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Unsupervised Pattern Discovery in Speech
Alex S. Park, Member, IEEE, and James R. Glass, Senior Member, IEEE

Abstract—We present a novel approach to speech processing
based on the principle of pattern discovery. Our work represents
a departure from traditional models of speech recognition, where
the end goal is to classify speech into categories defined by a
prespecified inventory of lexical units (i.e., phones or words).
Instead, we attempt to discover such an inventory in an unsuper-
vised manner by exploiting the structure of repeating patterns
within the speech signal. We show how pattern discovery can be
used to automatically acquire lexical entities directly from an
untranscribed audio stream. Our approach to unsupervised word
acquisition utilizes a segmental variant of a widely used dynamic
programming technique, which allows us to find matching acoustic
patterns between spoken utterances. By aggregating information
about these matching patterns across audio streams, we demon-
strate how to group similar acoustic sequences together to form
clusters corresponding to lexical entities such as words and short
multiword phrases. On a corpus of academic lecture material, we
demonstrate that clusters found using this technique exhibit high
purity and that many of the corresponding lexical identities are
relevant to the underlying audio stream.

Index Terms—Speech processing, unsupervised pattern dis-
covery, word acquisition.

I. INTRODUCTION

O
VER the last several decades, significant progress has

been made in developing automatic speech recognition

(ASR) systems which are now capable of performing large-vo-

cabulary continuous speech recognition [1], [2]. In spite of

this progress, the underlying paradigm of most approaches

to speech recognition has remained the same. The problem

is cast as one of classification, where input data (speech) is

segmented and classified into a preexisting set of known cat-

egories (words). Discovering where these word entities come

from is typically not addressed. This problem is of interest to

us because it represents a key difference in the language pro-

cessing strategies employed by humans and machines. Equally

important, it raises the question of how much can be learned

from speech data alone, in the absence of supervised input.

In this paper, we propose a computational technique for ex-

tracting words and linguistic entities from speech without super-

vision. The inspiration for our unsupervised approach to speech

processing comes from two sources. The first source comes
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from a set of experiments conducted by developmental psychol-

ogists studying infant language learning. Saffran et al. found

that 8-month-old infants are able to detect the statistical proper-

ties of commonly co-occurring syllable patterns, indicating that

the identification of recurring patterns may be important in the

word acquisition process [3]. Our second source of inspiration

is implementational in nature and relates to current research in

comparative genomics [4], [5]. In that area of research, pattern

discovery algorithms are needed in order to find genes and struc-

turally important sequences from massive amounts of genomic

DNA or protein sequence data. Unlike speech, the lexicon of

interesting subsequences is not known ahead of time, so these

items must be discovered from the data directly. By aligning se-

quences to each other and identifying patterns that repeat with

high recurrence, these biologically important sequences, which

are more likely to be preserved, can be readily discovered. Our

hope is to find analogous techniques for speech based on the

observation that patterns of speech sounds are more likely to

be consistent within word or phrase boundaries than across. By

aligning continuous utterances to each other and finding sim-

ilar sequences, we can potentially discover frequently occurring

words with minimal knowledge of the underlying speech signal.

The fundamental assumption of this approach is that acoustic

speech data displays enough regularity to make finding such

matches possible.

This paper primarily focuses on the unsupervised processing

of speech data to automatically extract words and linguistic

phrases. Our work differs substantially from other approaches

to unsupervised word acquisition (see Section II) in that it

operates directly on the acoustic signal, using no intermediate

recognition stage to transform the audio into a symbolic repre-

sentation. Although the inspiration for our methods is partially

derived from experiments in developmental psychology, we

make no claims on the cognitive plausibility of these word

acquisition mechanisms in actual human language learning.

The results obtained in this paper are summarized as follows.

1) We demonstrate how to find subsequence alignments

between the spectral representations of pairs of contin-

uous utterances. In so doing, we propose a variation of

a well-known dynamic programming technique for time

series alignment, which we call segmental dynamic time

warping (DTW). This task is motivated by the assumption

that common words and phrases between utterance pairs

are likely to be acoustically similar to each other. This

algorithm allows us to find low distortion alignments

between different regions of time in a given audio stream,

which correspond to similar sounding speech patterns.

2) We show how low distortion alignments generated by the

segmental DTW algorithm can be used to find recurring

speech patterns in an audio stream. These patterns can be

clustered together by representing the audio stream as an
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abstract adjacency graph. The speech pattern clusters that

are discovered using this methodology are shown to corre-

spond to words and phrases that are relevant to the audio

streams from which they are extracted.

The remainder of this paper is organized as follows: We

briefly survey related work in the areas of pattern discovery

and unsupervised word acquisition in Section II. Section III

describes the segmental DTW algorithm, an adaptation of

a widely known dynamic programming technique, which is

designed to find matching acoustic patterns between spoken

utterances. In Section IV, we demonstrate how to induce a

graph representation from the audio stream. We also employ

clustering techniques to discover patterns that correspond to

words and phrases in speech by aggregating the alignment

paths that are produced by the segmental DTW algorithm. The

experimental background for the experiments conducted in this

paper are presented in Section V, including a description of the

speech data used and specifics about our choice of signal repre-

sentation. We give examples of the types of word entities found

and analyze the results of our algorithm in Section VI, then

conclude and discuss directions for future work in Section VII.

II. RELATED WORK

There have been a variety of research efforts that are related

to the work presented in this paper. We can roughly categorize

these works into two major groups: applications of pattern dis-

covery principles to domains outside of natural language pro-

cessing, and unsupervised learning techniques within the field

of natural language processing.

A. Pattern Discovery

The works summarized in this section represent a variety of

different fields, ranging from computational biology to music

analysis to multimedia summarization. There is a common un-

derlying theme in all of this research: the application of pattern

discovery principles to sequence data. We briefly describe work

in each of these fields below.

In computational biology, research in pattern discovery algo-

rithms is motivated by the problem of finding motifs (biologically

significant recurring patterns) in biological sequences. Although

the large body of proposed approaches is too large to list here, a

survey of the more important techniques is described in [6] and

[7]. The class of algorithms most relevant to our work are based

upon sequence comparison, where multiple sequences are com-

pared to one another to determine which regions of the sequence

are recurring. Since biological sequences can be abstractly rep-

resented as strings of discrete symbols, many of the comparison

techniques have roots in string alignment algorithms. In partic-

ular, a popular approach to alignment is the use of dynamic pro-

gramming to search an edit distance matrix (also known as a dis-

tance matrix, position weight matrix, or position-specific scoring

matrix) for optimal global alignments [8] or optimal local align-

ments [9]. The distance matrix is a structure which generates a

distance or similarity score for each pair of symbols in the se-

quences being compared. We make use of distance matrices for

alignment in this paper as well, although the sequences we work

with are derived from the audio signal, and are therefore com-

posed of real-valued vectors, not discrete symbols.

Distance matrices are also used extensively by researchers

in the music analysis community. In this area of research, the

music audio is parameterized as a sequence of feature vectors,

and the resulting sequence is used to create a self-distance ma-

trix. The structure of the distance matrix can then be processed

to induce music structure (i.e., distinguish between chorus and

verse), characterize musical themes, summarize music files, and

detect duplicate music files [10]–[13]. We carry over the use of

distance matrices for pattern discovery in music audio to our

own work in speech processing.

B. Unsupervised Language Acquisition

The area of research most closely related to our work con-

cerns the problem of unsupervised knowledge acquisition at

the lexical level. Most recently, Roy et al. have proposed a

model for lexical acquisition by machine using multimodal

inputs, including speech [14]. Roy used a recurrent neural

network trained on transcribed speech data to output a stream

of phoneme probabilities for phonemically segmented audio.

Words were learned by pairing audio and visual events and

storing them as lexical items in a long-term memory structure.

In [15], de Marcken demonstrated how to learn words from

phonetic transcriptions of continuous speech by using a model-

based approach to lexicon induction. The algorithm iteratively

updates parameters of the model (lexicon) to minimize the de-

scription length of the model given the available evidence (the

input corpus).

Brent proposed a model-based dynamic programming ap-

proach to word acquisition by considering the problem as one

of segmentation (i.e., inferring word boundaries in speech)

[16]. In his approach, the input corpus is presented as a single

unsegmented stream. The optimal segmentation of the corpus

is found through a dynamic programming search, where an

explicit probability model is used to evaluate each candidate

segmentation. A similar strategy is used by Venkataraman in

[17], although the utterance level representation of the corpus

is used as a starting point rather than viewing the entire corpus

as a single entity. The estimation of probabilities used in the

segmentation algorithms of Brent and Venkataraman differ, but

the overall strategies of the two techniques are conceptually

similar. More recently, Goldwater has improved upon these

model-based approaches by allowing for sparse solutions and

more thoroughly investigating the role of search in determining

the optimal segmentation of the corpus [18].

We note here that each of the above examples used a phono-

logical lexicon as a foundation for the word acquisition process,

and none of the techniques described were designed to be ap-

plied to the speech signal directly. The algorithms proposed by

de Marcken and Roy, both depend on a phonetic recognition

system to convert the continuous speech signal into a set of dis-

crete units. The systems of Brent and Venkataraman were eval-

uated using speech data phonemically transcribed by humans in

a way that applied a consistent phoneme sequence to a partic-

ular word entity, regardless of pronunciation.

Pattern discovery in audio has been previously proposed by

several researchers. In [19], Johnson used a specialized dis-

tance metric for comparing covariance matrices of audio seg-

ments to find non-news events such as commercials and jingles
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in broadcast news. Typically, the repeated events were identical

to one another and were on the order of several seconds long.

Unsupervised processing of speech has also been considered

as a first step in acoustic model development [20]. Bacchiani

proposed a method for breaking words into smaller acoustic

segments and clustering those segments to jointly determine

acoustic subword units and word pronunciations [21]. Simi-

larily, Deligne demonstrated how to automatically derive an in-

ventory of variable-length acoustic units directly from speech

by quantizing the spectral observation vectors, counting symbol

sequences that occur more than a specified number of times,

and then iteratively refining the models that define each of these

symbol sequences [22].

III. SEGMENTAL DTW

This section motivates and describes a dynamic programming

algorithm which we call segmental DTW [23], [24]. Segmental

DTW takes as input two continuous speech utterances and finds

matching pairs of subsequences. This algorithm serves as the

foundation for the pattern discovery methodology described in

this paper.

Dynamic time warping was originally proposed as a way of

comparing two whole word exemplars to each other by way of

some optimal alignment. Given two utterances, and , we can

represent each as a time series of spectral vectors,

and , respectively. The optimal alignment path

between and , , can be computed, and the accumulated

distortion between the two utterances along that path, ,

can be used as a basis for comparison. Formally, we define a

warping relation, or warp path, , to be an alignment which

maps to while obeying several constraints. The warping

relation can be written as a sequence of ordered pairs

(1)

that represents the mapping

In the case of global alignment, maps all of sequence to all

of sequence . The globally optimal alignment is the one which

minimizes

(2)

In (2), represents the unweighted Euclidean distance be-

tween feature vectors and .

Although there are a number of spectral representations that

are widely used in the speech research community, in this paper

we use whitened Mel-scale cepstral coefficients (MFCCs).

The process of whitening decorrelates the dimensions of the

feature vector and normalizes the variance in each dimension.

These characteristics of this spectral representation make the

Euclidean distance metric a reasonable choice for comparing

two feature vectors, as the distance in each dimension will

also be uncorrelated and have equal variance. We note that our

choice of feature representation and distance measure are not

specifically designed to be stable when comparing different

speakers or when comparing speech from different environ-

mental conditions. Finding robust feature representations is a

difficult problem in its own right, and we defer treatment of this

issue to more extensive research done in the area.

When the utterances that we are trying to compare happen

to be isolated words, the globally optimal alignment is a suit-

able way to directly measure the similarity of two utterances

at the acoustic level. However, if the utterances consist of mul-

tiple words sequences, the distances and paths produced by op-

timal global alignment may not be meaningful. Although DTW

was applied to the problem of connected word recognition via a

framework called level building, this technique still required the

existence of a set of isolated word reference templates [25]. In

that respect, the problem has significant differences to the one

in which we are interested. Consider the pair of utterances:

1) “He too was diagnosed with paranoid schizophrenia”;

2) “ were willing to put Nash’s schizophrenia on record.”

Even in an optimal scenario, a global alignment between these

two utterances would be forced to map speech frames from

dissimilar words to one another, making the overall distortion

difficult to interpret. This difficulty arises primarily because

each utterance is composed of a different sequence of words,

meaning that the utterances cannot be considered from a

global perspective. However, (1) and (2) do share similarities

at the local level. Namely, both utterances contain the word

“schizophrenia.” Identifying and aligning such similar local

segments is the problem we seek to address in this section. Our

proposed solution is a segmental variant of DTW that attempts

to find subsequences of two utterances that align well to each

other. Segmental DTW is comprised of two main components:

a local alignment procedure which produces multiple warp

paths that have limited temporal variation, and a path trimming

procedure which retains only the lower distortion regions of an

alignment path.

A. Local Alignment

In this section, we modify the basic DTW algorithm in sev-

eral important ways. First, we incorporate global constraints to

restrict the allowable shapes that a warp path can take. Second,

we attempt to generate multiple alignment paths for the same

two input sequences by employing different starting and ending

points in the DTW search.

The need for global constraints in the DTW process can be

seen by considering the example in Fig. 1. The shape of the path

in the figure corresponds to an alignment that indicates that is

not a temporally dilated form of , or vice versa. A more rigid

alignment would prevent an overly large temporal skew between

the two sequences, by keeping frames from one utterance from

getting too far ahead of frames from the other. The following

criterion, proposed by Sakoe, accomplishes this goal [26]. For a

warp path, originating at , the th coordinate of the path,

, must satisfy

(3)

The constraint in (3) essentially limits the path to a diagonal

region of width . This region is shown in Fig. 1, for a

value of . Depending on the size of , the ending point
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Fig. 1. Nonideal warp path that can result from unconstrained alignment. For
this path, all frames from X are mapped to the first frame of Y , and all frames
from Y are mapped to the last frame of X . The alignment corresponding to
the warp path is displayed in the lower part of the figure. The shaded region of
the graph represents the allowable set of path coordinates following the band
constraint in (3) with R = 2.

Fig. 2. Multiple alignment paths resulting from applying the band constraint
with R = 1. The alignments corresponding to each diagonal region are shown
below the grid.

of the constrained path may not reach . An alignment

path resulting in unassigned frames in either of the input utter-

ances may be desirable in cases where only part of the utterances

match.

In addition to limiting temporal skew, the constraint in (3)

also introduces a natural division of the search grid into regions

suitable for generating multiple alignment paths with offset start

coordinates as shown in Fig. 2.

For utterances of length and , with a constraint param-

eter of , the start coordinates will be

Based on these coordinates, we will have a number of diagonal

regions, each defining a range of alignments between the two

utterances with different offsets but the same temporal rigidity.

Within each region, we can use dynamic time warping to find the

optimal local alignment , where is the index of the diagonal

region.

B. Path Refinement

At this stage, we are left with a family of local warp paths

for , where is the number of diagonal re-

gions. Because we are only interested in finding portions of the

alignment which are similar to each other, the next step is to re-

fine the warp path by discarding parts of the alignment with high

distortion. Although there are a number of possible methods

that could be used to accomplish this objective, we proceed by

identifying and isolating the length-constrained minimum av-

erage (LCMA) distortion fragment of the local alignment path.

We then extend the path fragment to include neighboring points

falling below a particular threshold.

The problem of finding the LCMA distortion fragment can

be described more generally as follows. Consider a sequence of

positive real numbers

(4)

and a length constraint parameter . Then, the length con-

strained minimum average subsequence LCMA is a

consecutive subsequence of with length at least that min-

imizes the average of the numbers in the subsequence. More

formally, we wish to find and that satisfy

(5)

with . In our work, we make use of an algorithm

proposed by Lin et al. for finding LCMA in

time [27].

In order to apply this algorithm to our task, recall that every

warp path is a sequence of ordered pairs

(6)

Associated with each warp path is a distortion sequence whose

values are real and positive

(7)

The minimum distortion warp path fragment is a subsequence

of that satisfies

LCMA (8)

The minimum length criterion plays a practical role in com-

puting the minimum average subsequence. Without the length

constraint, the minimum average subsequence would typically

be just the smallest single element in the original sequence.

Likewise, for our application, it has the effect of preventing

spurious matches between short segments within each utter-

ance. The length criterion also has important conceptual im-

plications. The value of serves to control the granularity of

repeating patterns that are returned by the segmental DTW pro-

cedure. Small values of will lead to many short, subword pat-

terns being found, while large values of will return fewer, but

more linguistically significant patterns such as words or phrases.
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Fig. 3. Family of constrained warp paths �̂ with R = 10 for the pair of
utterances in our example. The frame rate for this distance matrix is 200 frames
per second. The associated LCMA path fragments, withL = 100, are shown in
bold as part of each warp path. Each path fragment is associated with an average
distortion that indicates how well the aligned segments match one another.

In separate experiments, we found that the reliability of align-

ment paths found by the algorithm, in terms of matching accu-

racy, was positively correlated with path length [28]. This result,

along with our need to limit the found paths to a manageable

number for a given audio stream, led us to select a relatively

long minimum length constraint of 500 ms. We discuss some

less arbitrary methods for determining an optimal setting for

in Section VII. In the remainder of this section, we show ex-

ample outputs that are produced when segmental DTW is ap-

plied to pairs of utterances.

C. Example Outputs

In this section, we step through the segmental DTW proce-

dure for the pair of utterances presented at the beginning of

Section III. The distance matrix for these two utterances is dis-

played in Fig. 3. In this distance matrix, each cell corresponds to

the Euclidean distance between frames from each of the utter-

ances being compared. The cell at row i, column j, corresponds

to the distance between frame i of the first utterance and frame j

of the second utterance. The local similarity between the utter-

ance portions containing the word “schizophrenia” are evident

in the diagonal band of low distortion cells stretching from the

time coordinates (1.6, 0.9) to (2.1, 1.4). From the distance ma-

trix, a family of constrained warp paths is found using dynamic

time warping as shown in Fig. 3. The width parameter which

constrains the extent of time warping is set to frames,

at a 5-ms analysis rate, which corresponds to a total allowable

offset of 105 ms. The warp paths are overlaid with their associ-

ated length constrained minimum average path fragments. The

length parameter used in this example is , which corre-

sponds to approximately 500 ms. The coloring of the warp path

fragments correspond to the average distortion of the path frag-

ment, with bright red fragments indicating low distortion paths

and darker shades indicating high distortion paths. Typically,

there is a wide range of distortion values for the path fragments

found, but only the lowest distortion fragments are of interest to

us, as they indicate potential local matches between utterances.

Fig. 4. Utterance level view of a warp path from Fig. 3. The segment bounded
by the vertical black lines corresponds to the LCMA fragment for this particular
warp path, while the remainder of the white line corresponds to the fragment
resulting from extending the LCMA fragment to neighboring regions with low
distortion.

An alternate view of the distortion path, including a frame-

level view of the individual utterances, is shown in Fig. 4. This

view of the distortion path highlights the need for extending

the path fragments discovered using the LCMA algorithm. Al-

though the distortion remains low from the onset of the word

“schizophrenia” in each utterance, the LCMA path fragment

(shown in red) starts almost 500 ms after this initial drop in dis-

tortion. In order to compensate for this phenomenon, we allow

for path extension using a distortion threshold based on the

values in the path fragment, for example within 10% of the dis-

tortion of the original fragment. The extension of the fragment

is shown in Fig. 4 as a white line.

Although the endpoints of the extended path fragment in

Fig. 4 happen to coincide with the common word boundaries

for that particular example, in many cases, the segmental DTW

algorithm will align subword sequences or even multiword

sequences. This is because, aside from fragment length, the

segmental DTW algorithm makes no use of lexical identity

when searching for an alignment path.

IV. FROM PATHS TO CLUSTERS

In order to apply the segmental DTW algorithm to an audio

stream longer than a short sentence, we first perform silence

detection on the audio stream to break it into shorter utter-

ances. This segmentation step is described in more detail in

Section V-B. Segmental DTW is then performed on each pair

of utterances. With the appropriate choice of length constraint,

this procedure generates a large number of alignment path

fragments that are distributed throughout the original audio

stream. Each alignment path consists of two intervals (the

regions in time purported to be matching), and the associated

distortion along that interval. Fig. 5 illustrates the distribution

of path fragments throughout the audio stream. This visualiza-

tion demonstrates how some time intervals in the audio match

well to many other intervals, with up to 17 associated path

fragments, while some time intervals have few, if any, matches.

Since these fragments serve to link regions in time that are

acoustically similar to one another, a natural question to ask is

whether they can be used to build clusters of similar sounding

speech segments with a common underlying lexical identity.
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Fig. 5. Histogram indicating the number of path fragments present for each
instant of time for the Friedman lecture. The distribution of path fragments is
irregular, indicating that certain time intervals have more acoustic matches than
others.

Fig. 6. Production of an adjacency graph from alignment paths and extracted
nodes. The audio stream is shown as a timeline, while the alignment paths are
shown as pairs of colored lines at the same height above the timeline. Node
relations are captured by the graph on the right, with edge weights given by the
path similarities.

Our approach to this problem is cast in a graph theoretical

framework, which represents the audio stream as an abstract ad-

jacency graph consisting of a set of nodes and a set of edges

. In this graph, the nodes correspond to locations in time, and

the edges correspond to measures of similarity between those

time indices. Given an appropriate choice of nodes and edges,

graph clustering techniques can be applied to this abstract rep-

resentation to group together the nodes in the graph that are

closest to one another. Since graph clustering and partitioning

algorithms are an active area of research [29]–[31], a wide range

of techniques can be applied to this stage of the problem.

An overview of the graph conversion process is shown in

Fig. 6. The time indices indicated in the audio stream are real-

ized as nodes in the adjacency graph, while the alignment paths

overlapping the time indices are realized as edges between the

nodes. We use these alignment paths to derive edge weights by

applying a simple linear transformation of the average path dis-

tortions, with the weight between two nodes being given by the

following similarity score

(9)

In this equation, is the weight on the edge between nodes

and , is the alignment path common to both nodes,

is the average distortion for that path, and is a

threshold used to normalize the path distortions. The average

distortion is used as opposed to the total distortion in order to

normalize for path length when comparing paths with different

durations. Paths with average distortion greater than are not

included in the similarity computation. The distortion threshold

chosen for all experiments in this chapter was 2.5, which re-

sulted in approximately 10% of the generated alignment paths

being retained. The resulting edge weights are closer to 1 be-

tween nodes with high similarity, and closer to zero (or nonex-

istent) for nodes with low similarity.

Fig. 7. Top—a partial utterance with the time regions from its associated path
fragments shown in white. Paths are ordered from bottom to top in increasing
order of distortion. Bottom—the corresponding similarity profile for the same
time interval is shown as a solid line, with the smoothed version shown as a
dashed line (raised for clarity). The extracted time indices are denoted as dots
at the profile peaks.

A. Node Extraction

While it is relatively straightforward to see how alignment

path fragments can be converted into graph edges given a set

of time index nodes in the audio stream, it is less clear how

these nodes can be extracted in the first place. In this section,

we describe the node extraction procedure.

Recall that the input to the segmental DTW algorithm is not

a single contiguous audio stream, but rather a set of utterances

produced by segmenting the audio using silence detection. Our

goal in node extraction is to determine a set of discrete time

indices within these utterances that are representative of their

surrounding time interval. This is accomplished by using in-

formation about the alignment paths that populate a particular

utterance.

Consider the example shown in Fig. 7. In this example, there

are a number of alignment paths distributed throughout the ut-

terance with different average path distortions. The distribution

of alignment paths is such that some time indices are covered by

many more paths than others—and are therefore similar to more

time indices in other utterances. These heavily covered time in-

dices are typically located within the words and phrases that are

matched via multiple alignment paths.

We can use the alignment paths to form a similarity profile

by summing the similarity scores of (9) over time. That is, the

similarity score at time , is given by

(10)

In this equation, are the paths that overlap , and is the

similarity value for given by (9).

After smoothing the similarity profile with a 0.5-s trian-

gular averaging window, we take the peaks from the resulting

smoothed profile and use those time indices as the nodes in

our adjacency graph. Because our extraction procedure finds

locations with locally maximized similarity within the utter-

ance, the resulting time indices demarcate locations that are

more likely to bear resemblance to other locations in the audio

stream.
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Fig. 8. Example of graph clustering output. Nodes are colored according to
cluster membership. Dashed lines indicate intercluster edges.

The reasoning behind this procedure can be understood by

noting that only some portions of the audio stream will have high

similarity (i.e., low distortion) to other portions. By focusing on

the peaks of the aggregated similarity profile, we restrict our-

selves to finding those locations that are most similar to other

locations. Since every alignment path covers only a portion of

an utterance, the similarity profile will fluctuate over time. This

causes each utterance to separate naturally into multiple nodes

corresponding to distinct patterns that can be joined together via

their common alignment paths. Each path that overlaps a node

maps to an edge in the adjacency graph representation of the

audio stream. The method we describe for inducing a graph from

the alignment paths is one of many possible techniques. We dis-

cuss other possibilities for graph conversion in Section VII.

B. Graph Clustering

Once an adjacency graph has been generated for the audio

stream using the extracted nodes and path fragment edges, the

challenge of finding clusters in the graph remains. In an adja-

cency graph, a good clustering is one where nodes in one cluster

are more densely connected to each other than they are to nodes

in another cluster. The clustered adjacency graph in Fig. 8 il-

lustrates this concept. A naive approach to this problem is to

simply threshold the edge weights and use the groups of con-

nected components that remain as clusters. Though conceptu-

ally simple, this approach is prone to accidental merging if even

a single edge with high weight exists between two clusters that

should be separated. In contrast to simple edge thresholding, a

number of more sophisticated algorithms for automatic graph

clustering have been proposed by researchers in other fields

[32], [33]. For some applications, such as task scheduling for

parallel computing, the clustering problem is cast as a parti-

tioning task, where the number and size of desired clusters is

known and the objective is to find the optimal set of clusters

with those criteria in mind. For other applications, such as de-

tecting community structure in social and biological networks,

the number and size of clusters is typically unknown, and the

goal is to discover communities and groups from the relation-

ships between individuals.

In our work, the clustering paradigm aligns more closely with

the latter example, as we are attempting to discover groups of

segments corresponding to the same underlying lexical entity,

and not partition the audio stream into a set of clusters with

uniform size. Since a detailed treatment of the graph clustering

problem is outside the scope and intent of this work, we focus

on an efficient, bottom-up clustering algorithm for finding com-

munity structure in networks proposed by Newman [34]. The

Newman algorithm begins with all edges removed and each

node in its own group, then merges groups together in a greedy

fashion by adding edges back to the graph in the order that max-

imizes a modularity measure which is given by

(11)

where is the fraction of edges in the original network that

connect vertices in group to those in group , and .

More informally, is the fraction of edges that fall within

groups, minus the expected value of the same quantity if edges

fall at random without regard for the community structure of

the graph. The value of ranges between 0 and 1, with 0 being

the expected modularity of a clustering where intercluster edges

occured about as frequently as intracluster edges, and higher

scores indicating more favorable clusterings of the graph. The

advantages of this particular algorithm are threefold. First, it

easily allows us to incorporate edge weight information in the

clustering process by considering weights as fractional edges in

computing edge counts. Second, it is extremely fast, operating

in time in the worst case. Finally, the modularity

criterion offers a data-driven measure for determining the

number of clusters to be detected from a particular graph.

Because our goal is to separate the graph into groups joining

nodes sharing the same word(s), multiple groups containing the

same word are more desirable than fewer groups containing

many different words. We therefore associate a higher cost with

the action of mistakenly joining two unlike groups than that of

mistakenly leaving two like groups unmerged. This observation

leads us to choose a conservative stopping point for the clus-

tering algorithm at 80% of peak modularity.

C. Nodes to Intervals

Recall from Section IV-A that the nodes in the adjacency

graph represent not time intervals in the original audio stream,

but time indices. For the purposes of clustering, this time index

abstraction may be adequate for representing nodes, but we will,

at times, require associating a time interval corresponding to that

node. One situation where we need a time interval rather than

the time index corresponding to the node is for determining how

to transcribe a node. As can be seen from the example in Fig. 7,

the alignment paths overlapping a particular node rarely agree

on starting and ending times for their respective time intervals.

We assign a time interval to a node by computing the average

start and end times for all the alignment paths for edges occur-

ring within the cluster to which that node belongs.

V. EXPERIMENTAL BACKGROUND

A. Speech Data

Word-level experiments in this paper are performed on

speech data taken from an extensive corpus of academic lec-

tures recorded at MIT [35]. At present, the lecture corpus

includes more than 300 h of audio data recorded from eight dif-

ferent courses and over 80 seminars given on a variety of topics

such as poetry, psychology, and science. Many of these lectures

are publicly available on the MITWorld website [36] and as a

part of the MIT OpenCourseware initiative [37]. In most cases,

each lecture takes place in a classroom environment, and the
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TABLE I
SEGMENT OF SPEECH TAKEN FROM A LECTURE, “THE WORLD

IS FLAT,” DELIVERED BY THOMAS FRIEDMAN

audio is recorded with an omnidirectional microphone (as part

of a video recording).

We used six lectures for the experiments and examples

in this work, each one delivered by a different speaker. The

lectures ranged in duration from 47 to 85 min, with each

focusing on a well-defined topic. Five of the lectures were

academic in nature, covering topics like linear algebra, physics,

and automatic speech recognition. The remaining lecture was

delivered by Thomas Friedman, a New York Times columnist,

who spoke for 75 min on the material in his recent book, “The

World is Flat.” An example of the type of speech from this

lecture is shown in Table I. We note that transcript deviates

significantly from patterns typically observed in formal written

text, exhibiting artifacts such as filled pauses (1), false starts

(1), sentence fragments (2), and sentence planning errors (3).

One of the unique characteristics of the lectures described

above is the quantity of speech data that is available for any par-

ticular speaker. Unlike other sources of speech data, these lec-

tures are primarily comprised of a single speaker addressing an

audience for up to an hour or more at a time, making it particu-

larly well suited to our word-discovery technique. Moreover, the

focused and topical nature of the lectures we investigate tend to

result in relatively small vocabularies which make frequent use

of subject-specific keywords that may not be commonly used in

everyday speech.

B. Segmentation

The lectures in the dataset are typically recorded as a single

stream of audio often over 1 h in length, with no supplementary

indicators of where one utterance stops and another begins. For

many of the processing steps undertaken in subsequent stages,

we require a set of discrete utterances in order to compare utter-

ances to one another. In order to subdivide the audio stream into

discrete segments of continuous speech, we use a basic phone

recognizer to identify regions of silence in the signal [38]. Silent

regions with duration longer than 2 s are removed, and the por-

tions of speech in between those silences are used as the isolated

utterances. The use of a phone recognizer is not a critical pre-

requisite for this segmentation procedure, since we only use the

output to make a speech activity decision at each particular point

in time. In the absence of a phone recognizer, a less sophisticated

technique for speech activity detection can be substituted in its

place. Most of the utterances produced during the segmentation

procedure are short, averaging durations of less than 3 s. The

segmentation procedure is also conservative enough that seg-

mentation end points are rarely placed in the middle of a word.

TABLE II
CLUSTER STATISTICS FOR ALL LECTURES PROCESSED IN THIS PAPER.
ONLY CLUSTERS WITH AT LEAST THREE MEMBERS ARE INCLUDED

IN THIS TABLE. THE LAST TWO COLUMNS INDICATE HOW MANY

OF THE GENERATED CLUSTERS ARE ASSOCIATED WITH A SINGLE

WORD IDENTITY OR A MULTIWORD PHRASE

C. Computational Considerations

As described, the pattern discovery process requires that each

utterance is compared with each other utterance. The number of

segmental DTW comparisons required for each audio stream is

therefore quadratic in the number of utterances. This step is the

most computationally intensive part of the process; node gener-

ation and clustering do not incur significant computation costs.

Since each pair of utterances can be compared independently,

we perform these comparisons in parallel to speed up computa-

tion. The number of comparisons can potentially be reduced by

merging matching segments as they are found.

VI. CLUSTER ANALYSIS

We processed the six lectures described in Section V-A using

the segmental DTW algorithm and generated clusters for each.

Overall cluster statistics for these lectures are shown in Table II.

We will return to this table momentarily, but for illustrative pur-

poses, we focus on clusters from the Thomas Friedman lecture.

A more detailed view of the clusters with at least three members

is shown in Table III. In this table, the clusters are listed first

in decreasing order of size, denoted by , then by decreasing

order of density . The density, a measure of the “intercon-

nectedness” of each cluster, is given by

(12)

The quantity in the above equation is the fraction of edges ob-

served in the cluster out of all possible edges that could exist be-

tween cluster nodes. Higher densities indicate greater agreement

between nodes. Table III also includes a purity score for each

cluster. The purity score is a measure of how accurately the clus-

tering algorithm is able to group together like speech nodes, and

is determined by calculating the percentage of nodes that agree

with the lexical identity of the cluster. The cluster identity, in

turn, is derived by looking at the underlying reference transcrip-

tion for each node and choosing the word or phrase that appears

most frequently in the nodes of that particular cluster. Clusters

with no majority word or phrase (such as those matching sub-

word speech segments), are labeled as “ .”

1) Example Clusters: Some examples of specific clusters

with high purity are shown in Fig. 9. Cluster 27 in Fig. 9 is an
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TABLE III
INFORMATION FOR THE 63 CLUSTERS WITH AT LEAST THREE MEMBERS GENERATED FOR THE FRIEDMAN LECTURE.

CLUSTERS ARE ORDERED FIRST BY SIZE, THEN IN DECREASING ORDER OF DENSITY

example of a high-density cluster, with each node connecting to

each other node, and the underlying transcriptions confirm that

each node corresponds to the same recurring phrase. The other

two clusters in Fig. 9, while not displaying the same degree of in-

terconnectedness, nevertheless all consist of nodes with similar

transcriptions. One interesting property of these clusters is the

high degree of temporal locality displayed by their constituent

nodes. With the exception of node 587, most of the other nodes

occur within 5 min of the other nodes in their respective clusters.

This locality may be indicative of transient topics in the lecture

which require the usage of terms that are only sporadically used.

In the case of cluster 27, these four instances of “search engine

optimize-” were the only instances where they were spoken in

the lecture.

2) Cluster Statistics: Several interesting points can be noted

regarding the clusters generated from the Friedman lecture.

First, most clusters (56 of 63) have a word or phrase that can be

considered to be the lexical identity of the cluster. Out of these

clusters, over 73% of the clusters have a purity of 100%, which

offers encouraging evidence that the segmental DTW measures

and subsequent clustering procedure are able to correctly group

recurring words together. As might be expected, the cluster

density appears to be positively correlated to cluster purity,

with an average purity of 87% among clusters with density

greater than 0.05, and an average purity of 53% among clusters

with density less than or equal to 0.05. We also observe that the

clustering algorithm does not appear to discriminate between
Fig. 9. Detailed view of clusters 17, 24, and 10, including the node indices,
transcriptions, and locations in the audio stream.
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TABLE IV
TWENTY MOST RELEVANT WORDS FOR EACH LECTURE, LISTED IN DECREASING ORDER OF TFIDF SCORE.

WORDS OCCURING AS PART OF A CLUSTER FOR THAT LECTURE ARE SHOWN IN BOLD

single words and multiword phrases that are frequently spoken

as a single entity, with more than half of the clusters (31 of 56)

mapping to multiword phrases.

Overall cluster purity statistics for the five other academic

lecture processed in this paper are shown in Table II. We found

that across all six lectures, approximately 83% of the generated

clusters had density greater than 0.05, and among these higher

density clusters, the average purity was 92.2%. In contrast, the

average purity across all of the lower density clusters was only

72.6%. These statistics indicate that the observations noted in

the previous paragraph appear to transfer to the other lectures.

Some notable differences between the Friedman lecture and the

academic lectures are the larger average cluster size, and higher

overall purity across the clusters in general. The larger size of

some clusters can be attributed to the more focused nature of the

academic lecture vocabulary, while the higher purity may be a

result of differences in speaking style.

A cursory view of the cluster identities for each lecture in-

dicates that many clusters correspond to words or phrases that

are highly specific to the subject material of that particular lec-

ture. For example, in the physics lecture, the words “charge,”

“electric,” “surface,” and “epsilon,” all correspond to some of

the larger clusters for the lecture. This phenomenon is expected,

since relevant content words are likely to recur more often, and

function words such as “the,” “is,” and “of,” are of short du-

ration and typically exhibit significant pronunciation variation

as a result of coarticulation with adjacent words. One way of

evaluating how well the clusters capture the subject content of

a lecture is to consider the coverage of relevant words by the

generated clusters.

Since there is no easy way of measuring word relevancy

directly, for the purposes of our work, we use each word’s

term-frequency, inverse document-frequency (TFIDF) score as

a proxy for its degree of relevance [39]. The TFIDF score is the

frequency of the word within a document normalized by the

frequency of the same word across multiple documents. Our

rationale for using this score is that words with high frequency

within the lecture, but low frequency in general usage are more

likely to be specific to the subject content for that lecture. The

word lists in Table IV are the 20 most relevant words for each

lecture ranked in decreasing order of their TFIDF score. Each

list was generated as follows.

1) First, words in the reference transcription were stemmed to

merge pluralized nouns with their root nouns, and various

verb tenses with their associated root verbs.

2) Partial words, filled pauses, single letters and numbers, and

contractions such as “you’ve” or “i’m” were removed from

the reference transcription.

3) Finally, the remaining words in the lecture were ranked

by TFIDF, where the document frequency was deter-

mined using the 2K most common words in the Brown

corpus [40].

When considered in the context of each lecture’s title, the lists

of words generated in Table IV appear to be very relevant to

the subject matter of each lecture, which qualitatively validates

our use of the TFIDF measure. The words for each lecture in

Table IV are highlighted according to their cluster coverage,

with words represented by a cluster shown in bold. On average,

14.8 of the top 20 most relevant words are covered by a cluster

generated by our procedure. This statistic offers encouraging
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evidence that the recurring acoustic patterns discovered by our

approach are not only similar to each other (as shown by the high

average purity), but also informative about the lexical content of

the audio stream.

VII. DISCUSSION AND FUTURE WORK

This paper has focused on the unsupervised acquisition of

lexical entities from the information produced by the segmental

DTW algorithm. We demonstrated how to use alignment paths,

which indicate pairwise similarity, to transform the audio stream

into an abstract adjacency graph which can then be clustered

using standard graph clustering techniques. As part of our eval-

uation, we showed that the clusters generated by our proposed

procedure have both high purity and good coverage of terms that

are relevant to the subject of the underlying lecture.

As we noted in Section V-A, there are several reasons why

the lecture audio data was particularly well suited for pattern

discovery using segmental DTW. First, the types of material

was single-speaker data in a consistent environment, which al-

lowed us to ignore issues of robustness with our feature rep-

resentation. Second, the amount of topic-specific data ensured

that there were enough instances of repeated words for the al-

gorithm to find. For both of these reasons, our algorithm would

likely not perform as well if applied directly to other domains,

such as Switchboard or Broadcast News. In particular, we would

not expect to find clusters of the same size or density without re-

ducing the length parameter and/or including more edges in the

adjacency graph. The reason for this is mainly due to speaker

changes and paucity of repeated content words. Speaking style

is not as significant an issue, as the lecture data exhibits speech

that is much more conversational than read speech or broadcast

news data.

The work presented in this paper represents only an initial

investigation into the more general problem of knowledge ac-

quisition from speech. Many directions for future work remain,

and we expand upon some of them here.

In our experiments, we chose a large value for the param-

eter to limit the over-generation of alignment path fragments cor-

responding to short, possibly spurious, acoustic matches. Typi-

cally, low-distortion path fragments corresponding to words or

phrases are recoverable from shorter path fragments during the

extension step of path refinement. Discovery of longer fragments

is therefore not particularly sensitive to our choice of . Larger

values of primarily serve to prevent short path fragments (usu-

ally corresponding to subword matches) from being passed on to

the node generation and clustering stage. Within the context of

word acquisition, these shorter path fragments are problematic

because they cause dissimilar words to cluster with one another

via common subword units. Possibilities for future work include

using smaller values of for discovery of subword units or deter-

mining the appropriate setting of in a more principled manner.

For example, the optimal setting for could be determined by

performing pattern discovery over the audio stream using mul-

tiple ’s and choosing from the best one according to some se-

lection criterion.

An incremental strategy for improving cluster purity and

finding more precise word boundaries may be to adopt an

iterative approach to cluster formation. After clusters have been

formed and the time intervals for each node have been esti-

mated, edge weights between cluster nodes can be recomputed

using the start and end times of the node intervals as constraints.

Based on these new edge weights, nodes can be rejected from

the cluster and the time intervals can be reestimated, with the

process continuing until convergence to a final set of nodes.

The idea behind this approach is to eliminate chaining and

partial match errors by forcing clusters to be generated based

on distortions that are computed over a consistent set of speech

intervals.

Similarly, one could imagine using an interval-based clus-

tering strategy to help avoid accidental merging of lexically dif-

ferent clusters, which can occur as a result of “chained” multi-

word phrases, or matched subword units such as “tion.” Interval-

based clustering would resolve this problem by using whole

time intervals as nodes, rather than time indices. This approach

would allow a hierarchical representation of a particular speech

segment and distinguish between overlapping intervals of dif-

ferent lengths.

At a more abstract level, we believe that an interesting direc-

tion for future work would be to incorporate some way to build

and update a model of the clustered intervals using some type

of hidden Markov model or generalized word template. This

would introduce significant computational savings by reducing

the number of required comparisons.

Another area for future exploration is the automatic identifi-

cation and transcription of cluster identities. We have previously

proposed algorithms for doing so using isolated word recog-

nition and phonetic recognition combined with a large base-

form dictionary [24]. This task illustrates how unsupervised pat-

tern discovery can provide complementary information to more

traditional automatic speech recognition systems. Since most

speech recognizers process each utterance independently of one

another, they typically do not take advantage of the consistency

with which the same word is uttered when repeated in the test

data. Alignment paths generated by segmental DTW can find lo-

cations where an automatic transcription is not consistent by in-

dicating where acoustically similar segments produced different

transcriptions.

This paper documents our initial research on unsupervised

strategies for speech processing. While conventional large

vocabulary speech recognition would likely perform well

in matched training and testing scenarios, there are many

real-world scenarios where a paucity of content information

can expose the brittleness of purely supervised approaches. We

believe that techniques such as the one in this paper, which

rely less on training data, can be combined with conventional

speech recognizers to create more flexible, hybrid systems that

can learn from and adapt to unexpected input. Examples of

such unexpected input include: accented speech, out-of-vocab-

ulary words, new languages, and novel word usage patterns. In

each of these scenarios, exploiting the consistency of repeated

patterns in the test data has not been fully explored, and we

believe it is a promising direction for future research.
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