
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 96306, Pages 1–12
DOI 10.1155/ASP/2006/96306

Unsupervised Performance Evaluation of Image Segmentation

Sebastien Chabrier, Bruno Emile, Christophe Rosenberger, and Helene Laurent

Laboratoire Vision et Robotique, UPRES EA 2078, ENSI de Bourges, Université d’Orléans, 10 boulevard Lahitolle,
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We present in this paper a study of unsupervised evaluation criteria that enable the quantification of the quality of an image
segmentation result. These evaluation criteria compute some statistics for each region or class in a segmentation result. Such an
evaluation criterion can be useful for different applications: the comparison of segmentation results, the automatic choice of the
best fitted parameters of a segmentation method for a given image, or the definition of new segmentation methods by optimization.
We first present the state of art of unsupervised evaluation, and then, we compare six unsupervised evaluation criteria. For this
comparative study, we use a database composed of 8400 synthetic gray-level images segmented in four different ways. Vinet’s
measure (correct classification rate) is used as an objective criterion to compare the behavior of the different criteria. Finally, we
present the experimental results on the segmentation evaluation of a few gray-level natural images.
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1. INTRODUCTION

Segmentation is an important stage in image processing since
the quality of any ensuing image interpretation depends on
it. Several approaches have been put forward in the literature
[1, 2], . . .. The region approach for image segmentation con-
sists in determining the regions containing neighborhood
pixels that have similar properties (gray-level, texture,. . .).
The contour approach detects the boundaries of these re-
gions. We have decided to focus on the first approach, namely
the region-based image segmentation, because the corre-
sponding segmentation methods give better results in the
textured case (the most difficult one). Classification methods
can be used afterwards. In this case, a class can be composed
of different regions of the segmentation result.

However, it is difficult to evaluate the efficiency and
to make an objective comparison of different segmentation
methods. This more general problem has been addressed for
the evaluation of a segmentation result and the results are
available in the literature [3]. There are two main approaches.

On the one hand, there are supervised evaluation crite-
ria based on the computation of a dissimilarity measure be-
tween a segmentation result and a ground truth. These cri-
teria are widely used in medical applications [4]. Baddeley’s
distance [5], Vinet’s measure [6] (correct classification rate),
or Hausdorff ’s measure [7] are examples of supervised eval-
uation criteria. For the comparison of these criteria, it is pos-
sible to use synthetic images whose ground truth is directly
available. An alternative solution is to use the segmentation

results manually made by experts on natural images. This
strategy is more realistic if we consider the type of images, but
the question of the different experts objectivity then arises.
This problem can be solved by merging the segmentation re-
sults obtained by the different experts [8] and by taking into
account their subjectivity.

On the other hand, there are unsupervised evaluation cri-
teria that enable the quantification of the quality of a seg-
mentation result without any a priori knowledge. These cri-
teria generally compute statistical measures such as the gray-
level standard deviation or the disparity of each region or
class in the segmentation result. Currently, no evaluation cri-
terion appears to be satisfactory in all cases. In this paper, we
present and test different unsupervised evaluation criteria.
They will allow us to compare various segmentation results,
to make the choice of the segmentation parameters easier, or
to define new segmentation methods by optimizing an eval-
uation criterion. A segmentation result is defined by a level
of precision. When using a classification method, we believe
that the best way to define the level of precision of a segmen-
tation result is the number of its classes. We use the unsuper-
vised evaluation criteria for the comparison of the segmen-
tation results of an image that have the same precision level.

In Section 2, we present the state of the art of unsu-
pervised evaluation criteria and highlight the most relevant
ones. In Section 3, we compare the chosen criteria in order
to evaluate their respective advantages and drawbacks. The
comparison of these unsupervised criteria is first carried out
in a supervised framework on synthetic images. In this case,
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the ground truth is obviously well known and the best eval-
uation criterion will be the one that maximizes the similarity
of comparison with Vinet’s measure. We then illustrate the
ability of these evaluation criteria to compare various seg-
mentation results (with the same level of precision) of real
images in Section 4. We conclude and give the perspectives
of this study in Section 5.

2. UNSUPERVISED EVALUATION

Without any a priori knowledge, most of evaluation crite-
ria compute some statistics on each region or class in the
segmentation result. The majority of these quality measure-
ments are established in agreement with the human percep-
tion. There are two main approaches in image segmentation:
region segmentation and boundary detection. As we chose

to more specifically consider region-based image segmenta-
tion methods, which give better results for textured cases, the
corresponding evaluation criteria will be detailed in the next
paragraph.

2.1. Evaluation of region segmentation

One of the most intuitive criterion being able to quantify
the quality of a segmentation result is the intraregion uni-
formity. Weszka and Rosenfeld [9] proposed such a criterion
with thresholding that measures the effect of noise to evalu-
ate some thresholded images. Based on the same idea of in-
traregion uniformity, Levine and Nazif [10] also defined a
criterion that calculates the uniformity of a region character-
istic based on the variance of this characteristic:

LEV 1(IR) = 1−
1
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where

(i) IR corresponds to the segmentation result of the im-
age I in a set of regions R = {R1, . . . ,RNR} having NR

regions,
(ii) Card(I) corresponds to the number of pixels of the im-

age I ,
(iii) gI(s) corresponds to the gray-level intensity of the pixel

s of the image I and can be generalized to any other
characteristic (color, texture, . . .).

A standardized uniformity measure was proposed by Sez-
gin and Sankur [11]. Based on the same principle, the mea-
surement of homogeneity of Cochran [12] gives a confi-
dence measure on the homogeneity of a region. However, this
method requires a threshold selection that is often arbitrarily

done, limiting thus the proposed method. Another criterion
to measure the intraregion uniformity was developed by Pal
and Pal [13]. It is based on a thresholding that maximizes the
local second-order entropy of regions in the segmentation re-
sult. In the case of slightly textured images, these criteria of
intraregion uniformity prove to be effective and very simple
to use. However, the presence of textures in an image often
generates improper results due to the overinfluence of small
regions.

Complementary to the intraregion uniformity, Levine
and Nazif [10] defined a disparity measurement between two
regions to evaluate the dissimilarity of regions in a segmen-
tation result. The formula of total interregions disparity is
defined as follows:
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ḡI
(

Rk

)

+ ḡI
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where wRk is a weight associated to Rk that can be dependent
of its area, for example, ḡk is the average of the gray-level of
Rk. ḡI(Rk) can be generalized to a feature vector computed
on the pixels values of the region Rk such as for LEV 1. pRk\R j

corresponds to the length of the perimeter of the region Rk

common to the perimeter of the region R j . This type of cri-
terion has the advantage of penalizing the oversegmentation.

Note that the intraregion uniformity can be combined
with the interregions dissimilarity by using the following for-
mula:
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− ḡI
(

R j

)
∣

∣/512− 4/2552NR

)∑NR
i=1 σ

2
(

Ri

)

2
, (3)



Sebastien Chabrier et al. 3

where C2
NR

is number of combinations of 2 regions among
NR.

This criterion [14] combines intra and interregions dis-
parities. intraregion disparity is computed by the normalized
standard deviation of gray levels in each region. The interre-
gions disparity computes the dissimilarity of the average gray
level of two regions in the segmentation result.

Haralick and Shapiro consider that

(i) the regions must be uniform and homogeneous,
(ii) the interior of the regions must be simple without too

many small holes,
(iii) the adjacent regions must present significantly differ-

ent values for the uniform characteristics,

(iv) boundaries should be smoothed and accurate.

The presence of numerous regions in a segmentation result
is penalized only by the term

√

NR. In the case of very noisy
images, the excess in the number of regions should be pe-
nalized. However, the error generated by each small region is
close to 0. Consequently, the global criterion is also close to 0,
which means that the segmentation result is very good in an
erroneous way. Borsotti et al. [15] identified this limitation of
Liu and Yang’s evaluation criterion [16] and modified it, so
as to more strictly penalize the segmentation results present-
ing many small regions as well as heterogeneous ones. These
modifications permit to make the criterion more sensitive to
small variations of the segmentation result:
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where χ(Card(Rk)) corresponds to the number of regions
having the same area Card(Rk), Ek is defined as the sum of
the Euclidean distances between the RGB color vector of the
pixels of Rk and the color vector attributed to the region Rk

in the segmentation result.
Zeboudj [17] proposed a measure based on the combined

principles of maximum interregions disparity and minimal
intraregion disparity measured on a pixel neighborhood.
One defines c(s, t) = |gI(s) − gI(t)|/(L − 1) as the dispar-
ity between two pixels s and t, with L being the maximum of
the gray level. The interior disparity CI(Ri) of the region Ri

is defined as follows:
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where Card(Ri) corresponds to the area of the region Ri and
W(s) to the neighborhood of the pixels. External disparity
CE(i) of the region Ri is defined as follows:
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where pi is the length of the boundary Fi of the region Ri.
Lastly, the disparity of the region Ri is defined by the mea-

surement C(Ri) ∈ [0, 1] expressed as follows:
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Zeboudj’s criterion is defined by
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This criterion has the disadvantage of not correctly taking
into account strongly textured regions.

Considering the types of regions (textured or uniform) in
the segmentation result, Rosenberger presented in [14, 18] a
criterion that enables to estimate the intraregion homogene-
ity and the interregions disparity. This criterion quantifies
the quality of a segmentation result as follows:
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2
, (9)

where D(IR) corresponds to the total interregions disparity
that quantifies the disparity of each neighbor region of the
image I. The total intraregion disparity denoted by D(IR)
computes the homogeneity of each region of the image I:
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where D(Ri) is the intraregion disparity of the region Ri.
D(IR) has a similar definition.

Intraregion disparity

The intraregion disparity D(Ri) is computed considering the
textured or uniform type of the region Ri. This determina-
tion is made according to some statistical computation on
the cooccurrence matrix of the gray-level intensity of the pix-
els in the region Ri. More details about this computation can
be found in [18].

In the uniform case, the intraregion disparity is equal to
the normalized standard deviation of the region. This statis-
tic of order 2 on the dispersion of the gray levels in a region is
sufficient to characterize the intraclass disparity of a uniform
region.
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If the region is textured, the standard deviation does not
give reliable information on its homogeneity. A more com-
plex process based upon texture attributes and clustering
evaluation is used instead. A procedure detailed in [18] is fol-
lowed to compute the homogeneity of each textured region
in the segmentation result.

Briefly stated, a region containing two different primi-
tives must have a high intraregion disparity compared to the
same region composed of a single primitive. So, a dispersion
measure of the Haralick and Shapiro texture attributes deter-
mined into each region is computed.

Interregions disparity

The total interregions disparity D(RI) that measures the dis-
parity of each region depending on the type of each region
(uniform or textured) is defined as follows:

D
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NR
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Card
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)

Card(I)
D
(
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)

, (11)

where D(Ri) is the interregions disparity of the region Ri.
The interclass disparity computes the average dissimilar-

ity of a region with its neighbors. The interregions disparity
of two neighboring regions is also computed by taking their
types into account.

(A) Regions of the same type

(i) Uniform regions. This parameter is computed as
the average of the disparity of a region with its
neighbors. The disparity of two uniform regions
Ri and R j is calculated as

D
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∣
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where ḡI(Ri) is the average gray-level in the re-
gion Ri and NGR is the number of gray-levels in
the region.

(ii) Textured regions. The disparity of two textured
regions Ri and R j is defined as

D
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)

=
d
(

Gi,G j
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∥

∥ +
∥

∥G j

∥
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where Gi is the average parameters vector de-
scribing the region Ri (corresponds to ḡI(Ri) in
the uniform case and to the average value of the
Haralick and Shapiro texture attributes other-
wise). ‖ · ‖ corresponds to the quadratic norm.
We could have used a more complex distance
such as the Bhattacharya distance but we do not
want to make some hypothesis on the probabil-
ity density functions.

(B) Regions of different types

The disparity of regions of different types is set as
the maximal value 1.

Some studies showed the efficiency of this criterion even
for segmentation results of textured images [19].

Figure 1: Example of an image creation with two textured and three
slightly noisy uniform regions.

3. COMPARATIVE STUDY

In this section, we compare different evaluation criteria de-
voted to region-based segmentation methods, pointing out
their respective aspects of interest and limitations. The goal
is then to identify the domain of applicability of each crite-
rion.

3.1. Experimental protocol

We present here the image database, the segmentation meth-
ods, and the evaluation criteria we have used for the different
tests.

Image database

We created a database (BCU) composed of synthetic images
to compare the criteria values with a supervised criterion (for
synthetic images, the ground truth is of course available).
It includes 8400 images with 2 to 15 regions (see Figure 1).
These images are classified in five groups for each number of
regions (see Figure 2):

(i) 100 images composed of 100% textured regions
(B0U),

(ii) 100 images composed of 75% textured regions and
25% uniform regions (B25U),

(iii) 100 images composed of 50% textured regions and
50% uniform regions (B50U),

(iv) 100 images composed of 25% textured regions and
75% uniform regions (B75U),

(v) 100 images composed of 100% uniform regions
(B100U),

(vi) 100 images composed of 100% textured regions with
the same mean gray level for each region (B0UN).

The textures used to create this image database were ran-
domly extracted from the Oulu’s University texture database
(http://www.outex.oulu.fi).

Segmentation results

The segmentation methods we used are classification-based.
Each image of the database is segmented by the fuzzy

http://www.outex.oulu.fi
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(a) (b) (c)

Figure 2: Example of synthetic images.

K-means method [20] with a number of classes correspond-
ing to the number of regions of its ground truth. The second
segmentation method is a relaxation [13] of this segmenta-
tion result that improves the quality of the result in almost all
the cases.

As third segmentation method, we used the EDISON one
[21] which uses the “mean shift” algorithm developed by
Georgescu and his colleagues (http://www.caip.rutgers.edu/
riul/research/code/EDISON/). In order to keep a similar level
of precision (number of classes) between all the segmenta-
tion results, we classified this segmentation result using the
LBG algorithm [22]. The fourth segmentation result we con-
sider is simply the best one available: the ground truth.

Figure 3 presents an image with 8 regions from the
database and the four corresponding segmentation results.
As we can see in this figure, these segmentation results have
different qualities.

The intrinsic quality of the segmentation results we used
for the comparison of evaluation criteria is not so important.
Indeed, we are looking for an unsupervised evaluation crite-
rion that has a similar behavior to a supervised one used as
reference (Vinet’s measure). A similar methodology concern-
ing performance measures for video object segmentation can
be found in [23].

Evaluation criteria

The tested unsupervised evaluation criteria for the compara-
tive study are

(i) the Borsotti criterion (BOR) [15],
(ii) the Zeboudj criterion (ZEB) [17],

(iii) the Rosenberger criteria: intra-inter (ROS 1) and adap-
tative criterion (ROS 2) [14],

(iv) the Levine and Nazif criteria: intra (LEV 1) and inter
(LEV 2) [24].

A good segmentation result maximizes the value of a cri-
terion, except for the Borsotti one that has to be minimized.
In order to facilitate the understanding of the proposed anal-
ysis, we used 1 − BOR(IR) as the Borsotti’s value instead of
BOR(IR) for each segmentation result IR.

The Vinet’s measure [6] that is a supervised criterion
which corresponds to the correct classification rate is used as
reference for the analysis of the synthetic images. In this case,
the ground truth is available. This criterion is often used to
compare a segmentation result IR with a ground truth IRref in

(a) (b)

(c) (d)

(e)

Figure 3: Example of an image with 8 regions and its segmentation
results: (a) original image, (b) fuzzy K-means, (c) fuzzy K-means +
relaxation, (d) EDISON, (e) ground truth.

the literature. We compute the following superposition table:

T
(

IR, IRref

)

=
[

card
{

Ri ∩ Rref
j

}

, i=1, . . . ,NR, j=1, . . . ,NRref

]

,

(14)

where card{Ri ∩ Rref
j } is the number of pixels belonging to

the region Ri in the segmentation result IR and to the region
R j in the ground truth.

With this table, we recursively search the matched classes
as illustrated in the Figure 4, for example, according to the
following method:

(1) we first select into the table the two classes that maxi-
mize card(Ri ∩ Rref

j ),
(2) all the table elements that belong to the row and the

column of the mentioned cell are deselected,
(3) while there are elements left, we go back to the first

step.

According to the selected cells, Vinet’s measure gives a
dissimilarity measure. Let C′ be the set of the selected cells,

http://www.caip.rutgers.edu/riul/research/code/EDISON/
http://www.caip.rutgers.edu/riul/research/code/EDISON/
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(a) (b) (c)

Figure 4: Computation of the Vinet measure: (a) segmentation re-
sult, (b) ground truth, (c) maximal overlapping result.

the Vinet measure is computed as follows:

VIN
(

IR, IRref

)

=
Card(I)−

∑

C′ Card
(

Ri ∩ Rref
j

)

Card(I)
. (15)

This criterion is often used to compute correct classifica-
tion rate of the segmentation result of a synthetic image.

3.2. Experimental results

In this section, we analyze the previously presented unsuper-
vised evaluation criteria. Their quality is evaluated by con-
sidering the comparison similarity with the Vinet measure
using their values on segmentation results.

Comparative study

We here look for the evaluation criteria having the most sim-
ilar behaviors to the Vinet one. In order to achieve this goal,
we consider the comparison results of the different segmen-
tation results for all the evaluation criteria. As we have four
segmentation results of each image, we have 6 possible com-
parisons. These 6 possible comparisons of four segmentation
results A, B, C, and D are A > B, A > C, A > D, B > C, B > D,
C > D. A comparison result is a value in {0, 1}. If a segmen-
tation result has a higher value for the considered evaluation
criterion than another one, the comparison value is set to 1
otherwise it is set to 0. In order to define the similarity be-
tween each evaluation criterion and the Vinet measure, an
absolute difference is measured between the criterion com-
parison and the Vinet one. We define the cumulative similar-
ity of correct comparison (SCC) as follows:

SCC =
8400
∑

k=1

6
∑

i=1

∣

∣A(i, k)− B(i, k)
∣

∣, (16)

where A(i, k) is the ith comparison result by using the Vinet
measure and B(i, k) by an evaluation criterion for the image
k (1 < k < 8400).

In order to quantify the efficiency of the evaluation cri-
teria, we define the similarity rate of correct comparison

Table 1: SRCC value of all the criteria with the Vinet measure for
different subsets of the image database with a fixed quantity of uni-
form and textured regions.

ZEB BOR LEV 1 LEV 2 ROS 1 ROS 2

BC100U 88.45% 65.73% 52.18% 73.72% 65.97% 50.70%

BC75U 67.31% 27.50% 40.80% 69.92% 39.98% 52.89%

BC50U 54.51% 19.21% 33.51% 71.83% 32.21% 55.80%

BC25U 38.78% 12.47% 25.71% 72.83% 25.80% 60.80%

BC0U 32.23% 11.10% 20.01% 74.61% 23.46% 64.98%

BC0UN 15.12% 11.20% 15.68% 33.62% 32.27% 61.33%

BCU 49.40% 24.53% 31.32% 66.09% 36.62% 57.75%

(SRCC), which represents the absolute similarity of compar-
ison with the Vinet measure referenced to the maximal value:

SRCC =

(

1−
SCC

SCCmax

)

∗ 100, (17)

where SCCmax = 6× 8400 = 33 600 comparison results.
We can visualize in Table 1 the SRCC value of all the crite-

ria with VIN. We can then note that ZEB and LEV 2 have the
strongest value of the SRCC in the case of uniform images. In
the textured case, LEV 2 is in first position followed by ROS 2
except for the B0UN group. When textured regions have the
same mean gray levels, ROS 2 provides better results.

The criteria which obtain the best values of the SRCC in
almost all cases are LEV 2, ZEB, and ROS 2. These three crite-
ria are complementary if we consider the type of the original
images. Indeed, the more the image contains textured (resp.,
uniform) regions, the more LEV 2 or ROS 2 (resp., ZEB) is
efficient.

We illustrate thereafter the behaviors of the different cri-
teria on various types of images.

Evaluation of segmentation results

We illustrate in this part, the behavior of these evaluation cri-
teria for different types of images. The Vinet measure (cor-
rect classification rate), considered as the reference, allows to
identify the best segmentation result.

Case of an uniform image. Figure 5 presents an original
image with only uniform regions and its four segmentation
results. In this case, VIN chooses the ground truth as being
the best followed by the EDISON result. As shown in Table 2,
only ZEB is able to sort these segmentation results like VIN.

Case of a mixed image. Figure 6 presents an original im-
age with uniform and textured regions from BC50U and its
four segmentation results. According to Table 3, LEV 2 and
ROS 2 sort correctly the segmentation results except for one
comparison.

Case of a textured image. Figure 7 presents an original
image with only textured regions from BC0U and its four
segmentation results. In this case, ROS 2 is the only criterion
that sorts correctly the segmentation results except for one
comparison (see Table 4).
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Table 2: Values of the evaluation criteria computed on the segmentation results of Figure 5.

Segmentation result ZEB BOR LEV 1 LEV 2 ROS 1 ROS 2 VIN

FKM 0.6955 0.9995 0.0756 0.9835 0.5733 0.6551 0.7548

FKM + relaxation 0.7442 0.9996 0.0974 0.9904 0.5671 0.6328 0.9358

EDISON 0.8477 0.9997 0.5219 0.9833 0.5675 0.6628 0.9999

Ground truth 0.8478 0.9997 0.9833 0.5200 0.5675 0.6629 1.0000

(a) (b)

(c) (d)

(e)

Figure 5: One uniform image and its four segmentation results: (a)
original image, (b) FKM, (c) FKM + relaxation, (d) EDISON, (e)
ground truth.

Case of a textured image for regions with the same mean
gray level. Figure 8 presents an original image with only tex-
tured regions with the same mean gray-level from BC0UN
and its four segmentation results. According to Table 5, only
ROS 2 sorts correctly the segmentation results. We can notice
that LEV 2 gives bad results in this case.

As a conclusion of this comparative study, ZEB has to
be preferred for uniform images while LEV 2 and ROS 2 are
more adapted for mixed and textured ones.

(a) (b)

(c) (d)

(e)

Figure 6: One image composed of uniform and textured regions
and its four segmentation results: (a) original image, (b) FKM, (c)
FKM + relaxation, (d) EDISON, (e) ground truth.

4. APPLICATION TO REAL IMAGES

We illustrate here the ability of the previous evaluation crite-
ria to compare different segmentation results of a single im-
age at a same level of precision (here the number of classes).
Images chosen as illustration in this paper are an aerial and
a radar image (see Figure 9). They were segmented by three
different methods: FCM [25], PCM [20], and EDISON [21].

The first image corresponds to an aerial image composed
of uniform and textured regions (Figure 10). The majority
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Table 3: Values of the evaluation criteria computed on the segmentation results of Figure 6.

Segmentation result ZEB BOR LEV 1 LEV 2 ROS 1 ROS 2 VIN

FKM 0.6055 0.9996 0.9786 0.0388 0.5479 0.7069 0.6473

FKM + relaxation 0.4989 0.9994 0.9907 0.0368 0.5477 0.8005 0.6279

EDISON 0.6535 0.9990 0.9697 0.2747 0.5470 0.7529 0.9300

Ground truth 0.6530 0.9991 0.9718 0.3322 0.5475 0.8138 1.0000

(a) (b)

(c) (d)

(e)

Figure 7: One image composed of textured regions and its four segmentation results: (a) original image, (b) FKM, (c) FKM + relaxation,
(d) EDISON, (e) ground truth.

Table 4: Values of the evaluation criteria computed on the segmentation results of Figure 7.

Segmentation result ZEB BOR LEV 1 LEV 2 ROS 1 ROS 2 VIN

FKM 0.7145 0.9993 0.9806 0.0832 0.5465 0.5714 0.3687

FKM + relaxation 0.5528 0.9987 0.9865 0.1232 0.5446 0.7621 0.3981

EDISON 0.4076 0.9952 0.9510 0.1305 0.5324 0.8359 0.5549

Ground truth 0.3181 0.9913 0.9510 0.1018 0.5281 0.7796 1.0000
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(a) (b)

(c) (d)

(e)

Figure 8: One image composed of textured regions with the same mean gray value and its four segmentation results: (a) original image, (b)
FKM, (c) FKM + relaxation, (d) EDISON, (e) ground truth.

Table 5: Values of the evaluation criteria computed on the segmentation results of Figure 8.

Segmentation result ZEB BOR LEV 1 LEV 2 ROS 1 ROS 2 VIN

FKM 0.7939 0.9998 0.9947 0.0379 0.5241 0.6696 0.2210

FKM + relaxation 0.5419 0.9994 0.9907 0.0449 0.5241 0.7003 0.2482

EDISON 0.5698 0.9990 0.9831 0.1167 0.5365 0.7733 0.2511

Ground truth 0.1979 0.9956 0.9692 0.0026 0.4956 0.7942 1.0000

of the criteria describe the EDISON segmentation result as
being the best (Table 6). In our mind, this is also the case
visually.

The second image corresponds to a strongly noisy radar
image (see Figure 11). The regions can thus be regarded as
being all textured. Visually, the best segmentation result of
this image is, from our point of view, the EDISON one.
Table 7 presents it as being the best in almost all cases. ROS 2
gives to this segmentation result a much better quality score

compared to the FCM and PCM ones. On the contrary, ZEB
ranks very badly the EDISON segmentation result. More-
over, ZEB still keeps very weak values (≃ 0.1 whereas for
the segmentation results of the other images, the results ex-
ceeded 0.7 for the best). It confirms that ZEB is not adapted
to strongly textured images.

In order to validate these results on real images, one could
make a psychovisual study involving a significant number of
experts [8, 23].
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(a) (b)

Figure 9: Two real images: (a) radar image, (b) aerial image.

(a) (b)

(c) (d)

Figure 10: Three segmentation results of the aerial image: (a) original image, (b) FCM, (c) PCM, (d) EDISON.

5. CONCLUSION

Segmentation evaluation is essential to quantify the perfor-
mance of the existing segmentation methods. In this paper,
the majority of the existing unsupervised criteria for the
evaluation and the comparison of segmentation methods are
referred and presented. The present study tries to show the
strong points, the weak points, and the limitations of some
of these criteria.

For the comparative study, we used a large database com-
posed of 8400 synthetic images containing from 2 to 15 re-
gions. We thus have 33 600 segmentation results and con-
sequently 50 400 comparisons of segmentation results. We
could note that three criteria give better results than the
others: ZEB, LEV 2, and ROS 2. ZEB is adapted for uniform

Table 6: Values of the evaluation criteria computed on the segmen-
tation results of Figure 10.

Criterion FCM PCM EDISON

BOR 0.9888 0.9713 0.9945

ZEB 0.6228 0.6124 0.5428

LEV 1 0.7258 0.7112 0.9693

LEV 2 0.0901 0.0889 0.1099

ROS 1 0.5202 0.5239 0.5275

ROS 2 0.6379 0.6328 0.6973

images, while LEV 2 and ROS 2 find their applicability for
textured images.
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(a) (b)

(c) (d)

Figure 11: Three segmentation results of the radar image: (a) orig-
inal image, (b) FCM, (c) PCM, (d) EDISON.

Table 7: Values of the evaluation criteria computed on the segmen-
tation results of Figure 11.

FCM PCM EDISON

BOR 0.9148 0.8207 0.9707

ZEB 0.1094 0.1172 0.0432

LEV 1 6.2846 7.5824 1.1364

LEV 2 0.1401 0.1394 0.2559

ROS 1 0.5196 0.5214 0.5419

ROS 2 0.4699 0.4677 0.9074

We illustrated the importance of these evaluation crite-
ria for the evaluation of segmentation results of real images
without any a priori knowledge. The selected criteria were
able, in our examples, to choose the segmentation result that
was visually perceived as being the best.

A prospect for this work is to combine the best criteria in
order to optimize their use in the various contexts. Perspec-
tives of this study concern the application of these evaluation
criteria for the choice of the segmentation method parame-
ters or the definition of new segmentation methods by opti-
mizing an evaluation criterion.
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