitutes
a potential source of non-random missing data. Next, the
data are sampled in a sparse, non-uniform manner. The rate
at which observations are recorded varies depending on the
variable, the way measurements are made, which caregiver
is recording measurements and possibly the patient’s level
of illness (for example, heart rate may recorded more fre-
quently when a patient’s condition becomes more critical).
This constitutes a potential source of sample selection bias
[5, 23]. Finally, the data are subject to various forms of un-
certainty, including errors introduced during manual record-
ing by clinical staff and technicians, as well as measurement
noise and failures of automated monitoring devices. Never-
theless, this kind of observational data is increasingly abun-
dant and is highly typical of the information being collected
in most production EHR systems today. The ability to esti-
mate accurate models from such data is of enormous value.

In this work, we use a novel data set collected from the
PICU EHR archive at the Children’s Hospital of Los An-
geles. This data set contains over 10,598 PICU patient
episodes collected over a ten year period and includes es-
sentially all PICU episodes that could be reliably extracted
and verified from the available EHRs. Though the data
set includes demographics, outcomes, diagnostic codes, and
other annotations, we focus on learning clustering models
from the physiological time series data only, including times-
tamped measurements of thirteen different variables. These
variables were chosen for availability and ease of extrac-
tion and because they have known prognostic value, but the
model generalizes to any set of available physiologic vari-
ables. The physiological data exhibit all of the problems
described above (incompleteness, sampling irregularity, un-
certainty), but are also extremely rich. A summary of the
thirteen variables included in the data set can be found in
Table 1. Column one refers to the abbreviation for the vari-
able, column two gives the full variable name and column
three is the average number of measurements of that variable
per day.



Abbrev. Description Msmts per day

SpO2 Pulse oximetric saturation 31.04
HR Heart rate 29.78
RR Respiratory Rate 29.70
sBP Systolic blood pressure 23.52
dBP Diastolic blood pressure 23.50

EtCO2 End-tidal carbon dioxide 13.85
Temp Temperature 11.68
TGCS Total Glascow coma score 11.24
CRR Peripheral capillary refill rate 11.18
UO Urine output 9.50

FiO2 Fraction inspired oxygen 5.17
Gluc Glucose 2.06
pH pH 1.50

Table 1: Abbreviations, descriptions and measure-
ment frequencies for each of the 13 variables in-
cluded in the data set.

3.1 Preprocessing
The temporal nature of this data, particularly with re-

spect to non-uniform sampling and large variance in episode
length, poses significant challenges to traditional statistical
techniques. We select a subset of the data and apply pre-
processing steps to simplify the subsequent analysis of the
data with the understanding that these choices discard po-
tentially useful information.

First, we automatically discard anomalous measurements
with values outside a valid range defined by clinical experts.
While these measurements may contain some information,
more sophisticated models would be required to separate it
out from error and noise.

Second, we choose to focus on the first 24 hours of mea-
surements only, ignoring any additional measurements taken
afterward. While this discards potentially useful informa-
tion from later in the episode, it also reduces the dimension-
ality of our time series and enables the application of simpler
modeling techniques. Further, models based on a limited
time horizon have enormous practical importance, since the
ability to predict patient outcomes based on a minimal num-
ber of measurements is a key problem.

Third, we choose to discretize time into hour-long inter-
vals. The value of a variable for each interval is the mean of
all measurements taken during that hour. This is a common
approach to time series dimensionality reduction, described
as Piecewise Aggregate Approximation (PAA) by Keogh, et
al. [7]. This simplifies our analysis by enabling the use
of models that operate on fixed-dimensional vectors, but it
also clearly discards potentially useful information and in-
troduces additional challenges. Foremost among these is the
introduction of missing data in the form of intervals with no
measurements. There are a variety of strategies for han-
dling such missing data including case-deletion and imputa-
tion. However, we choose to make an assumption that the
missing data is missing at random (MAR) and apply prob-
abilistic models that can efficiently deal with missing data
under this assumption. It is important to state here that
this assumption does not represent an actual belief about
the nature of the data, but simply reflects a choice about
the family of models we consider in this work.

It is also worth noting that our final data set is fully de-

identified, as our policy is to be especially conservative about
patient privacy and data security. All protected health in-
formation (PHI) is stripped and potential “outlier” episodes
(e.g., patients with especially long PICU stays or unusual
demographics or diagnoses) are removed entirely. We also
convert all dates and times to timestamps relative to time
of admission (e.g., birthday converted to age in months at
time of admission, measurement timestamps converted to
“minutes since time of admission”, etc.). We adopted this
policy, with full approval from the CHLA Institutional Re-
view Board (IRB), in order to fully protect patient privacy
while still enabling our own research, as well as the sharing
of data with other researchers in the future.

4. PROBABILISTIC CLUSTERING
The final preprocessed data set described in Section 3 is

moderately high-dimensional and contains observations that
are incomplete and potentially uncertain. Well-known clus-
tering methods like K-means clustering [13] and hierarchical
clustering [24] rely on the availability of a distance metric
defined on the space of the data. Unfortunately, these met-
rics can not usually deal with missing measurements in the
data vectors. By contrast, probabilistic clustering models,
also referred to as mixture models [15], can deal with miss-
ing data very efficiently under certain assumptions [4]. In
this section, we first describe the basic model we use in this
work: a mixture of diagonal covariance Gaussians. We next
describe how to extend the basic model using an informative
prior distribution designed specifically to make the model
more robust to sparsely-sampled data. Finally, we present
an algorithm for estimating the model and report the results
of estimating the model on the CHLA data set.

4.1 Notation
In describing the model, we will let N indicate the num-

ber of data cases, each of which corresponds to a single pa-
tient episode. We let V indicate the number of physiolog-
ical variables and T indicate the number of measurement
time points. The CHLA data set used in this paper has
V = 13 physiological variables and T = 24 measurement
time points, one per hour for 24 hours.

We denote the data matrix by X and the entry for data
case n, variable v and time point t byXnvt. In a probabilistic
model, each measurement Xnvt is considered to be a random
variable. An instantiation or value of the random variable
Xnvt is denoted by xnvt (in general, we will use capital let-
ters to indicate random variables and lower case letters to
indicate instantiations or values of random variables). We
use the notation Xnv to indicate the vector-valued random
variable corresponding to all T measurements of variables v
for data case n, and xnv to indicate an instantiation of this
random variable. When the data matrix contains missing
values, it is useful to consider a companion matrix of binary
response indicator variables R of the same size as X. We
set rnvt = 1 if xnvt is observed and rnvt = 0 if xnvt is not
observed.

4.2 Model Description
The diagonal covariance Gaussian mixture model is a prob-

abilistic clustering model for real-valued data. It assumes
that a fixed, finite number of mixture components or clus-
ters K underlie the data. The model can be thought of
as a stochastic process for generating completely observed



data cases. The generative process for data case n begins
by selecting a cluster from a prior distribution over clusters
P (Zn = k) = θk. The random variable Zn is referred to as
a latent or hidden variable and indicates which cluster data
case n belongs to. The distribution over clusters is sim-
ply a discrete distribution parameterized by θk. Given the
sampled value Zn = k, a value for xnvt is sampled indepen-
dently for each measurement variable Xnvt from a univari-
ate Gaussian (normal) distribution N (µkvt, σ

2
kv) associated

with cluster k. The mean of this Gaussian distribution is
µkvt while σkv is the standard deviation. Note that we as-
sume the cluster mean varies as a function of time, while
the cluster standard deviation is constant through time. We
summarize the basic model below.

P (Zn = k|θ) = θk (4.1)

P (Xnvt = xnvt|µkvt, σkv) = N (xnvt;µkvt, σ
2
kv) (4.2)

The probability of a data case under this model is a mix-
ture over the K clusters. When a data case is incompletely
observed, the missing data can be analytically marginalized
away under the assumption that the missing data is miss-
ing at random (MAR) [12]. There is no need to perform
any explicit imputation of missing data values. We give the
probability of an incompletely observed data case under the
MAR assumption below. The effect of rnvt in the expo-
nent is to include a contribution from xnvt only if xnvt is
observed.

P (xn|rn, θ, µ, σ) =

K∑
k=1

θk

V∏
v=1

T∏
t=1

N (xnvt;µkvt, σ
2
kv)rnvt

(4.3)

Given an incompletely observed data case (xn, rn), we
will need to infer the posterior distribution over the la-
tent variables Zn. We can use this posterior distribution
to make a hard assignment of data cases to clusters after
the model is learned if needed. This posterior distribution
qnk = P (Zn = k|xn, rn, θ, µ, σ) can be found using Bayes
rule and the definition of the model as follows:

qnk =
θk

∏V
v=1

∏T
t=1N (xnvt;µkvt, σ

2
kv)rnvt∑K

k=1 θk
∏V

v=1

∏T
t=1N (xnvt;µkvt, σ2

kv)rnvt
(4.4)

4.3 Model Estimation
Maximum likelihood (ML) estimation of the parameters

in a Gaussian mixture model can be performed using an
Expectation Maximization (EM) algorithm [3]. The EM al-
gorithm for a basic Gaussian mixture model with incomplete
data has previously been described by Ghahramani and Jor-
dan [4]. This algorithm alternates between computing the
posterior distribution over the clusters for each data case
(E-Step) and updating the parameters of the cluster distri-
butions (M-Step).

However, in the current setting where we have a large
amount of missing data, standard ML learning can behave
quite poorly. When the data is highly sparse, the mean val-
ues for individual time points in small clusters may be es-
timated based on very few observations, making them very
noisy. The situation with respect to the standard deviation
parameters is less severe due to the fact that we tie these
parameters across time. However, if a particular variable
has very few observations over all time points in a particu-
lar cluster, the standard deviation estimate can also behave

Algorithm 1 MAP EM Algorithm for Diagonal Covariance
Gaussian Mixture with Empirical Smoothing Prior

for i = 1 to I do
for n = 1 to N , k = 1 to K do
qnk ← P (Zn = k|xn, rn, θ, µ, σ)

end for
for k = 1 to K, v = 1 to V do

θk ←
1

N

N∑
n=1

qnk

σ2
kv ←

N0σ
2
0v +

∑N
n=1

∑T
t=1 rnvtqnk(xnvt − µkvt)

2

N0 +
∑N

n=1

∑T
t=1 rnvtqnk

µkv ←(Σ−1
0v + σ−2

kv

N∑
n=1

qnkdiag(rnv))−1

· (Σ−1
0v µ0v + σ−2

kv

N∑
n=1

qnkdiag(rnv)xn)

end for
end for

poorly. One solution to these problem is to include an in-
formative prior distribution on the model parameters and
estimate the model using maximum a posteriori (MAP) es-
timation.

Since the mean parameters µkv = [µkv1, ..., µkvT ] them-
selves represent a time series, a natural assumption is that
the mean parameters should exhibit a degree of smoothness
with respect to time. Further, when a mixture component
contains few observations, we would like its parameters to
fall back to the overall mean of the data. It is possible
to achieve these two effects simultaneously using a kernel-
based Gaussian prior on the mean parameters that enforces
smoothness with respect to time. To define this prior, we
take an“empirical Bayes”approach. We begin by computing
the empirical means µ0v and standard deviations σ0v from
all of the available data. We then define a similarity kernel
K(t, t′) between time points t and t′. In this work, we use
a square-exponential kernel K with parameters a0 and b0 as
seen below. We use this kernel matrix to define the prior
covariance matrix Σ0v.

Ktt′ = b0 exp(−a0(t− t′)2) (4.5)

Σ0v = σ0vKtt′ (4.6)

The prior distribution on the cluster means is then simply a
Gaussian distribution with mean µ0v and covariance matrix
Σ0v. The construction of this Gaussian prior distribution
over the mean parameter vectors is closely related to the
construction of Gaussian processes, which yield a similar
prior distribution over functions (as opposed to vectors) [18].

P (µkv|µ0v,Σ0v) = N (µkv;µ0v,Σ0v) (4.7)

We also construct an empirical prior distribution on the
standard deviations parameters. We parameterize the prior
in terms of the empirical variance σ0v and an equivalent
sample size N0. The form of this prior corresponds to an
inverse Gamma distribution on the variance parameters.

P (σkv|N0, σ0v) ∝ 1

σN0
kv

exp(−N0σ0v

2σ2
kv

) (4.8)



(a) ML Estimate (b) MAP Estimate

Figure 1: These plots show the maximum likelihood and maximum a posteriori estimates of the mean and
standard deviation parameters estimated on a small synthetic data set. The true mean function is shown in
red. The estimated mean function is shown in blue. The shaded region indicates a one-standard-deviation
interval about the estimated mean function. The individual data cases are shown as thin lines with square
markers indicating the observed measurement points.

We give a MAP EM algorithm for the diagonal Gaussian
mixture model augmented with this empirical prior in Al-
gorithm 1. The MAP E-Step is identical to ML E-Step for
a standard diagonal Gaussian mixture model. The MAP
M-Step updates differ from the ML M-Step updates since
they take the prior on the parameters into account, leading
to regularized parameter estimates. In particular, we note
that in the absence of any data for variable v in cluster k, the
estimated mean parameters will revert to the overall mean
µ0v for variable v. Similarly, the estimated standard devi-
ation will revert to the overall standard deviation σ0v for
variable v in the absence of any data about variable v. As
the amount of data available to estimate any given param-
eter increases, the estimate of that parameter will approach
its ML estimate.

Figure 1 illustrates the importance of the smoothing prior
when estimating the mean parameters from sparse time se-
ries data. We construct a small synthetic data set using
the true mean function shown as the red curve (+ mark-
ers) in each plot. We sample five data cases from a Gaus-
sian distribution with this mean function with unit variance.
We randomly sample the response indicators for each data
case with probability 0.5. We set the measurement at each
time point to be missing or observed according to the sam-
pled response indicator vectors. The individual data cases
are shown as square markers connected by dashed lines in
each plot. We consider estimating the mean and standard
deviation parameters from this data using both maximum
likelihood estimation (neglecting the influence of the prior
distribution) and maximum a posteriori estimation (taking
the prior into account). We estimate the model using a sin-
gle cluster. The estimated mean function is shown as a blue
line (circular markers). The shaded region indicates a one-
standard deviation interval about the mean. We can eas-
ily see that the MAP estimate under an appropriate choice
of prior has the desired effect of smoothing the estimated
means while the maximum likelihood estimate is very noisy
due to the small number of observations at most time points.

The MAP EM algorithm is typically run for a fixed num-
ber of iterations I or until convergence of the probability of
the data under the model. 25 to 50 iterations are usually suf-
ficient for the algorithm to converge. In the experiments that
follow, we used an initial cross validation search with the five

cluster model to find hyper-parameter values that result in
good predictive performance. The final selected values used
for all models were a0 = 0.002, b0 = 0.1, N0 = 0.001.

4.4 Clustering Experiments
We apply the model to cluster the pediatric intensive care

patient episodes contained in the CHLA data set. To eval-
uate the model, we adopt a five-fold cross validation pro-
cedure. We partition the available episodes into five equal-
sized blocks at random. We use one block for testing, one
block for validation and the three remaining blocks for train-
ing. We rotate the blocks used for testing and validation,
resulting in five different train/test/validation splits. We
estimate clustering models with 5, 10 and 20 clusters.

Figure 2 shows statistics for each of the models learned
on the first training split. The first row shows the size of
each cluster in each model. We also use training-set mor-
tality outcomes to estimate a probability of mortality for
each cluster and each model, as shown on the second row of
Figure 2. Recall that the cluster model estimation and in-
ference algorithms are both based on raw physiological mea-
surements and do not have access to mortality outcomes. We
see that the probability of mortality varies widely between
clusters, indicating that the underlying model has the abil-
ity to stratify training episodes by mortality. Note that the
overall mortality probability is indicated by the solid hori-
zontal line in each figure. We see that some clusters have
highly elevated mortality probability relative to the baseline
(although these clusters are inevitably small in size), while
others have significantly decreased mortality probability.

In Figure 3, we visualize the mean and standard devia-
tion parameters for the clusters with the lowest and highest
mortality probabilities found using the 20 cluster model on
the first split of training data. For each variable, the blue
line shows the mean parameters for that variable, while the
standard deviation parameters are represented by the filled
blue region. The region extends above and below the mean
parameter at time t by the estimated standard deviation.
We refer to this visualization as a physiome. We can im-
mediately see that the high-mortality cluster is associated
with a depressed TGCS score and elevated heart rate, while
the low-mortality cluster exhibits the exact opposite pat-
tern. Other clusters within this model (as well as models
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Figure 2: The first row shows the proportion of training cases assigned to each cluster for models with
K = 5, 10, 20 clusters. The second row shows the mortality probability associated with each cluster for models
with K = 5, 10, 20 clusters. The solid line in each figure in the second row shows the overall mortality
probability.

using different numbers of clusters) similarly exhibit differ-
entiated physiologic patterns.

5. MORTALITY PREDICTION
The cluster analysis presented in the previous section indi-

cates that the clusters learned from the CHLA data exhibit
recognizable physiological patterns and correlate well with
mortality outcomes. To formalize the extent to which the
inferred clusters exhibit prognostic significance, we consider
using them to predict mortality outcomes for individual pa-
tient episodes.

We consider two baseline mortality prediction models. The
first is a simple Bernoulli model that predicts mortality
with a constant probability π. The second model is a stan-
dard linear logistic regression model. The logistic regres-
sion model requires that fully observed feature vectors be
available for training the model. Inspired by feature extrac-
tion often employed in developing SOI scores, we extract the
highest and lowest measurement from the first 24 hours of
data for each of the 13 physiological variables, resulting in a
26-dimensional feature vector. We also include the patient’s
age as an additional feature variable.

We consider extending both of these baseline mortality
prediction models to the clustering case by estimating them
on a per-cluster basis. We use the fact that we have a proba-
bilistic clustering model to assign each training case to each
cluster according to the posterior probability P (Z = k|x, r).
We then estimate one mortality prediction model for each
cluster using the posterior weighted data. To deal with miss-
ing data, we use the corresponding clustering model to im-
pute all missing observations by replacing them with their

expected values under the model. We treat the baseline pre-
diction models as a special case of the corresponding cluster-
prediction models where we use only one cluster.

5.1 Model Estimation
Let yn be the binary mortality outcome variable, which

takes the values 0 (patient lives) and 1 (patient dies). As-
sume we have a K cluster model. The Bernoulli Cluster
model has K parameters π1, ..., πK indicating the probabil-
ity of mortality for a patient episode belonging to each clus-
ter. The model for each cluster is simply P (Y = 1|Z = k) =
πk. The maximum likelihood estimate given the posterior
weighted training sample for cluster k is given below where
qnk = P (Zn = k|xn, rn).

πk =

∑N
n=1 qnkyn∑N
n=1 qnk

The Logistic Cluster model has a weight vector wk and a
bias bk for each cluster k. We denote the feature vectors by
fn. The logistic regression model for each cluster is given
below.

P (Y = 1|Z = k,f ,wk, bk) =
1

1 + exp(−(wT
k f + bk)

Like the standard unweighted case, the weighted logistic re-
gression estimation problem lacks closed-form solutions for
the parameters wk and bk. However, the likelihood remains
a convex function of the parameters. In the current setting
where different clusters may have very different numbers of
data cases assigned to them, regularizing the parameter es-
timates is again very important. We apply a standard L2
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Figure 3: Example physiomes corresponding to the components of the 20 cluster model having the lowest
and highest probability of mortality.

penalty with strength parameter λ that favors small weight
values when there is little data, resulting in less extreme
model probabilities. The complete objective function is con-
vex and can be optimized using any numerical optimizer.
We apply the limited memory BFGS algorithm [16]. We
give the regularized log likelihood function for the weighted
case below.

Lk =

N∑
n=1

qnk logP (Yn = yn|Zn = k,fn,wk, bk)− λwT
k wk

5.2 Prediction
Once the models are trained, we make predictions using

a similar posterior weighted average. For a novel test case
(x∗, r∗), we first compute its posterior probability under
each cluster and use these probabilities to combine the per-
cluster predictions in a weighted average. The prediction
procedure is shown below for both the Bernoulli Cluster and
Logistic Cluster models where q∗k = P (Z∗ = k|x∗, r∗)

P (Y = 1|x∗, r∗) =

K∑
k=1

q∗kπk (5.9)

P (Y = 1|x∗, r∗,f∗) =

K∑
k=1

q∗k
1

1 + exp(−(wT
k f∗ + bk)

(5.10)

5.3 Empirical Protocols and Performance
Measures

We follow a five-fold cross validation procedure identical
to that introduced for the clustering experiments. We esti-
mate both the Bernoulli Cluster and Logistic Cluster models
given the learned 5, 10 and 20 cluster models estimated pre-
viously on each of the five training splits. We train each
mortality prediction model on each training split and then
evaluate it on the corresponding test split.

We evaluate the predictions made by each model in terms
of the area under the ROC curve (AUC), prediction accu-
racy, Matthews correlation coefficient and recall rate. The
AUC score can be interpreted as the probability that a ran-
domly chosen positive data case will be assigned a higher
score by the classifier than a randomly chosen negative data
case. The predictive accuracy is simply the number of cor-
rectly predicted outcomes divided by the total number of
episodes (we use 0.5 as the prediction threshold). The Matthews
correlation coefficient (MCC) is generally regarded as an ac-
curate performance measure for binary classification prob-
lems that is more informative than other measures when
the classes are imbalanced [1]. In the current setting, the
recall rate is also of great interest since accurate prediction
within the small fraction of episodes that result in mortality
is highly important.

For all performance measures other than recall, we select
the optimal regularization setting λ for the logistic classi-
fier using cross validation on that measure and report the
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Figure 4: Mortality outcome area under the ROC curve, prediction accuracy, Matthews Correlation Coeffi-
cient and recall for the Bernoulli prediction models (B, BC5, BC10, BC20) and logistic prediction models (L,
LC5, LC10, LC20) as a function of the number of clusters.

corresponding test-set performance value. In the case of re-
call, we select the regularization setting that maximizes the
Matthews correlation coefficient on the validation set and
report the corresponding test-set recall rate. Simply maxi-
mizing recall is not interesting since we want to achieve good
recall while also achieving good performance on a balanced
performance measure.

5.4 Mortality Prediction Results
We perform two different mortality prediction experiments.

In the first experiment, we compare the predictive perfor-
mance of the Bernoulli and Logistic prediction models as
a function of the number of clusters. Here, the one-cluster
models correspond to the baseline Bernoulli and Logistic
model, which assume that all of the episodes belong to the
same group. We denote the baseline logistic model by L
and the baseline Bernoulli model by B. We denote the clus-
ter logistic model with K clusters by LCK and the cluster
Bernoulli model with K clusters by BCK.

The results of the first experiment are shown in Figure
4. The lines indicate the mean performance over cross val-
idation splits and the shaded regions correspond to one-
standard-error above and below the mean. First, we note
that as the number of clusters increases over the range shown
here, we obtain significantly improved AUC values using the
cluster Bernoulli model. However, the B to BC10 models do
not predict any positive mortality outcomes when threshold-
ing the mortality probability at the conventional 0.5 level.
This yields a flat accuracy curve with respect to the number
of clusters, as well as recall and MCC values of exactly 0.

Next, we note that the logistic models L through LC20

significantly outperform the corresponding Bernoulli models
B through BC20 with respect to all performance measures.
Importantly, the LC10 and LC20 models also significantly
outperform the baseline logistic model L in terms of accu-
racy, MCC, and recall, while obtaining an AUC at least as
good as that of the baseline logistic model.

In the next experiment, we vary the number of hours of
data used when making predictions at test time. The ability
to make accurate predictions based on less data is of sig-
nificant practical interest. We consider making predictions
based on the first T = 4, 8, 12, 16, 20 and 24 hours of data.
We perform inference to compute the probability that a data
case belongs to each cluster using only the first T hours of
data, treating the remaining time points as missing. We
then use the underlying clustering model to impute all the
missing observations and extract features as in the previous
experiment. We consider only the base logistic model (L)
and the 20-cluster logistic model (LC20) as it performed the
best on the balanced MCC measure in the previous experi-
ment.

We give the results of the second experiment in Figure 5,
where the horizontal axes represents the number of hours
of data available when making predictions. We see that
LC20 has significantly better recall than the baseline logistic
model over all values of T . The results also show that the
MCC value for LC20 is significantly better than that of the
baseline model over almost all values of T . Importantly,
the cluster model achieves these performance gains while
yielding MCC and accuracy rates that are better than the
baseline logistic model over all T .
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Figure 5: Mortality outcome area under the ROC curve, prediction accuracy, Matthews Correlation Coef-
ficient and recall for the logistic prediction model (L) compared to the 20-cluster logistic prediction model
(LC20).

6. DISCUSSION AND FUTURE WORK
In this paper, we have demonstrated a probabilistic clus-

tering model for multidimensional, sparse, uncertain phys-
iological time series data drawn from real-world electronic
health care records. This model uses an empirical prior to
help overcome issues related to the sparsity of the data. The
prior is constructed using a similarity kernel that encourages
the mean parameters for each cluster to be smooth with re-
spect to time. We have demonstrated the model’s ability
to capture patterns of physiology in three ways. First, we
visualized the model parameters as time series and showed
that the clusters exhibit clear differences in the trajecto-
ries of different physiological variables. Second, we showed
that the model produces clusters that are associated with
large differences in mortality rate. Finally, we demonstrated
that the clustering model can be used to construct mortality
prediction models that outperform classifiers that treat all
episodes as belonging to a single group.

However, the model also has several important limitations.
First, the missing at random assumption is certainly vio-
lated in cases where a patient dies, resulting in fewer than
24 hours of data. The slight upward trend in TGCS in the
high-mortality cluster shown in Figure 3(b) may be indica-
tive of this problem since, under the missing at random as-
sumption, the cluster mean parameters are pulled toward
the prior mean (approximately 10 in the case of TGCS)
in the absence of data. Second, the discretization of time
ignores potentially useful information by grouping observa-
tions, possibly decreasing the ability to effectively cluster
some patients. Third, the model may also be sensitive to

the fact that the start time of each episode is aligned to
time of admission and not the onset of the patients under-
lying condition. Finally, the clustering does not take into
account the age-dependence of some variables. These last
two issues may result in the unnecessary splitting of some
clusters.

There are many possible future directions for this work
aimed at overcoming limitations of the current model. We
are particularly interested in moving to mixtures of Gaus-
sian processes to avoid the discretization of time. Simulta-
neously, we are very interested in relaxing the assumption
that missing values are missing at random. This problem
seems to disappear when modeling the raw time series, but
it is in fact replaced by a more subtle sample selection bias
problem in which a variable’s sampling frequency may be
related to its underlying value. One avenue toward deal-
ing with these effects is to include an explicit model of the
dependency of sampling frequency on value. We are also
very interested relaxing the finite time horizon requirement
(in which we limit our model to the first T hours), as well
as explicitly modeling interventions that have a substantial
impact on patient physiology.

In terms of evaluation, we have thus far focused on vi-
sualization and mortality prediction. We plan to extend
the scope of the evaluation to include different criteria (e.g.,
goodness of fit tests) and examine the association of the clus-
ters with other phenomena of interest. We are particularly
interested in the prediction of clinical diagnoses as well as
length-of-stay. We would also like to perform a comparison
of the cluster-based predictive model with classic models,
such as the PRISM III SOI score.



In terms of applications, we are very interested in using
cluster-based models to motivate non-trivial notions of pa-
tient similarity that could be highly useful for exploration
of large databases of patient data and for decision support
tools driven by retrieval of similar patients. The fact that
patient episodes can be different lengths and include differ-
ent numbers of observations makes the direct computation of
standard similarity scores and distances difficult. Discretiz-
ing time does not solve this problem since it yields missing
data. A natural model-based approach is to learn a large
set of clustering models with different parameters and num-
bers of clusters. We can then measure how frequently each
pair of episodes fall into the same cluster to arrive at a sim-
ilarity score that can be used for patient similarity search,
ranking, and information retrieval tasks with massive health
data sets.
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