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ABSTRACT

We present a unifying view of temporal concepts and data
models in order to categorize existing approaches for un-
supervised pattern mining from symbolic temporal data.
In particular we distinguish time point-based methods and
interval-based methods as well as univariate and multivari-
ate methods. The mining paradigms and the robustness of
many proposed approaches are compared to aid the selec-
tion of the appropriate method for a given problem. For
time points, sequential pattern mining algorithms can be
used to express equality and order of time points with gaps
in multivariate data. For univariate data and limited gaps
suffix tree methods are more efficient. Recently, efficient
algorithms have been proposed to mine the more general
concept of partial order from time points. For time interval
data with precise start and end points the relations of Allen
can be used to formulate patterns. The recently proposed
Time Series Knowledge Representation is more robust on
noisy data and offers an alternative semantic that avoids
ambiguity and is more expressive. For both pattern lan-
guages efficient mining algorithms have been proposed.

1. INTRODUCTION
Multivariate time series and other time related data oc-
cur in many areas and mining this data poses interesting
challenges. There are many different approaches for tem-
poral pattern mining based on various data models. They
are usually designed with a particular application in mind.
Many terms are used in different publications with very dif-
ferent meanings, e.g., events [69; 40; 56; 99] or episodes
[69; 22; 49]. We present a unifying view on the temporal
concepts that can be discovered by a certain method and a
common language for the underlying data models. Existing
approaches for unsupervised pattern mining from symbolic
temporal data are categorized accordingly.

On a coarse level we distinguish between time point-based
methods and interval-based methods. Another important
feature is the applicability to univariate or multivariate data.
We further discuss the temporal concepts a pattern lan-
guage can express, the robustness to noise, and the mining
paradigm used. The goal is to give researchers a guideline to
select the appropriate method for their purpose. If a certain
pattern language is more flexible than necessary the mining
will be more costly. If the given data is noisy one needs to
be aware of the influence on the resulting patterns.

We define common temporal data models in Section 2 and
temporal concepts within these models in Section 3 to pro-
vide a common language for the later sections. Section 4
lists temporal operators that have been used in temporal
data mining to express the different concepts. The relations
of the data models with the most important temporal con-
cepts and operators are shown in Figure 1 for time point
and Figure 2 for time interval data respectively.

Figure 1: Temporal concepts and operators for time point
data models.

Figure 2: Temporal concepts and operators for time interval
data models.

In Section 5 we review methods for unsupervised mining of
frequent patterns that relate time point-based properties of
a temporal process. Patterns from time interval data are
compared in Section 6. The approaches are discussed in
Section 7 and Section 8 lists related work. In Section 9
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we conclude this survey with some implications for possible
future research.

2. TEMPORAL DATA MODELS
This section introduces temporal data models and temporal
concepts that are building blocks of many temporal data
mining methods. See [74; 77] for formal definitions.
Usually temporal data is represented based on observations
at discrete time instants. Often, time is uniformly sampled.
If not, there is usually some lower bound for the granularity
of time. We refer to this finest level of temporal detail as
time points1. Even if no explicit time values but only an
ordering is given, the order can be mapped to integer values.
A time series is a set of unique time points. A time sequence
is a multiset of time points, i.e., it can include duplicates.
A pair of time points defines a time interval starting at the
earlier point and ending at the later point inclusively. Two
intervals overlap if there is at least one time point that lies
within both intervals. An interval series is a set of non-
overlapping time intervals. In a contiguous interval series
no gaps between two consecutive intervals are allowed. An
interval sequence can include overlapping and even equal
time intervals. The series data types can be univariate, i.e.,
consisting of a single series or multivariate where several
series cover the same but not necessarily equally sampled
time range.

A numeric time series is a time series with numerical values
for each time point. This is the data model commonly used
in statistics, see Figure 3(a) for an example. A numeric
time sequence, i.e., a time sequence with numerical values
per point, is rarely used. A symbolic time series is a time
series with nominal values for each point (see Figure 3(b)).
It can be obtained from numeric time series by discretization
(e.g. [62]). A symbolic time sequence has nominal values
with possible duplicate time points (see Figure 3(c)). The
symbols A-D are observed at certain time points and two or
more symbols can be observed at the same time. A typical
example are status events in network monitoring [68].

A numeric interval series is a series of non-overlapping time
intervals with numerical values for each interval, a symbolic
interval series has nominal values, respectively. A multi-
variate symbolic interval sequence is shown in Figure 3(d).
The symbols A-C are observed during certain time intervals.
These data models are commonly obtained from univariate
or multivariate numeric time series by segmentation (e.g.
[57]) and feature extraction (e.g. [51]). Numeric interval
data models can be used to mine quantitative association
rules, e.g., for stock prices [60].

An itemset sequence is a time sequence where an itemset
is assigned to each time point. An itemset is a subset of
a set of symbols. This data model is used in sequential
association rule mining [2], see Figure 3(e) for an example.
Univariate symbolic time series and symbolic time sequences
are special cases of itemset sequences with itemsets of size
one. Multivariate symbolic time series are itemset sequences
with itemsets of size equal to the dimensionality of the time
series.

For each data model there can be a single long series or se-
quence or a database of (short) series or sequences, e.g., sets
of numeric time series [29] or more typically sets of itemset

1Time points are called chronons in research on temporal
databases [16]

sequences. A set of short sequences or series can be obtained
from a longer one with a sliding window. With overlapping
windows this can cause redundancy because many fragments
of a frequent patterns will be observed. This can be avoided
by restricting patterns such that they start at the first time
point in the window [20].

Figure 3: Some typical temporal data models.

3. TEMPORAL CONCEPTS
The concept of duration is the persistence or repetition
of a property over several time points. Duration is what
distinguishes time point from time interval data models.
Time points express instantaneous information, e.g., light-
ning during a thunderstorm. According to the time reso-
lution of our visual perception lightning is perceived as an
instantaneous event without duration. The following thun-
der, however, usually lasts for a few seconds and can thus
be described by an interval and has a duration.
The concept of order is the sequential occurrence of time
points or time intervals. Lightning is always followed by a
thunder in a storm.

The concept of concurrency is the closeness of two or more
temporal events in time in no particular order. In a heavy
thunderstorm lightning and gusts of wind occur concur-
rently, but there is no typical order relation between these
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events. Concurrency is often used for time points, especially
for the data model of time sequences where the exact local
order of time points is not necessarily meaningful. With
intervals it correspond to the occurrence of two or more in-
tervals within a larger sliding window and no further con-
straints on their relative position.

The concept of coincidence describes the intersection of sev-
eral intervals. If rain coincides with sunshine, there will of-
ten be a rainbow visible. Both rain and sunshine could have
started earlier or lasted longer, but only when they coincide
the rainbow is visible.
The concept of synchronicity is the synchronous occurrence
of two temporal events, i.e., equality of time points or time
intervals. The flash of lightning and the shrinking of our
pupils to adjust for the brightness are synchronous time
point events (at the temporal resolution of our perception).
For time intervals imagine a sunny spring afternoon with
a cloud passing the sun. During this time interval it will
be slightly darker and cooler. Both effects set in and end
synchronously with the shadow approaching and receding.

4. TEMPORAL OPERATORS
Before we turn our attention to temporal pattern mining we
review temporal operators that have been used to relate time
points and time intervals expressing the identified temporal
concepts.

4.1 Time Point Operators
For two points in time there are three binary operators: be-
fore, equals, and after. Both before and after can be ac-
companied by a threshold, e.g., after at most (least) k time
units. This corresponds to a complete ordering of the time
stamps and is used in many temporal data mining algo-
rithms. Sometimes an operator is used to specify that two
or more time stamps lie within a time interval expressing
concurrency [67; 26; 112].

In [15] an operator called temporal constraint with granular-
ity expresses the operators before, after, and equals w.r.t. a
granularity of time. The authors argue, that one day is not
equivalent to 24h, because the latter could cover parts of two
days, an important distinction in some applications. Also,
finer granularities do not necessarily have to correspond to
larger ones: an hour is always part of a day, but not ev-
ery hour is part of a business day. Thus, the result of the
operator can be undefined. A fuzzy extension for temporal
reasoning has been proposed in [28] expressing relations like
much before or closely after.

4.2 Time Interval Operators

4.2.1 Allen’s Interval Operators

For the purpose of temporal reasoning Allen formalized tem-
poral logic on intervals by specifying 13 interval relations [4]
and showing their completeness. Any two intervals are re-
lated by exactly one of the relations. The operators are:
before, meets, overlaps, starts, during, finishes, the corre-
sponding inverses after, met by, overlapped by, started by,
contains, finished by, and equals (see Figure 4).
The relations are commonly used beyond temporal reason-
ing, e.g., for the formulation of temporal patterns (see Sec-
tion 6). In [11] a fuzzy extension of Allen’s interval relations
is proposed by adding a preference degree to each possible

Figure 4: Examples of Allen’s interval relations between the
intervals A and B. The first six can be inverted.

relation. For other approaches to fuzzy time interval rela-
tions see [17; 79; 82]. In [100] a relaxed version of Allen’s
relations, called TIME, is described. The strict meets, starts,
and finishes operators are relaxed using a threshold (origi-
nally proposed in [3]) and intervals far apart are defined to
have no relation.

4.2.2 Freksa’s SemiInterval Operators

Freksa generalized Allen’s interval relations by using semi-
intervals [32]. There are 10 operators that relate two inter-
vals by using only one boundary of each. The operators older
with inverse younger and head to head shown in the first two
rows of Figure 5 relate two intervals by their corresponding
start points. The operators survives with inverse survived by
and tail to tail shown in the next two rows are defined using
the end points of each interval. The operators precedes with
inverse succeeds and born before death with inverse died after
birth relate the start point of one interval with the end point
of the other. These operators can be combined to form the
additional operators: contemporary (dies after birth or born
before death), older & survived by, younger & survives, older
contemporary, surviving contemporary, survived by contem-
porary, and younger contemporary.
The generalization to semi-intervals was motivated by the
observation that ”in no case, more than two relations be-
tween beginnings and endings of events must be known for
uniquely identifying the relation between the corresponding
events”. For temporal reasoning the semi-interval represen-
tation has the advantage that coarse or incomplete knowl-
edge is represented by simpler formulas instead of long dis-
junctions. A concept of similarity among the relations is de-
scribed. Freksa’s semi-interval relations were used to mine
temporal association rules in [91].

4.2.3 Roddick’s Midpoint Interval Operators

Roddick combined Allen’s interval relations with the five
point-interval relations of [106] considering the relative po-
sitions of the interval midpoints [92]. A total of 49 relations
is obtained, e.g., nine different versions of overlaps. Two
examples based on Allen’s relation A overlaps B are shown
in Figure 6(a). In the first case the midpoints of each in-
terval are within the other interval. In the second case the
midpoint of A is before B and the midpoint of B is after
A. The two different versions of Allen’s relation can thus be
interpreted as large or small overlap. The motivation for the
new operators is handling data with coarse time stamps and
data from streams with arbitrary local order. The authors
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Figure 5: Examples of Freksa’s semi-interval relations be-
tween the intervals A and B. Inverse operators are shown
in italics.

also describe the relation between the models of Allen and
Freksa and the respective extensions to midpoints and/or
intervals of equal durations.

4.2.4 Other Interval Operators

The containment operator used in [107] is equivalent to the
disjunction of Allen’s equals, starts, during, and ends. The
Unification-based Temporal Grammar (UTG) proposed by
Ultsch contains an approximate version of Allen’s equals op-
erator called more or less simultaneous [104; 39; 105] (see
Figure 6(b)). The start and end points of the intervals are
not required to be exactly equal, they only need to be within
a small time interval. A further generalization, called co-
incides, was proposed in [75] by dropping the constraints
on the boundary points, only requiring some overlap be-
tween the intervals (see Figure 6(c)). For two intervals this
is equivalent to the disjunction of Allen’s overlaps, starts,
during, finishes, the four corresponding inverses, and equals.

4.3 Temporal Logic Operators
Temporal logic operators apply to data given as temporal
facts. They evaluate the truth of facts at time points or
during time intervals.
In [10] first order Linear Temporal Logic (LTL) is used for
planning tasks. LTL is an extension of First Order Logic
(FOL) used to specify temporal facts about predicates in a
sequence of worlds. The main temporal operators are un-
til and next, additionally the derived operators always and
eventually are used. An extension with the core operators
since, until, next, and previous, called First Order Temporal
Logic (FOTL), is described in [83]. The operators always,
sometimes, before, after, and while can be derived. In [24;
25] a first order language with the temporal base operators
sometimes, always, next, and until and some derived oper-
ators is used to form temporal classification rules. In [93]
three interval predicates are used: always, sometime, and
true-percentage. The predicates explicitly include start and
end points of an interval and are evaluated on facts instan-

Figure 6: Alternative interval operators.

tiated at time points. The truth of a static predicate, e.g.,
a range condition for a numeric variable, is tested for each
time point in an interval, counting how often it is true. For
always this needs to be true for all time points, sometimes
corresponds to least one success, and true-percentage can
be parametrized as a compromise of the other two. The
Event logic defined in [99] is a combination of Allen’s re-
lations with logical predicates that hold on intervals. The
AMA (and meets and) logic used in [31] is a subset of the
complete Event logic restricted to conjunctions of several
meeting conjunctions of positive interval literals.

5. TIME POINT PATTERNS
The most commonly searched temporal concept in univari-
ate symbolic time series is order, i.e., a sub-sequence of sym-
bols occurring sequentially but not necessarily consecutively.
In Figure 7(a) the occurrences of the sequence B → C → B

are shown. Similar problems occur in string matching and
computational biology (see [41]). The discovery of typical
patterns in a single symbolic time series can be done by con-
structing a suffix tree or a variant thereof. The method de-
scribed in [109] supports patterns with wild cards and group
characters. The wild cards can be used to model (short) gaps
in a pattern. A pattern trie with statistics stored in the tree
nodes is built to efficiently find the most frequent patterns in
a long symbolic time series [109; 110]. The higher the min-
imum frequency is set, the faster the algorithm runs. The
maximum length of a pattern needs to be specified upon tree
construction when all sub-sequences of a certain length are
extracted from the time series with a sliding window. The
efficient calculation of several interestingness measures for
such sub-sequences is described in [5]. Over- and underrep-
resented sequences w.r.t. a binomial or Markov background
model can be found efficiently. The interestingness can be
visualized with suffix trees using different font sizes and col-
ors for the nodes [6]. In [55] several traversal strategies of
suffix tries are compared for efficiency.
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Figure 7: Examples for time point patterns.

The Interagon Query Language (IQL, [54]) is a flexible pat-
tern language for univariate symbolic time series similar to
regular expressions [34] including, e.g., negation and disjunc-
tions. It covers the temporal concepts of order, concurrency,
and duration. Duration is modelled by allowing repetition of
symbols. In Figure 7(b) we show the occurrences of the pat-
tern B → ¬C → (A|B) (B is followed by something other
than C and then by A or B). IQL patterns are mined in
[94] using Genetic Programming [58] where each individual
is the syntax tree of a candidate pattern. The candidates
are evaluated using special hardware to speed up the search.
The search of frequent itemset sub-sequences is commonly
called sequential pattern mining [2]. One typical applica-
tion is customers purchasing sets of items at different times,
where the seller is interested in products typically bought
some time after an initial purchase to give recommendations.
The pattern {B} → {C} → {A, D} if shown in Figure 7(c).
Usually a set of itemset sequences is searched but using a
sliding window such a set can be obtained from a single
long itemset sequence. All approaches for mining itemset
sequences can also be applied to symbolic time series and
sequences by considering each symbol as an itemset of size
one. Sequential patterns can express patterns with gaps of
arbitrary length unless explicitly restricted, e.g., by the slid-
ing window length.

The first method to mine itemset sequences was the Aprio-
riAll [2] algorithm based on the Apriori principle of mining
small frequent patterns first and combining them to form
larger patterns [1]. A faster method is SPADE (Sequential
Pattern Discovery using Equivalence classes) [124]. General-

izations of sequential patterns using concept hierarchies and
temporal constraints were proposed in [101]. In [90] sequen-
tial patterns are combined with multidimensional records
associated with the sequential data. They also describe a
fast algorithm called GSP (Generalized Sequential Pattern).
Recently, an efficient bitmap based algorithm has been pro-
posed [8].

An algorithmically different approach for mining sequential
patterns is called pattern-growth [44] using, e.g., the Pre-
fixSpan [87] algorithm. The pattern-growth approach uses
a depth-first search that avoids the generation and testing
of candidate patterns. Another advantage of this method
is the possibility to push user defined constraints [34] deep
into the mining algorithm, pruning the search space as early
as possible [86; 88]. The SPAM (Sequential Pattern Mining,
[9]) approach is also a depth-first search using a memory
resident bitmap representation to achieve a high speedup
compared to SPADE in general and to PrefixSpan for large
data sets. In [34] regular expressions constraints are used to
guide the search.

The number of reported sequential pattern patterns can
be reduced by restricting the search to closed sequential
patterns, i.e., patterns with no super-patterns of the same
frequency. The CloSpan [115] algorithm uses the pattern
growth paradigm to mine closed sequences. To free the
user from choosing the minimum frequency [103] propose to
mine the top k closed patterns raising the threshold dynam-
ically [103]. In [111] the Bi-Directional Extension checking
(BIDE) algorithm is demonstrated to outperform CloSpan.
The Apriori and PrefixSpan algorithms were extended to
multivariate sequential data in [123]. In [122; 35] sequential
patterns with temporal annotations quantifying the dura-
tion between successive symbols are mined. Approximate
sequential patterns are defined in [59]. For more publica-
tions and more details on the mining algorithm see [126].

Sequential patterns are capable of expressing order and syn-
chronicity. The Episode patterns of [69; 68] are more gen-
eral, because they can also express concurrency. Serial
Episodes express an order of time points. The length of
the pattern is restricted by a maximum temporal distance
between the first and the last symbol. In parallel Episodes
the symbols of a pattern can occur in any order within the
window. In partially ordered Episodes both concepts are
mixed, e.g., an order of parallel Episodes or concurrent serial
Episodes. The parallel combination of two serial Episodes is
shown in Figure 7(d) with a graph based representation of
the order relations on the right. An Apriori algorithm is used
for mining Episodes. The type of patterns and the width of
a sliding window need to be specified by the user. Typical
applications for Episodes include analysis of telecommuni-
cation data or web server logs.

Different methods have bee used for counting the occur-
rences of Episodes. The WINEPI [69] method uses the rela-
tive frequency, i.e., the number of windows with the pattern
divided by the total number of windows. The MINEPI [67]
method uses the concept of minimal occurrences, i.e., a win-
dow around the pattern that does not contain sub windows
with the same pattern. In [12; 18] these approaches are
criticized for the need of a fixed maximum window length.
Instead they constrain the maximum distance between suc-
cessive symbols in a pattern. This way an Episode pat-
tern can be arbitrarily long. The frequency counting is per-
formed with respect to the pattern length. [70] show that
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the method of [18] is incomplete and propose the WinMiner
algorithm [70].
An extension of Episodes expressed as temporal logic pro-
grams with operators like until or since is described in [83].
In [66] Episodes are mined with an generative approach. [46]
mines closed sets of Episodes. Efficient detection of occur-
rences of known Episodes in data can be done using directed
acyclic sub-sequence graphs [102]. In [42] the significance of
Episodes for Bernoulli and Markov background models is
calculated. A formal connection between Episodes and dis-
crete Hidden Markov Models is shown in [61] and utilized in
discovering frequent Episodes.
In [71] Episodes are combined with a subset of Allen’s re-
lations to express more temporal relations among Episodes
than concurrency. Within each frequent Episode sub pat-
terns are searched such that between the time intervals de-
fined by the start and end point of each sub pattern the
during, overlaps, or meets relation holds.

In [89] it is shown that Episodes cannot express all possi-
ble partial orders. An example from [89] is shown in Fig-
ure 7(e) on the right hand side. In [19] such partial orders
were mined from of itemset sequences as follows: First, an
algorithm for mining closed sequential patterns was applied
[115; 111; 103]. The authors note that pairs of a closed se-
quential pattern and the corresponding list of sequences in
which they appear, unlike for closed itemsets [85], do not
form a Galois lattice [33]: There can be sequential patterns
occurring in the same sequences (or windows) that are not
contained in one another. In the next step pairs consisting of
a set of closed sequential patterns and a set of transactions
in which all these patterns occur are formed. The algorithm
ensures maximality of these pairs in the sense that no ad-
ditional sequence occurs in all the transactions and there
is no additional transaction in which all the sequences oc-
cur. These maximal pairs form a Galois lattice and each of
them is converted into a partial order resulting in a lattice
of closed partial orders. In [74] it is noted that forming such
pairs is an instance of the frequent itemset problem and the
CHARM [125] algorithm is used to mine them. [89] pro-
poses a more efficient pattern-growth algorithm to directly
mine closed partial order patterns.
The approaches for unsupervised pattern discovery in sym-
bolic time series and sequences are summarized in Table 1
roughly ordered by increasing expressivity of the pattern
language. For several contributing authors the earlier publi-
cation is listed. All methods for symbolic time sequences can
also be applied to univariate symbolic time series. An exten-
sion to multivariate symbolic time series is usually possible
as well.

The first two methods are targeted at univariate data. Se-
quences are designed to find order relations, while IQL is
very flexible and can express all temporal concepts appli-
cable to univariate time series. Sequential patterns can be
mined in itemset time sequences, symbolic time sequences,
and multivariate symbolic time series. By allowing several
symbols in the pattern for a single time point they can ex-
press synchronicity. Episodes additionally express the con-
cept of concurrency, because in parallel Episodes no order
constraint is placed on the involved symbols. Episodes are
typically mined from symbolic time sequences, but an ex-
tension to itemsets expressing synchronicity is possible. In
[19] such an extension is mentioned for partial orders.

6. TIME INTERVAL PATTERNS
The interval data model implicitly covers the concept of tem-
poral duration, but the length of the interval is not always
used in selecting or expressing the patterns.
The search for containments of intervals in a multivariate
symbolic interval series or sequences is described in [107].
A containment pattern expresses the temporal concept of
coincidence. A containment lattice is constructed from the
intervals and implication rules are generated. The duration
of the intervals is not used. Two examples of A contains B

contains C are shown in Figure 8(a).

Figure 8: Examples for time interval patterns.

In [56] interval patterns are composed with Allen’s relations.
The patterns can express the temporal concepts of coinci-
dence, synchronicity, and order. The duration of an interval
is not explicitly used. The patterns are mined from a set
of interval sequences with an Apriori algorithm. The sup-
port of a pattern is determined by counting the sequences in
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Author(s)/Year Method/Keyword Data model Temporal concepts
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Vilo (1998) [109] Sequences × ×
Saetrom & Hetland (2003) [94] IQL × × × ×
Agrawal & Srikant (1995) [2] Sequential patterns × × × × ×
Mannila et al. (1995) [69] Episodes × × × × ×
Casas-Garriga (2005) [19] Partial order × × × × × ×

Table 1: Categorization of unsupervised frequent pattern mining methods based on time point data models

which it appears. This can easily be generalized to count-
ing the occurrences within sliding windows of a single long
interval sequence. The search space is restricted to right
concatenations of intervals to existing patterns, so-called A1
patterns, and by a threshold for the maximum length of a
pattern. In Figure 8(b) two patterns are shown that could
be described as (((A starts B) overlaps C) overlaps D) as
indicated by the nested dashed boxes in the first example.
In the second example the boxes correspond to a different
possible representation of the same pattern, namely (((A be-
fore C) started by B) overlaps D). Note that we exchanged
the vertical position of B and C to better nest the boxes,
but did not change the positioning of the intervals on the
time axis. Both representations would be reported by the
algorithm with identical support because they describe the
same qualitative pattern.

In [22] a subset of Allen’s relations is used to mine associ-
ation patterns, called Fluents, in multivariate symbolic in-
terval series [22; 23]. Patterns are searched with an Apri-
ori algorithm over sliding windows. A set of interval se-
quences could be used alternatively. The meets and before
relations are merged. Duration of intervals is not modelled.
The patterns are restricted to composites of single intervals
and/or already found patterns. The significance of such
a pair is determined with contingency tables counting co-
occurrences. In Figure 8(c) we used the same intervals as
in Figure 8(b) and indicated the following two possible rep-
resentations with dashed boxes: (A starts B) overlaps (C
during D) and (A before C) starts (B overlaps D). Note
that the A1 formulations are also possible with Fluents but
not vice versa. Which pattern is reported depends on the
pairwise significance scores. Again, several representations
could be reported for the same qualitative pattern.
In contrast, the pattern format proposed in [48; 52] offers
a unique representation by including the pairwise relations
of all intervals according to Allen. The interval constella-
tion from the previous examples in Figure 8(b)-(c) would
be described as A starts B, A overlaps D, A before C, B

overlaps D, B overlaps C, C during D. A single symbolic
interval series is mined using a sliding window and an Apri-
ori algorithm. The support is not determined by counting
occurrences as in [56; 22] but rather by recording the life-
time of a pattern within the sliding window. The pattern
format can of course also be used with a set of interval se-

quences and occurrence counting. The usage of quantitative
attributes, e.g., the length of the intervals or gaps are pro-
posed in [53]. This way duration is expressible in addition to
the concepts of coincidence, synchronicity, and order. Fur-
ther extensions for handling feature ambiguity [50] and rule
set condensation [49] are proposed.
Later, a similar solution was independently described in [84].
The pattern format is equivalent to [52] but uses only a sub-
set of Allen’s relations. A tree-based enumeration algorithm
[13] is used for efficient mining. In [113] the patterns of [52]
are mined with a modified sequential pattern algorithm [63].

The TCon method for temporal knowledge conversion pre-
sented in [37; 40; 38] does not use Allen’s interval relations.
They are criticized for the strict conditions relating inter-
val boundaries. The patterns are instead expressed with the
Unification-based Temporal Grammar (UTG) [104; 39; 105],
a hierarchical pattern language developed for the description
of patterns in multivariate time series. So-called Temporal
Complex Patterns are constructed via several abstraction
levels. The patterns on each level are associated with a lin-
guistic representation in form of temporal grammatical rules
to enable the interpretation by experts. First a multivari-
ate symbolic interval series is obtained from numeric time
series. Event patterns describe several more or less simul-
taneous intervals and express the concept of synchronicity.
Two example of the Events involving the intervals A, C, E

and A, D, E, respectively, are shown in Figure 8(d) with the
dashed boxes. The duration of Events is annotated in the
UTG rule and significance is measured by conditional proba-
bility estimates. Events are required to contain one interval
from each dimension of the multivariate interval series. Se-
quence patterns express an ordering of several Events. The
larger dashed boxes in Figure 8(d) indicate the Temporal
Complex Pattern A, C, E more or less simultaneous fol-
lowed by A, D, E more or less simultaneous. Most steps of
TCon are performed manually based on visualizations and
statistical summaries of the patterns of the previous levels,
no algorithms for the automatic discovery of the temporal
concepts of synchronicity and order are described. The tem-
poral concept of coincidence is not expressible by the UTG
patterns, because the intervals are required to start and end
almost simultaneously. This makes the UTG less expressive
than patterns formulated with Allen’s relations [74].

The Time Series Knowledge Representation (TSKR) [74; 73;
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77] extends the UTG by replacing the temporal concept of
synchronicity with the more general coincidence and relax-
ing the strict order in Sequences to a partial order. Chord
patterns describe a time interval where several observed in-
tervals overlap, no conditions are placed on the interval end
points. In Figure 8(e) we indicated eight Chord patterns
with the dashed boxes. The letter combinations at the bot-
tom indicate which intervals coincide. An important feature
of Chords is that sub-intervals of an observed interval are
allowed. Different parts of the observed interval B on the
left contribute to the three Chords A coincides with B; A,
B, C coincide; and B coincides with C. Phrase patterns
describe a partial order of several Chords. The two similar
Chord sequences of length four in Figure 8(e) as indicated
with the outer dashed boxes are summarized by the partial
order graph of the Phrase shown in Figure 8(f).

Using partial order and allowing sub-intervals in a pattern
makes the TSKR more expressive than the UTG and the
proposed pattern formats using Allen’s relations [73]. A
more flexible pattern language increases the space and calls
for efficient mining algorithms. The Time Series Knowledge
Mining (TSKM) framework [74; 72; 77] describes methods
to obtain TSKR patterns from numeric time series and sym-
bolic interval series. Chords are similar in structure to the
well known itemsets [1]. Each symbolic interval corresponds
to an item and a Chord to an itemset. Chords can thus be
mined efficiently, e.g., with a version of the CHARM [125]
algorithm modified to measure support of Chords as the sum
of the durations of the occurrences. Phrases express a par-
tial order similar to the time points patterns in Section 5.
The mining can be performed in several steps: The interval
sequence of Chords is converted to an itemset sequence with
one itemset per interval where no Chords change containing
all currently active Chords. Next, an algorithm for closed
sequence mining, e.g. CloSpan [115], is applied using a win-
dowing of the itemset sequence. Similar to [19] the closed
sequences are grouped according to their transaction lists.
Each group is then converted to a partial order.

In Table 2 the properties of the described approaches for
pattern discovery in interval series and sequences are listed
in order of increasing expressivity of the pattern language
and earlier publication. All except the second method work
on multivariate interval series and interval sequences.

The first approach is limited to a single temporal concept
and may only be useful in certain applications. Allen’s in-
terval relations provide a higher temporal expressivity of
the resulting patterns and rules. In contrast to [48] the
methods of [56] and [22] do not model duration. The pat-
tern format of [48] has been further used by other authors
[84; 113]. The UTG/TCon also offers duration but not co-
incidence. The successor TSKR can express all identified
temporal concepts.

7. DISCUSSION
When searching for frequent temporal structure in data one
can sometimes choose between the time point and the time
interval data model. Numerical time series can be converted
to symbolic time series or symbolic interval time series by
segmentation [60; 52; 57], discretization [108; 62; 27; 76] or
clustering [40; 78]. Which one is more appropriate depends
on the data. If the temporal process behaves rather smooth
and the discretization contains many repetitions of symbols

we recommend using intervals because they more compactly
represent the data and make mining more efficient.
For time point data the methods from Section 5 can be used
to mine frequent patterns. If the data is univariate, only the
temporal concept of order is interesting, and patterns with
no or just short gaps are sufficient, using the sequence ap-
proach will be most efficient. A summary of the data is
built as a preprocessing step such that the support of can-
didate patterns can be determined more quickly than with
repeated scans of the input data. A limited amount of noise
can be handled by allowing gaps. Regular expression or the
IQL language offer more expressive patterns. Even duration
can be modeled by repetition. The mining with Genetic Pro-
gramming can be quite expensive, however, special hardware
is used in [94] to evaluate candidate patterns.

For multivariate data sequential patterns should be consid-
ered. They can handle gaps more naturally and express
order and synchronicity. There are plenty of algorithms to
choose from and this is still a area of active research [8].

In applications where the local order of symbols can be dis-
turbed by noise or is not relevant in the first place, Episodes
or full partial order patterns should be used. Considering
that partial orders are more expressive and that an efficient
mining algorithm is available [89] we think that they are
preferable to Episodes. More research is needed to transfer
the generation of implication rules from frequent patterns
or the implementation of user defined constraints [88] from
Episodes to full partial order patterns.

For time interval data patterns based on Allen’s relations
have been most widely used. The relations were originally
developed in the context of temporal reasoning [95] where
inference about past, present, and future supports applica-
tions in planning, understanding, and diagnosis. The in-
put usually consists of exact but incomplete input data and
temporal constraints, often expressed by Allen’s relations.
Typical problems include determining the consistency of the
data and answering queries about scenarios satisfying all
constraints. But these problems do not occur in the data
mining context: almost the complete interval data is given
and meaningful and understandable patterns are searched
[52]. One may have to cope with some missing data, but
more importantly with possibly noisy and incorrect data.

As discussed in detail in [74; 73; 77] there are several prob-
lems when using Allen’s relations in the context of data min-
ing. First, patterns from noisy interval data expressed with
Allen’s interval relations are not robust. Several of Allen’s
relations require the equality of two or more interval end
points. Small disturbances in interval end points can create
patterns where a very similar relationship between intervals
is fragmented into different relations, see Figure 9 for an
example.

There have been attempts to relax the strictness of Allen’s

Figure 9: Examples for different patterns according to Allen
that are fragments of the same approximate relation almost
equals.
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Villafane (1999) [107] Containments × × ×
Kam & Fu (2000) [56] Allen/A1 × × × × ×
Cohen (2001) [22] Allen/Fluents × × × × ×
Guimarães & Ultsch [40] UTG/TCon × × × × ×
Höppner (2001) [48] Allen/pairwise × × × × × ×
Mörchen (2006) [74] TSKR × × × × × ×

Table 2: Categorization of unsupervised frequent pattern mining methods based on time interval data models.

interval relations. For fuzzy relations [11] it is not clear
how to best determine the membership values for the rela-
tions between two given intervals. Threshold can be used
to consider temporally close interval boundaries equal [3].
Fragmented patterns are still possible with this approach if
noise causes interval boundaries to be shifted around the
threshold value.

Further, the patterns are ambiguous because as demon-
strated in Figure 10 the same relation of Allen can visu-
ally and intuitively represent very different situations. Even
more ambiguous is the compact representation of patterns
from [56; 22], because as described in Section 6 several dif-
ferent descriptions are valid for the exact same pattern.

Figure 10: Three instances of Allen’s overlaps relation with
large quantitative differences.

Ambiguity could be reduced by splitting patterns with po-
tential high variability into several different patterns, e.g.
using the mid points [92]. But using 49 instead of 13 rela-
tions with many additional conditions requiring equality of
time points will in turn increase effects of pattern fragmen-
tation.

The UTG was the first method that departed from Allen’s
relations when forming patterns from intervals. Instead of
relying on techniques designed for a different purpose, the
UTG was designed from scratch for unsupervised pattern
mining involving time intervals. The UTG Event patterns
are more robust than Allen’s relations, by matching inter-
val endpoints with a threshold. The UTG cannot, however,
express all patterns that can be formulated with Allen, be-
cause Events cannot express overlapping intervals in general
and the number of intervals in an Event is restricted [74].
An important feature of the UTG is the separation of the
temporal concepts over several hierarchical levels. Using
this divide and conquer strategy reduces the search space
for the separate algorithms and offers unique possibilities in

relevance feedback during the knowledge discovery process
and in the interpretation of the results [105]. An expert can
focus on particularly interesting rules and discard valid but
known rules before the next level constructs are searched.
After obtaining the final results an expert can zoom into
each rule to learn about how it is composed and what its
meaning and consequences might be supporting the zoom,
filter, and details on demand paradigm [98].

The TSKR was built upon these ideas inheriting the advan-
tages while fixing the identified discrepancies. As shown in
[74; 77] it is more expressive than the UTG and the pro-
posed pattern formats using Allen’s relations. In contrast
to Allen’s relations the Chord and Phrase patterns of the
TSKR are designed to be easily understandable and avoid
ambiguities. A TSKR pattern always describes similar sit-
uation in the data and can be described with textual rules,
with example instances from the input data, or with a visu-
alization of the partial order graph in the Phrase (see Fig-
ure 8(f) abstracting over quantitative aspects of the particu-
lar observations. The TSKR operator coincides is extremely
robust against noise in the interval boundaries because it
only considers the intersection of all participating intervals,
any interval can individually be stretched to infinity without
changing the pattern at all.
All described interval pattern languages may suffer from fre-
quent short interruptions of otherwise long intervals caused
by noise. Smoothing the original numerical data, if avail-
able, can reduce such effects. The interval data can also be
filtered [74](Chapter 8.3.5) to create longer intervals where
a certain property is almost always observed corresponding
to the true-percentage operator of [93].

8. RELATED WORK
The unsupervised search for frequent temporal patterns can
easily lead to result sets that are too large to analyze. Often,
the user has some idea of the type or structure of the pat-
terns he wishes to find. User defined constraints in general
and temporal constraints in particular are important tools
to guide the search in these cases. Limits on the minimum
or maximum time gap between adjacent elements in a se-
quential pattern can be easily integrated into Apriori-based
mining [101]. In [86; 88] it is shown how the temporal con-
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straints on the length, duration, and gaps can be efficiently
mined with a prefix-growth algorithm.
In addition to the temporal concepts used above, time point
data can be mined for periodicity [43]. Given a period
length, patterns are mined with an Apriori algorithm. For
a period k the patterns consist of k positions filled with
symbols or wild cards and cover the temporal concepts of
order and periodicity. The period is mined along with the
patterns [119]. The method allows missing occurrences as
well as shifted periods between segments of occurrence. In
subsequent work surprising periodic patterns are mined us-
ing an information measure rather than support [120; 121].
Recently, extensions for more robust pattern matching al-
lowing random replacements [117] and meta patterns [118]
have been proposed. In [14] the Fast Fourier Transform
(FFT, [97]) of binary vectors for each symbol is used to ob-
tain candidates for the algorithm of [43]. In contrast [30]
uses a single pass of the data to mine periodic patterns with
a similar method. An incremental version of [43] is proposed
in [7]. A different approach to periodicity mining based on
inter arrival times of a symbol is presented in [64]. Mining
candidate periods before association rules is fast, while the
opposite is more robust, because random occurrences of a
pattern are less likely than those of a single symbol. Peri-
odical patterns are typically searched in retail data, where
discovered periodicity can be used for supply chain manage-
ment or advertisement.

Many of the above described frequent temporal patterns can
be used to generate implication rules similar to association
rules [69; 107; 22; 48; 94; 71]. Often, only implications for-
ward in time are used to ensure the use of the rule for predic-
tion. Other method directly mine implication rules. In [26]
the sequential implication rules of two symbols are mined in
univariate symbolic time series. In [81] this is extended to
multivariate time series and concurrency. The search space
is systematically searched in a general to specific manner.
Possible performance problems can be overcome by parallel
implementations [80]. In [47] the author presents a method
for directly mining Episode rules from multivariate symbolic
time series or symbolic time sequences [47; 45]. The an-
tecedent and consequent part of the rule must be separated
by a time lag. In addition to order and concurrency, syn-
chronicity is supported by creating new symbols for syn-
chronous pairs.
In [60] association rules are mined from interval data. Each
interval is associated with several numeric or symbolic fea-
tures and a single symbolic target attribute. Association
rules on pairs of adjacent intervals predicting the target at-
tribute are mined using the Info-Fuzzy Network (IFN, [65]).
Duration can be expressed by using it as a numerical feature
for the intervals.

9. CONCLUSION
We reviewed pattern languages and algorithms for unsuper-
vised mining of symbolic temporal data. Elementary tempo-
ral concepts and data models were defined to implement the
comparison. In Section 7 we discussed the merits of different
methods trying to help researchers in selecting the appro-
priate method. For time points the concept of partial order
has recently drawn much attention [66; 36; 18; 89]. Inter-
esting further research direction include transferring mining
techniques from sequences to partial orders, e.g., rule gen-

eration, clustering [116], or indexing [21]. For interval data
Allen’s relation have been omnipresent. The recently pro-
posed TSKR offers alternative semantics for interval pat-
terns that are more expressive and more robust. One way
to increase the expressivity of patterns using Allen’s rela-
tions would be to allow patterns with only partially related
intervals. In [96] a temporal reasoning framework based on
time points and time intervals is described and applied to
medical domains [114] using domain knowledge. To the best
of our knowledge there has been no data mining approach to
unsupervised pattern mining for data with time points and
time intervals as may be appropriate for applications like
fault monitoring where single events and states with dura-
tions can be observed. The five point-interval relations of
[106] as used in [92] could be used to formulate patterns.
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