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Abstract

Although unsupervised person re-identification (RE-ID)

has drawn increasing research attentions due to its potential

to address the scalability problem of supervised RE-ID mod-

els, it is very challenging to learn discriminative information

in the absence of pairwise labels across disjoint camera

views. To overcome this problem, we propose a deep model

for the soft multilabel learning for unsupervised RE-ID. The

idea is to learn a soft multilabel (real-valued label likeli-

hood vector) for each unlabeled person by comparing the

unlabeled person with a set of known reference persons from

an auxiliary domain. We propose the soft multilabel-guided

hard negative mining to learn a discriminative embedding

for the unlabeled target domain by exploring the similarity

consistency of the visual features and the soft multilabel-

s of unlabeled target pairs. Since most target pairs are

cross-view pairs, we develop the cross-view consistent soft

multilabel learning to achieve the learning goal that the

soft multilabels are consistently good across different cam-

era views. To enable effecient soft multilabel learning, we

introduce the reference agent learning to represent each ref-

erence person by a reference agent in a joint embedding.

We evaluate our unified deep model on Market-1501 and

DukeMTMC-reID. Our model outperforms the state-of-the-

art unsupervised RE-ID methods by clear margins. Code is

available at https://github.com/KovenYu/MAR.

1. Introduction

Existing person re-identification (RE-ID) works mostly

focus on supervised learning [17, 20, 58, 63, 1, 45, 51, 43,

38, 41, 33]. However, they need substantial pairwise labeled

data across every pair of camera views, limiting the scala-

bility to large-scale applications where only unlabeled data
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Figure 1. Illustration of our soft multilabel concept. We learn a soft

multilabel (real-valued label vector) for each unlabeled person by

comparing to a set of known auxiliary reference persons (thicker

arrowline indicates higher label likelihood). Best viewed in color.

is available due to the prohibitive manual efforts in exhaus-

tively labeling the pairwise RE-ID data [49]. To address

the scalability problem, some recent works focus on unsu-

pervised RE-ID by clustering on the target unlabelled data

[52, 53, 8] or transfering the knowledge from other labeled

source dataset [29, 48, 7, 62]. However, the performance is

still not satisfactory. The main reason is that, without the

pairwise label as learning guidence, it is very challenging

to discover the identity discriminative information due to

the drastic cross-view intra-person appearance variation [52]

and the high inter-person appearance similarity [60].

To address the problem of lacking pairwise label guidance

in unsupervised RE-ID, in this work we propose a novel soft

multilabel learning to mine the potential label information

in the unlabeled RE-ID data. The main idea is, for every

unlabeled person image in an unlabeled RE-ID dataset, we

learn a soft multilabel (i.e. a real-valued label likelihood

vector instead of a single pseudo label) by comparing this

unlabeled person with a set of reference persons from an

existing labeled auxiliary source dataset. Figure 1 illustrates

this soft multilabel concept.

Based on this soft multilabel learning concept, we pro-

pose to mine the potential discriminative information by the
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soft multilabel-guided hard negative mining, i.e. we lever-

age the soft multilabel to distinguish the visually similar

but different unlabeled persons. In essence, the soft multil-

abel represents the unlabelled target person by the reference

persons, and thus it encodes the relative comparative char-

acteristic of the unlabeled person, which is from a different

perspective than the absolute visual feature representation.

Intuitively, a pair of images of the same person should be

not only visually similar to each other (i.e. they should have

similar absolute visual features), but also equally similar to

any other reference person (i.e. they should also have sim-

ilar relative comparative characteristics with respect to the

reference persons). If this similarity consistency between the

absolute visual representation and the relative soft multilabel

representation is violated, i.e. the pair of images are visually

similar but their comparative characteristics are dissimilar, it

is probably a hard negative pair.

In the RE-ID context, most image pairs are cross-view

pairs which consist of two person images captured by differ-

ent camera views. Therefore, we propose to learn the soft

multilabels that are consistently good across different camera

views. We refer to this learning as the cross-view consistent

soft multilabel learning. To enable the efficient soft multil-

abel learning which requires comparison between the unla-

beled persons and the reference persons, we introduce the

reference agent learning to represent each reference person

by a reference agent which resides in a joint feature embed-

ding with the unlabeled persons. Specifically, we develop

a unified deep model named deep soft multilabel reference

learning (MAR) which jointly formulates the soft multilabel-

guided hard negative mining, the cross-view consistent soft

multilabel learning and the reference agent learning.

We summarize our contributions as follows: (1). We ad-

dress the unsupervised RE-ID problem by a novel soft multi-

label reference learning method, in which we mine the poten-

tial label information latent in the unlabeled RE-ID data by

exploiting the auxiliary source dataset for reference compar-

ison. (2). We formulate a novel deep model named deep soft

multilabel reference learning (MAR). MAR enables simul-

taneously the soft multilabel-guided hard negative mining,

the cross-view consistent soft multilabel learning and the

reference agent learning in a unified model. Experimental

results on Market-1501 and DukeMTMC-reID show that our

model outperforms the state-of-the-art unsupervised RE-ID

methods by significant margins.

2. Related Work

Unsupervised RE-ID. Unsupervised RE-ID refers to that

the target dataset is unlabelled but the auxiliary source

dataset is not necessarily unlabelled [29, 8, 48, 7, 62].

Existing methods either transfer source label knowledge

[29, 8, 48, 7, 62] or assuming strong prior knowledge (i.e.

either assuming the target RE-ID data has specific cluster

structure [52, 53, 8] or assuming the hand-crafted features

could be discriminative enough [52, 16, 15, 57, 9, 46]). Re-

cently attempts have been made on exploiting video tracklet

associations for unsupervised RE-ID [5, 19]. Another line of

work focusing on reducing the labelling effort is to minimize

the labelling budget on the target [32] which is complemen-

tary to the unsupervised RE-ID. The most related works

are the clustering-based models [52, 53, 8], e.g. Yu et.al.

[52, 53] proposed an asymmetric metric clustering to dis-

cover labels latent in the unlabelled target RE-ID data. The

main difference is that the soft multilabel could leverage

the auxiliary reference information other than visual feature

similarity, while the pseudo label only encodes the feature

similarity of an unlabelled pair. Hence, the soft multilabel

could mine the potential label information that cannot be

discovered by directly comparing the visual features.

Some unsupervised RE-ID works also proposed to use the

labeled source dataset by the unsupervised domain adapta-

tion [50, 7, 62, 48] to transfer the discriminative knowledge

from the auxiliary source domain. Our model is different

from them in that these models do not mine the discrimi-

native information in the unlabeled target domain, which is

very important because the transferred discriminative knowl-

edge might be less effective in the target domain due to the

domain shift [28] in discriminative visual clues.

Unsupervised domain adaptation. Our work is also close-

ly related to the unsupervised domain adaptation (UDA)

[23, 39, 40, 36, 25, 42, 10, 24], which also has a source

dataset and an unlabeled target dataset. However, they are

mostly based on the assumption that the classes are the same

between both domains [3, 28, 6, 27], which does not hold in

the RE-ID context where the persons (classes) in the source

dataset are completely different from the persons in the tar-

get dataset, rendering these UDA models inapplicable to the

unsupervised RE-ID [50, 7, 62, 48].

Multilabel classification. Our soft multilabel learning is

conceptually different from the multilabel classification

[54]. The multilabel in the multilabel classification [54] is a

groundtruth binary vector indicating whether an instance be-

longs to a set of classes, while our soft multilabel is learned

to represent an unlabeled target person by other different

reference persons. Hence, existing multilabel classification

models are for a different purpose and thus not suitable to

model our idea.

Zero-shot learning. Zero-shot learning (ZSL) aims to rec-

ognize novel testing classes specified by semantic attributes

but unseen during training [18, 31, 55, 14, 56]. Our soft

multilabel reference learning is related to ZSL in that every

unknown target person (unseen testing class) is represented

by a set of known reference persons (attributes of training

classes). However, the predefined semantic attributes are not

available in unsupervised RE-ID. Nevertheless, the success
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of ZSL models validates/justifies the effectiveness of rep-

resenting an unknown class (person) with a set of different

classes. A recent work also explores a similar idea by repre-

senting an unknown testing person in an ID regression space

which is formed by the known training persons [47], but it

requires substantial labeled persons from the target domain.

3. Deep Soft Multilabel Reference Learning

3.1. Problem formulation and Overview

We have an unlabeled target RE-ID dataset X = {xi}
Nu

i=1

where each xi is an unlabeled person image collected in the

target visual surveillance scenario, and an auxiliary RE-ID

dataset Z = {zi, wi}
Na

i=1 where each zi is a person image

with its label wi = 1, · · · , Np where Np is the number of the

reference persons. Note that the reference population is com-

pletely non-overlapping with the unlabeled target population

since it is collected from a different surveillance scenario

[50, 7, 62]. Our goal is to learn a soft multilabel function l(·)
such that y = l(x,Z) ∈ (0, 1)Np where all dimensions add

up to 1 and each dimension represents the label likelihood

w.r.t. a reference person. Simultaneously, we aim to learn a

discriminative deep feature embdding f(·) under the guid-

ance of the soft multilabels for the RE-ID task. Specifically,

we propose to leverage the soft multilabel for hard negative

mining, i.e. for visually similar pairs we determine they

are positive or hard negative by comparing their soft mul-

tilabels. We refer to this part as the Soft multilabel-guided

hard negative mining (Sec. 3.2). In the RE-ID context, most

pairs are cross-view pairs which consist of two person im-

ages captured by different camera views. Therefore, we

aim to learn the soft multilabels that are consistently good

across different camera views so that the soft multilabels

of the cross-view images are comparable. We refer to this

part as the Cross-view consistent soft multilabel learning

(Sec. 3.3). To effeciently compare each unlabeled person

x to all the reference persons, we introduce the reference

agent learning (Sec. 3.4), i.e. we learn a set of reference

agents {ai}
Np

i=1 each of which represents a reference person

in the shared joint feature embedding where both the un-

labeled person f(x) and the agents {ai}
Np

i=1 reside (so that

they are comparable). Therefore, we could learn the soft

multilabel y for x by comparing f(x) with the reference

agents {ai}
Np

i=1, i.e. the soft multilabel function is simplified

to y = l(f(x), {ai}
Np

i=1).

We show an overall illustration of our model in Fig-

ure 2. In the following, we introduce our deep soft

multilabel reference learning (MAR). We first introduce

the soft multilabel-guided hard negative mining given the

reference agents {ai}
Np

i=1 and the reference comparabili-

ty between f(x) and {ai}
Np

i=1. To facilitate learning the

joint embedding, we enforce a unit norm constraint, i.e.

||f(·)||2 = 1, ||ai||2 = 1, ∀i, to learn a hypersphere embed-

ding [44, 22]. Note that in the hypersphere embedding, the

cosine similarity between a pair of features f(xi) and f(xj)
is simplified to their inner product f(xi)

Tf(xj), and so as

for the reference agents.

3.2. Soft multilabel­guided hard negative mining

Let us start by defining the soft multilabel function. Since
each entry/dimension of the soft multilabel y represents
the label likelihood that adds up to 1, we define our soft
multilabel function as

y
(k) = l(f(x), {ai}

Np

i=1)
(k) =

exp(aT
k f(x))

Σi exp(aT
i f(x))

(1)

where y(k) is the k-th entry of y.

It has been shown extensively that mining hard nega-

tives is more important in learning a discriminative em-

bedding than naively learning from all visual samples

[13, 37, 26, 35, 34]. We explore a soft multilabel-guided

hard negative mining, which focuses on the pairs of visually

similar but different persons and aims to distinguish them

with the guidance of their soft multilabels. Given that the

soft multilabel encodes relative comparative characteristics,

we explore a representation consistency: Besides the similar

absolute visual features, images of the same person should

also have similar relative comparative characteristics (i.e.

equally similar to any other reference person). Specifically,

we make the following assumption in our model formulation:

Assumption 1. If a pair of unlabeled person images xi, xj

has high feature similarity f(xi)
Tf(xj), we call the pair a

similar pair. If a similar pair has highly similar comparative

characteristics, it is probably a positive pair. Otherwise, it

is probably a hard negative pair.

For the similarity measure of the comparative characteris-
tics encoded in the pair of soft multilabels, we propose the
soft multilabel agreement A(·, ·), defined by:

A(yi, yj) = yi ∧ yj = Σk min(y
(k)
i , y

(k)
j ) = 1−

||yi − yj ||1

2
, (2)

which is based on the well-defined L1 distance. Intuitively,

the soft multilabel agreement is an analog to the voting by

the reference persons: Every reference person k gives his/her

conservative agreement min(y
(k)
i , y

(k)
j ) on believing the pair

to be positive (the more similar/related a reference person is

to the unlabeled pair, the more important is his/her word),

and the soft multilabel agreement is cumulated from all the

reference persons. The soft multilabel agreement is defined

based on L1 distance to treat fairly the agreement of every

reference person by taking the absolute value.
Now, we mine the hard negative pairs by considering

both the feature similarity and soft multilabel agreement
according to Assumption 1. We formulate the soft multilabel-
guided hard negative mining with a mining ratio p: We
define the similar pairs in Assumption 1 as the pM pairs
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Figure 2. An illustration of our model MAR. We learn the soft multilabel by comparing each target unlabeled person image f(x) (red circle)

to a set of auxiliary reference persons represented by a set of reference agents {ai} (blue triangles, learnable parameters) in the feature

embedding. The soft multilabel judges whether a similar pair is positive or hard negative for discriminative embedding learning (Sec. 3.2).

The soft multilabel learning and the reference learning are elaborated in Sec. 3.3 and Sec. 3.4, respectively. Best viewed in color.

that have highest feature similarities among all the M =
Nu × (Nu − 1)/2 pairs within the unlabeled target dataset
X . For a similar pair (xi, xj), if it is also among the top
pM pairs that have the highest soft multilabel agreements,
we assign (i, j) to the positive set P , otherwise we assign
it to the hard negative set N (see Figure 3). Formally, we
construct:

P = {(i, j)|f(xi)
T
f(xj) ≥ S,A(yi, yj) ≥ T}

N = {(k, l)|f(xk)
T
f(xl) ≥ S,A(yk, yl) < T} (3)

where S is the cosine similarity (inner product) of the pM -th
pair after sorting all M pairs in an descending order accord-
ing to the feature similarity (i.e. S is a similarity threshold),
and T is the similarly defined threshold value for the soft
multilabel agreement. Then we formulate the soft Multilabel-
guided Discriminative embedding Learning by:

LMDL = − log
P

P +N
, (4)

where

P =
1

|P|
Σ(i,j)∈P exp(−||f(zi)− f(zj)||

2
2),

N =
1

|N |
Σ(k,l)∈N exp(−||f(zk)− f(zl)||

2
2).

By minimizing LMDL, we are learning a discriminative

feature embedding using the mined positive/hard negative

pairs. Note that the construction of P and N is dynamic

during model training, and we construct them within every

batch with the up-to-date feature embedding during model

learning (in this case, we simply replace M by Mbatch =
Nbatch × (Nbatch − 1)/2 where Nbatch is the number of

unlabeled images in a mini-batch).

3.3. Cross­view consistent soft multilabel learning

Given the soft multilabel-guided hard negative mining,
we notice that most pairs in the RE-ID problem context are

Similar pairs

0.4

0.4…

0.4

0.5…

0.4

0.5…

0.1

0.1…

pull closer

push away

: data points

Figure 3. Illustration of the soft multilabel-guided hard negative

mining. Best viewed in color.

the cross-view pairs which consist of two person images
captured by different camera views [52]. Therefore, the
soft multilabel should be consistently good across differ-
ent camera views to be cross-view comparable. From a
distributional perspective, given the reference persons and
the unlabeled target dataset X which is collected in a given
target domain, the distribution of the comparative charac-
teristic should only depend on the distribution of the person
appearance in the target domain and be independent of its
camera views. For example, if the target domain is a cold
open-air market where customers tend to wear dark clothes,
the soft multilabels should have higher label likelihood in the
entries which are corresponding to those reference persons
who also wear dark, no matter in which target camera view.
In other words, the distribution of the soft multilabel in every
camera view should be consistent with the distribution of the
target domain. Based on the above analysis, we introduce a
Cross-view consistent soft Multilabel Learning loss1:

LCML = Σvd(Pv(y),P(y))
2

(5)

where P(y) is the soft multilabel distribution in the dataset
X , Pv(y) is the soft multilabel distribution in the v-th camera

1For conciseness we omit all the averaging divisions for the outer sum-

mations in our losses.

2151



view in X , and d(·, ·) is the distance between two distribu-
tions. We could use any distributional distance, e.g. the KL
divergence [11] and the Wasserstein distance [2]. Since we
empirically observe that the soft multilabel approximately
follows a log-normal distribution, in this work we adopt
the simplified 2-Wasserstein distance [4, 12] which gives a
very simple form (please refer to the supplementary material
for the observations of the log-normal distribution and the
derivation of the simplified 2-Wasserstein distance):

LCML = Σv||µv − µ||22 + ||σv − σ||22 (6)

where µ/σ is the mean/std vector of the log-soft multilabels,

µv/σv is the mean/std vector of the log-soft multilabels in

the v-th camera view. The form of LCML in Eq. (6) is

computationally cheap and easy-to-compute within a batch.

We note that the camera view label is naturally available in

the unsupervised RE-ID setting [52, 62], i.e. it is typically

known from which camera an image is captured.

3.4. Reference agent learning

A reference agent serves to represent a unique reference
person in the feature embedding like a compact “feature
summarizer”. Therefore, the reference agents should be
mutually discriminated from each other while each of them
should be representative of all the corresponding person
images. Considering that the reference agents are compared
within the soft multilabel function l(·), we formulate the
Agent Learning loss as:

LAL = Σk − log l(f(zk), {ai})
(wk) = Σk − log

exp(aT
wk

f(zk))

Σj exp(aT
j f(zk))

(7)

where zk is the k-th person image in the auxiliary dataset

with its label wk.

By minimizing LAL, we not only learn discriminatively

the reference agents, but also endow the feature embed-

ding with basic discriminative power for the soft multilabel-

guided hard negative mining. Moreover, it reinforces implic-

itly the validity of the soft multilabel function l(·). Specifi-

cally, in the above LAL, the soft multilabel function learns

to assign a reference person image f(zk) with a soft mul-

tilabel ŷk = l(f(zk), {ai}
Np

i=1) by comparing f(zk) to all

agents, with the learning goal that ŷk should have minimal

cross-entropy with (i.e. similar enough to) the ideal one-hot

label ŵk = [0, · · · , 0, 1, 0, · · · , 0] which could produce the

ideal soft multilabel agreement, i.e. A(ŵi, ŵj) = 1 if zi
and zj are the same person and A(ŵi, ŵj) = 0 otherwise.

However, this LAL is minimized for the auxiliary dataset. To

further improve the validity of the soft multilabel function

for the unlabeled target dataset (i.e. the reference compara-

bility between f(x) and {ai}), we propose to learn a joint

embedding as follows.

Joint embedding learning for reference comparability.
A major challenge in achieving the reference comparability

DukeMTMC reIDMarket 1501 MSMT17 (Auxiliary dataset)

Figure 4. Dataset examples.

is the domain shift [28], which is caused by different person
appearance distributions between the two independent do-
mains. To address this challenge, we propose to mine the
cross-domain hard negative pairs (i.e. the pair consisting of
an unlabeled person f(x) and an auxiliary reference person
ai) to rectify the cross-domain distributional misalignment.
Intuitively, for each reference person ai, we search for the
unlabeled persons f(x) that are visually similar to ai. For
a joint feature embedding where the discriminative distribu-
tions are well aligned, ai and f(x) should be discriminative
enough to each other despite their high visual similarity.
Based on the above discussion, we propose the Reference
agent-based Joint embedding learning loss2:

LRJ = ΣiΣj∈MiΣk∈Wi
[m− ‖ai − f(xj)‖

2
2]+ + ‖ai − f(zk)‖

2
2

(8)

where Mi = {j|‖ai − f(xj)‖
2
2 < m} denotes the mined

data associated with the i-th agent ai, m = 1 is the agent-

based margin which has been theoretically justified in [44]

with its recommaned value 1, [·]+ is the hinge function, and

Wi = {k|wk = i}. The center-pulling term ||ai − f(zk)||
2
2

reinforces the representativeness of the reference agents to

improve the validity that ai represents a reference person in

the cross-domain pairs (ai, f(xj)).
We formulate the Reference Agent Learning by:

LRAL = LAL + βLRJ (9)

where β balances the loss magnitudes.

3.5. Model training and testing

To summarize, the loss objective of our deep soft
multilabel reference learning (MAR) is formulated by:

LMAR = LMDL + λ1LCML + λ2LRAL (10)

where λ1 and λ2 are hyperparameters to control the relative

importance of the cross-view consistent soft multilabel learn-

ing and the reference agent learning, respectively. We train

our model end to end by the Stochastic Gradient Descent

(SGD). For testing, we compute the cosine feature similarity

of each probe(query)-gallery pair, and obtain the ranking list

of the probe image against the gallery images.

4. Experiments

4.1. Datasets

Evaluation benchmarks. We evaluate our model in two

widely used large RE-ID benchmarks Market-1501 [59] and

2For brevity we omit the negative auxiliary term (i.e. wk 6= i) which

is for a balanced learning in both domains, as our focus is to rectify the

cross-domain distribution misalignment.
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DukeMTMC-reID [61, 30]. The Market-1501 dataset has

32,668 person images of 1,501 identities. There are in total

6 camera views. The Duke dataset has 36,411 person images

of 1,404 identities. There are in total 8 camera views. We

show example images in Figure 4. We follow the standard

protocol [59, 61] where the training set contains half of the

identities, and the testing set contains the other half. We do

not use any label of the target datasets during training. The

evaluation metrics are the Rank-1/Rank-5 matching accuracy

and the mean average precision (MAP) [59].

Auxiliary dataset. Essentially the soft multilabel represents

an unlabeled person by a set of reference persons, and there-

fore a high appearance diversity of the reference population

would enhance the validity and capacity of the soft multil-

abel. Hence, we adopt the MSMT17 [50] RE-ID dataset as

the auxiliary dataset, which has more identities (i.e. 4,101

identities) than any other RE-ID dataset and which is col-

lected along several days instead of a single day (different

weathers could lead to different dressing styles). There are in

total 126,441 person images in the MSMT17 dataset. Adopt-

ing the MSMT17 as auxiliary dataset enables us to evaluate

how various numbers of reference persons (including when

there are only a small number of reference persons) affect

our model learning in Sec. 4.6.

4.2. Implementation details

We set batch size B = 368, half of which randomly

samples unlabeled images x and the other half randomly

samples z. Since optimizing entropy-based loss LAL with

the unit norm constraint has convergence issue [44, 37], we

follow the training method in [44], i.e. we first pretrain

the network using only LAL (without enforcing the unit

norm constraint) to endow the basic discriminative power

with the embedding and to determine the directions of the

reference agents in the hypersphere embedding [44], then

we enforce the constraint to start our model learning and

multiply the constrained inner products by the average inner

product value in the pretraining. We set λ1 = 0.0002 which

controls the relative importance of soft multilabel learning

and λ2 = 50 which controls the relative importance of agent

reference learning. We show an evaluation on λ1 and λ2 in

Sec. 4.6. We set the mining ratio p to 5‰and set β = 0.2.

Training is on four Titan X GPUs and the total time is about

10 hours. We leave the evaluations on p/β and further details

in the supplementary material due to space limitation.

4.3. Comparison to the state of the art

We compare our model with the state-of-the-art unsuper-

vised RE-ID models including: (1) the hand-crafted feature

representation based models LOMO [20], BoW [59], DIC

[16], ISR [21] and UDML [29]; (2) the pseudo label learn-

ing based models CAMEL [52], DECAMEL [53] and PUL

[8]; and (3) the unsupervised domain adaptation based mod-

Table 1. Comparison to the state-of-the-art unsupervised results

in the Market-1501 dataset. Red indicates the best and Blue the

second best. Measured by %.

Methods Reference
Market-1501

rank-1 rank-5 mAP

LOMO [20] CVPR’15 27.2 41.6 8.0
BoW [59] ICCV’15 35.8 52.4 14.8
DIC [16] BMVC’15 50.2 68.8 22.7
ISR [21] TPAMI’15 40.3 62.2 14.3

UDML [29] CVPR’16 34.5 52.6 12.4

CAMEL [52] ICCV’17 54.5 73.1 26.3
PUL [8] ToMM’18 45.5 60.7 20.5

TJ-AIDL [48] CVPR’18 58.2 74.8 26.5
PTGAN [50] CVPR’18 38.6 57.3 15.7
SPGAN [7] CVPR’18 51.5 70.1 27.1
HHL [62] ECCV’18 62.2 78.8 31.4

DECAMEL [53] TPAMI’19 60.2 76.0 32.4

MAR This work 67.7 81.9 40.0

Table 2. Comparison to the state-of-the-art unsupervised results in

the DukeMTMC-reID dataset. Measured by %.

Methods Reference
DukeMTMC-reID

rank-1 rank-5 mAP

LOMO [20] CVPR’15 12.3 21.3 4.8
BoW [59] ICCV’15 17.1 28.8 8.3

UDML [29] CVPR’16 18.5 31.4 7.3

CAMEL [52] ICCV’17 40.3 57.6 19.8
PUL [8] ToMM’18 30.0 43.4 16.4

TJ-AIDL [48] CVPR’18 44.3 59.6 23.0
PTGAN [50] CVPR’18 27.4 43.6 13.5
SPGAN [7] CVPR’18 41.1 56.6 22.3
HHL [62] ECCV’18 46.9 61.0 27.2

MAR This work 67.1 79.8 48.0

els TJ-AIDL [48], PTGAN [50], SPGAN [7] and HHL [62].

We show the results in Table 1 and Table 2.

From Table 1 and Table 2 we observe that our model

could significantly outperform the state-of-the-art methods.

Specifically, our model achieves an improvement over the

current state of the art (HHL in ECCV’18) by 20.2%/20.8%

on Rank-1 accuracy/MAP in the DukeMTMC-reID dataset

and by 5.5%/8.6% in the Market-1501 dataset. This obser-

vation validates the effectiveness of MAR.

Comparison to the hand-crafted feature representation

based models. The performance gaps are most significant

when comparing our model to the hand-crafted feature based

models [20, 59, 16, 21, 29]. The main reason is that these

early works are mostly based on heuristic design, and thus

they could not learn optimal discriminative features.

Comparison to the pseudo label learning based models.

Our model significantly outperforms the pseudo label learn-

ing based unsupervised RE-ID models [52, 8]. A key reason

is that our soft multilabel reference learning could exploit the

auxiliary reference information to mine the potential discrim-

inative information that is hardly detectable when directly

comparing the visual features of a pair of visually similar

persons. In contrast, the pseudo label learning based models

assign the pseudo label by direct comparison of the visual

features (e.g. via K-means clustering [52, 8]), rendering

them blind to the potential discriminative information.

Comparison to the unsupervised domain adaptation

based models. Compared to the unsupervised domain
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Table 3. Ablation study. Please refer to the text in Sec. 4.4.

Methods
Market-1501

rank-1 rank-5 rank-10 mAP

Pretrained (source only) 46.2 64.4 71.3 24.6

Baseline (feature-guided) 44.4 62.5 69.8 21.5

MAR w/o LCML 60.0 75.9 81.9 34.6
MAR w/o LCML&LRAL 53.9 71.5 77.7 28.2

MAR w/o LRAL 59.2 76.4 82.3 30.8

MAR 67.7 81.9 87.3 40.0

Methods
DukeMTMC-reID

rank-1 rank-5 rank-10 mAP

Pretrained (source only) 43.1 59.2 65.7 28.8

Baseline (feature-guided) 50.0 66.4 71.7 31.7

MAR w/o LCML 63.2 77.2 82.5 44.9
MAR w/o LCML&LRAL 60.1 73.0 78.4 40.4

MAR w/o LRAL 57.9 72.6 77.8 37.1

MAR 67.1 79.8 84.2 48.0

adaptation based RE-ID models [50, 7, 62, 48], our model

achieves superior performances. A key reason is that these

models only focus on transfering/adapting the discriminative

knowledge from the source domain but ignore the discrimina-

tive label information mining in the unlabeled target domain.

The discriminative knowledge in the source domain could

be less effective in the target domain even after adaptation,

because the discriminative clues can be drastically different.

In contrast, our model mines the discriminative informa-

tion in the unlabeled target data, which contributes direct

effectiveness to the target RE-ID task.

4.4. Ablation study

We perform an ablation study to demonstrate (1) the ef-

fectiveness of the soft multilabel guidance and (2) the in-

dispensability of the cross-view consistent soft multilabel

learning and the reference agent learning to MAR. For (1),

we adopt the pretrained model (i.e. only trained by LAL

using the auxiliary source MSMT17 dataset to have basic

discriminative power, as mentioned in Sec. 4.2). We also

adopt a baseline model that is feature similarity-guided in-

stead of soft multilabel-guided. Specifically, after the same

pretraining procedure, we replace the soft multilabel agree-

ment with the feature similarity, i.e. in the hard negative

mining we partition the mined similar pairs into two halves

by a threshold of feature similarity rather than soft multilabel

agreement, and thus regard the high/low similarity half as

positive set P/hard negative set N . For (2), we remove the

LCML or LRAL. We show the results in Table 3.

Effectiveness of the soft multilabel-guided hard negative

mining. Comparing MAR to the pretrained model where the

soft multilabel-guided hard negative mining is missing, we

observe that MAR significantly improves the pretrained mod-

el (e.g. on Market-1501/DukeMTMC-reID, MAR improves

the pretrained model by 21.5%/24.0% on Rank-1 accuracy).

This is because the pretrained model is only discriminatively

trained on the auxiliary source dataset without mining the

discriminative information in the unlabeled target dataset,

so that it is not discriminative enough on the target dataset.

This comparison demonstrates the effectiveness of the soft

multilabel-guided hard negative mining.

Effectiveness of the soft multilabel agreement guidance.

Comparing MAR to the baseline model, we observe that

MAR also significantly outperforms the similarity-guided

hard negative mining baseline model. (e.g. on Market-

1501/DukeMTMC-reID, MAR outperforms the similarity-

guided hard negative mining baseline by 23.3%/17.1% on

Rank-1 accuracy). Furthermore, even when the soft multil-

abel learning and reference agent learning losses are missing

(i.e. “MAR w/o LCML&LRAL” where the soft multilabel

is much worse than MAR), the soft multilabel-guided model

still outperforms the similarity-guided model by 14.8%/7.9%

on Rank-1 accuracy on Market-1501/DukeMTMC. These

demonstrate the effectiveness of the soft multilabel guidance.

Indispensability of the soft multilabel learning and the

reference agent learning. When the cross-view consisten-

t soft multilabel learning loss is absent, the performances

drastically drop (e.g. drop by 7.7%/5.4% on Rank-1 ac-

curacy/MAP in the Market-1501 dataset). This is mainly

because optimizing LCML improves the soft multilabel com-

parability of the cross-view pairs [52], giving more accurate

judgement in the positive/hard negative pairs. Hence, the

cross-view consistent soft multilabel learning is indispens-

able in MAR. When the reference agent learning loss is

also absent, the performances further drop (e.g. drop by

13.8%/11.8% on Rank-1/MAP in the Market-1501 dataset).

This is because in the absence of the reference agent learn-

ing, the soft multilabel is learned via comparing to the less

valid reference agents (only pretrained). This observation

validates the importance of the reference agent learning.

4.5. Visual results and insight

To demonstrate how the proposed soft multilabel refer-

ence learning works, in Figure 5 we show the similar target

pairs with the lowest soft multilabel agreements (i.e. the

mined soft multilabel-guided hard negative pairs) mined by

our trained model. We make the following observations:

(1) For an unlabeled person image x, the maximal entries

(label likelihood) of the learned soft multilabel are corre-

sponding to the reference persons that are highly visually

similar to x, i.e. the soft multilabel represents an unlabeled

person mainly by visually similar reference persons.

(2) For a pair of visually similar but unlabeled person

images, the soft multilabel reference learning works by dis-

covering potential fine-grained discriminative clues. For

example, in the upper-right pair in Figure 5, the two men

are dressed similarly. A potential fine-grained discriminative

clue is whether they have a backpack. For the man taking

a backpack, the soft multilabel reference learning assigns

maximal label likelihood to two reference persons who also

take backpacks, while for the other man the two reference

persons do not take backpacks, either. As a result, the soft

multilabel agreement is very low, giving a judgement that
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Body shape (median thin) Clothes color w/ backpack

w/ backpack Trousers color Clothes color

Figure 5. Visual results of the soft multilabel-guided hard negative

mining. Each pair surrounded by the red box is the similar pair

mined by our model with the lowest soft multilabel agreements, and

the images on their right are the reference persons corresponding

to the first/second maximal soft multilabel entries. The first row

is from the Market-1501 and the second from DukeMTMC-reID.

We highlight the discovered fine-grained discriminative clues in the

bottom text for each pair. Please view in the screen and zoom in.

this is a hard negative pair. We highlight the discovered

fine-grained discriminative clues in the bottom of every pair.

These observations lead us to conclude that the soft multil-

abel reference learning distinguishes visually similar persons

by giving high label likelihood to different reference persons

to produce a low soft multilabel agreement.

4.6. Further evaluations

Various numbers of reference persons. We evaluate how

the number of reference persons affect our model learning.

In particular, we vary the number by using only the first

Nu reference persons (except that we keep all data used in

LAL to guarantee that the basic discriminative power is not

changed). We show the results in Figure 6.

From Figure 6(a) we observe that: (1) Empirically, the

performances become stable when the number of reference

persons are larger than 1,500, which is approximately two

times of the number of the training persons in both dataset-

s (750/700 training persons in Market-1501/DukeMTMC-

reID). This indicates that MAR does not necessarily require

a very large reference population but a median size, e.g. two

times of the training persons. (2) When there are only a

few reference persons (e.g. 100), the performances drop

drastically due to the poor soft multilabel representation ca-

pacity of the small reference population. In other words, this

indicates that MAR could not be well learned using a very

small auxiliary dataset.
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Figure 6. Evaluation on different numbers of reference persons.
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Figure 7. Evaluation on important hyperparameters. For (a) we fix

λ2 = 50 and for (b) we fix λ1 = 0.0002.

Hyperparameter evaluations. We evaluate how λ1 (which

controls the relative importance of the soft multilabel learn-

ing) and λ2 (the relative importance of the reference agent

learning) affect our model learning. We show the results in

Figure 7. From Figure 7 we observe that our model learning

is stable within a wide range for both hyperparameters (e.g.

2× 10−5 < λ1 < 5× 10−4 and 10 < λ2 < 200), although

both of them should not be too large to overemphasize the

soft multilabel/reference agent learning.

5. Conclusion

In this work we demonstrate the effectiveness of utilizing

auxiliary source RE-ID data for mining the potential label

information latent in the unlabeled target RE-ID data. Specif-

ically, we propose MAR which enables simultaneously the

soft multilabel-guided hard negative mining, the cross-view

consistent soft multilabel learning and the reference agent

learning in a unified model. In MAR, we leverage the soft

multilabel for mining the latent discriminative information

that cannot be discovered by direct comparison of the abso-

lute visual features in the unlabeled RE-ID data. To enable

the soft multilabel-guided hard negative mining in MAR,

we simultaneously optimize the cross-view consistent soft

multilabel learning and the reference agent learning. Experi-

mental results in two benchmarks validate the effectiveness

of the proposed MAR and each learning component of MAR.
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