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Abstract

Collecting well-annotated image datasets to train mod-

ern machine learning algorithms is prohibitively expensive

for many tasks. One appealing alternative is rendering syn-

thetic data where ground-truth annotations are generated

automatically. Unfortunately, models trained purely on ren-

dered images often fail to generalize to real images. To ad-

dress this shortcoming, prior work introduced unsupervised

domain adaptation algorithms that attempt to map repre-

sentations between the two domains or learn to extract fea-

tures that are domain–invariant. In this work, we present

a new approach that learns, in an unsupervised manner, a

transformation in the pixel space from one domain to the

other. Our generative adversarial network (GAN)–based

model adapts source-domain images to appear as if drawn

from the target domain. Our approach not only produces

plausible samples, but also outperforms the state-of-the-art

on a number of unsupervised domain adaptation scenarios

by large margins. Finally, we demonstrate that the adap-

tation process generalizes to object classes unseen during

training.

1. Introduction

Large and well–annotated datasets such as ImageNet [9],

COCO [29] and Pascal VOC [12] are considered crucial

to advancing computer vision research. However, creating

such datasets is prohibitively expensive. One alternative is

the use of synthetic data for model training. It has been

a long-standing goal in computer vision to use game en-

gines or renderers to produce virtually unlimited quantities
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(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Figure 1. RGBD samples generated with our model vs real RGBD

samples from the Linemod dataset [22, 45]. In each subfigure the

top row is the RGB part of the image, and the bottom row is the

corresponding depth channel. Each column corresponds to a spe-

cific object in the dataset. See Sect. 4 for more details.

of labeled data. Indeed, certain areas of research, such as

deep reinforcement learning for robotics tasks, effectively

require that models be trained in synthetic domains as train-

ing in real–world environments can be excessively expen-

sive [38, 42]. Consequently, there has been a renewed inter-

est in training models in the synthetic domain and applying

them in real–world settings [8, 47, 38, 42, 25, 32, 35, 37].

Unfortunately, models naively trained on synthetic data do

not typically generalize to real images.

A solution to this problem is using unsupervised domain
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adaptation. In this setting, we would like to transfer knowl-

edge learned from a source domain, for which we have la-

beled data, to a target domain for which we have no labels.

Previous work either attempts to find a mapping from repre-

sentations of the source domain to those of the target [41],

or seeks to find domain-invariant representations that are

shared between the two domains [14, 43, 31, 5]. While

such approaches have shown good progress, they are still

not on par with purely supervised approaches trained only

on the target domain.

In this work, we train a model to change images from the

source domain to appear as if they were sampled from the

target domain while maintaining their original content. We

propose a novel Generative Adversarial Network (GAN)–

based architecture that is able to learn such a transformation

in an unsupervised manner, i.e. without using correspond-

ing pairs from the two domains. Our unsupervised pixel-

level domain adaptation method (PixelDA) offers a number

of advantages over existing approaches:

Decoupling from the Task-Specific Architecture: In

most domain adaptation approaches, the process of domain

adaptation and the task-specific architecture used for in-

ference are tightly integrated. One cannot switch a task–

specific component of the model without having to re-train

the entire domain adaptation process. In contrast, because

our PixelDA model maps one image to another at the pixel

level, we can alter the task-specific architecture without

having to re-train the domain adaptation component.

Generalization Across Label Spaces: Because previous

models couple domain adaptation with a specific task, the

label spaces in the source and target domain are constrained

to match. In contrast, our PixelDA model is able to handle

cases where the target label space at test time differs from

the label space at training time.

Training Stability: Domain adaptation approaches that

rely on some form of adversarial training [5, 14] are sensi-

tive to random initialization. To address this, we incorporate

a task–specific loss trained on both source and generated

images and a pixel similarity regularization that allows us

to avoid mode collapse [40] and stabilize training. By using

these tools, we are able to reduce variance of performance

for the same hyperparameters across different random ini-

tializations of our model (see section 4).

Data Augmentation: Conventional domain adaptation

approaches are limited to learning from a finite set of source

and target data. However, by conditioning on both source

images and a stochastic noise vector, our model can be used

to create virtually unlimited stochastic samples that appear

similar to images from the target domain.

Interpretability: The output of PixelDA, a domain–

adapted image, is much more easily interpreted than a do-

main adapted feature vector.

To demonstrate the efficacy of our strategy, we focus on

the tasks of object classification and pose estimation, where

the object of interest is in the foreground of a given image,

for both source and target domains. Our method outper-

forms the state-of-the-art unsupervised domain adaptation

techniques on a range of datasets for object classification

and pose estimation, while generating images that look very

similar to the target domain (see Figure 1).

2. Related Work

Learning to perform unsupervised domain adaptation is

an open theoretical and practical problem. While much

prior work exists, our literature review focuses primarily on

Convolutional Neural Network (CNN) methods due to their

empirical superiority on the problem [14, 31, 41, 44].

Unsupervised Domain Adaptation: Ganin et al. [13, 14]

and Ajakan et al. [3] introduced the Domain–Adversarial

Neural Network (DANN): an architecture trained to extract

domain-invariant features. Their model’s first few layers

are shared by two classifiers: the first predicts task-specific

class labels when provided with source data while the sec-

ond is trained to predict the domain of its inputs. DANNs

minimize the domain classification loss with respect to pa-

rameters specific to the domain classifier, while maximiz-

ing it with respect to the parameters that are common to

both classifiers. This minimax optimization becomes possi-

ble in a single step via the use of a gradient reversal layer.

While DANN’s approach to domain adaptation is to make

the features extracted from both domains similar, our ap-

proach is to adapt the source images to look as if they were

drawn from the target domain. Tzeng et al. [44] and Long

et al. [31] proposed versions of DANNs where the maxi-

mization of the domain classification loss is replaced by the

minimization of the Maximum Mean Discrepancy (MMD)

metric [21], computed between features extracted from sets

of samples from each domain. Ghifary et al. [17] propose

an alternative model in which the task loss for the source

domain is combined with a reconstruction loss for the tar-

get domain, which results in learning domain-invariant fea-

tures. Bousmalis et al. [5] introduce a model that explicitly

separates the components that are private to each domain

from those that are common to both domains. They make

use of a reconstruction loss for each domain, a similarity

loss (eg. DANN, MMD) which encourages domain invari-

ance, and a difference loss which encourages the common

and private representation components to be complemen-

tary.

Other related techniques involve learning a mapping

from one domain to the other at a feature level. In such a

setup, the feature extraction pipeline is fixed during the do-

main adaptation optimization. This has been applied in var-

ious non-CNN based approaches [18, 6, 20] as well as the
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more recent CNN-based Correlation Alignment (CORAL)

[41] algorithm.

Generative Adversarial Networks: Our model uses

GANs [19] conditioned on source images and noise vec-

tors. Other recent works have also attempted to use GANs

conditioned on images. Ledig et al. [28] used an image-

conditioned GAN for super-resolution. Yoo et al. [46] in-

troduce the task of generating images of clothes from im-

ages of models wearing them, by training on corresponding

pairs of the clothes worn by models and on a hanger. In con-

trast to our work, neither method conditions on both images

and noise vectors, and ours is also applied to an entirely

different problem space.

The work perhaps most similar to ours is that of Liu and

Tuzel [30] who introduce an architecture of a pair of cou-

pled GANs, one for the source and one for the target do-

main, whose generators share their high-layer weights and

whose discriminators share their low-layer weights. In this

manner, they are able to generate corresponding pairs of

images which can be used for unsupervised domain adap-

tation. on the ability to generate high quality samples from

noise alone.

Style Transfer: The popular work of Gatys et al. [15, 16]

introduced a method of style transfer, in which the style of

one image is transferred to another while holding the con-

tent fixed. The process requires backpropagating back to

the pixels. Johnson et al. [24] introduce a model for feed

forward style transfer. They train a network conditioned on

an image to produce an output image whose activations on a

pre-trained model are similar to both the input image (high-

level content activations) and a single target image (low-

level style activations). However, both of these approaches

are optimized to replicate the style of a single image as op-

posed to our work which seeks to replicate the style of an

entire domain of images.

3. Model

We begin by explaining our model for unsupervised

pixel-level domain adaptation (PixelDA) in the context of

image classification, though our method is not specific to

this particular task. Given a labeled dataset in a source

domain and an unlabeled dataset in a target domain, our

goal is to train a classifier on data from the source domain

that generalizes to the target domain. Previous work per-

forms this task using a single network that performs both

domain adaptation and image classification, making the do-

main adaptation process specific to the classifier architec-

ture. Our model decouples the process of domain adapta-

tion from the process of task-specific classification, as its

primary function is to adapt images from the source domain

to make them appear as if they were sampled from the tar-

get domain. Once adapted, any off-the-shelf classifier can

be trained to perform the task at hand as if no domain adap-

tation were required. Note that we assume that the differ-

ences between the domains are primarily low-level (due to

noise, resolution, illumination, color) rather than high-level

(types of objects, geometric variations, etc).

More formally, let Xs = {xs
i ,y

s
i}

Ns

i=0
represent a labeled

dataset of Ns samples from the source domain and let Xt =
{xt

i}
Nt

i=0
represent an unlabeled dataset of N t samples from

the target domain. Our pixel adaptation model consists of

a generator function G(xs, z;θG) → xf , parameterized by

θG, that maps a source domain image xs ∈ Xs and a noise

vector z ∼ pz to an adapted, or fake, image xf . Given the

generator function G, it is possible to create a new dataset

Xf = {G(xs, z),ys} of any size. Finally, given an adapted

dataset Xf , the task-specific classifier can be trained as if

the training and test data were from the same distribution.

3.1. Learning

To train our model, we employ a generative adversarial

objective to encourage G to produce images that are similar

to the target domain images. During training, our gener-

ator G(xs, z;θG) → xf maps a source image xs and a

noise vector z to an adapted image xf . Furthermore, the

model is augmented by a discriminator function D(x; θD)
that outputs the likelihood d that a given image x has been

sampled from the target domain. The discriminator tries to

distinguish between ‘fake’ images Xf produced by the gen-

erator, and ‘real’ images from the target domain Xt. Note

that in contrast to the standard GAN formulation [19] in

which the generator is conditioned only on a noise vector,

our model’s generator is conditioned on both a noise vec-

tor and an image from the source domain. In addition to

the discriminator, the model is also augmented with a clas-

sifier T (x; θT ) → ŷ which assigns task-specific labels ŷ to

images x ∈ {Xf ,Xt}.

Our goal is to optimize the following minimax objective:

min
θG,θT

max
θD

αLd(D,G) + βLt(G, T ) (1)

where α and β are weights that control the interaction of the

losses. Ld represents the domain loss:

Ld(D,G) = Ext [logD(xt;θD)]+

Exs,z[log(1−D(G(xs, z;θG);θD))] (2)

Lt is a task-specific loss, and in the case of classification we

use a typical softmax cross–entropy loss:

Lt(G, T ) = Exs,ys,z

�

− ys� log T (G(xs, z;θG);θT )

− ys� log T (xs);θT

�

(3)

where ys is the one-hot encoding of the class label for

source input xs. Notice that we train T with both adapted

and non-adapted source images. When training T only
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Figure 2. An overview of the model architecture. On the left, we depict the overall model architecture following the style in [34]. On the

right, we expand the details of the generator and the discriminator components. The generator G generates an image conditioned on a

synthetic image x
s and a noise vector z. The discriminator D discriminates between real and fake images. The task–specific classifier T

assigns task–specific labels y to an image. A convolution with stride 1 and 64 channels is indicated as n64s1 in the image. lrelu stands for

leaky ReLU nonlinearity. BN stands for a batch normalization layer and FC for a fully connected layer. Note that we are not displaying

the specifics of T as those are different for each task and decoupled from the domain adaptation process.

on adapted images, it’s possible to achieve similar perfor-

mance, but doing so may require many runs with different

initializations due to the instability of the model. Indeed,

without training on source as well, the model is free to shift

class assignments (e.g. class 1 becomes 2, class 2 becomes

3 etc) while still being successful at optimizing the training

objective. We have found that training classifier T on both

source and adapted images avoids this scenario and greatly

stabilizes training (See Table 5). might use a different label

space (See Table 4).

In our implementation, G is a convolutional neural net-

work with residual connections that maintains the resolu-

tion of the original image as illustrated in figure 2. Our dis-

criminator D is also a convolutional neural network. The

minimax optimization of Equation 1 is achieved by alter-

nating between two steps. During the first step, we up-

date the discriminator and task-specific parameters θD,θT ,

while keeping the generator parameters θG fixed. During

the second step we fix θD,θT and update θG.

3.2. Content–similarity loss

In certain cases, we have prior knowledge regarding the

low-level image adaptation process. For example, we may

expect the hues of the source and adapted images to be the

same. In our case, for some of our experiments, we render

single objects on black backgrounds and consequently we

expect images adapted from these renderings to have simi-

lar foregrounds and different backgrounds from the equiv-

alent source images. Renderers typically provide access to

z-buffer masks that allow us to differentiate between fore-

ground and background pixels. This prior knowledge can

be formalized via the use of an additional loss that penal-

izes large differences between source and generated images

for foreground pixels only. Such a similarity loss grounds

the generation process to the original image and helps sta-

bilize the minimax optimization, as shown in Sect. 4.4 and

Table 5. Our optimization objective then becomes:

min
θG,θT

max
θD

αLd(D,G) + βLt(T,G) + γLc(G) (4)

where α, β, and γ are weights that control the interaction of

the losses, and Lc is the content–similarity loss.

A number of losses could anchor the generated image

to the original image in some meaningful way (e.g. L1,

or L2 loss, similarity in terms of the activations of a pre-

trained VGG network). In our experiments for learning ob-

ject instance classification from rendered images, we use a

masked pairwise mean squared error, which is a variation

of the pairwise mean squared error (PMSE) [11]. This loss

penalizes differences between pairs of pixels rather than ab-

solute differences between inputs and outputs. Our masked

version calculates the PMSE between the generated fore-

ground and the source foreground. Formally, given a binary
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Figure 3. Visualization of our model’s ability to generate samples

when trained to adapt MNIST to MNIST-M. (a) Source images xs

from MNIST; (b) The samples adapted with our model G(xs, z)
with random noise z; (c) The nearest neighbors in the MNIST-M

training set of the generated samples in the middle row. Differ-

ences between the middle and bottom rows suggest that the model

is not memorizing the target dataset.

mask m ∈ R
k, our masked-PMSE loss is:

Lc(G) = Exs,z

�1

k
�(xs −G(xs, z;θG)) ◦m�

2

2

−
1

k2

�

(xs −G(xs, z;θG))
�m

�2
�

(5)

where k is the number of pixels in input x, � · �2
2

is the

squared L2-norm, and ◦ is the Hadamard product. This loss

allows the model to learn to reproduce the overall shape of

the objects being modeled without wasting modeling power

on the absolute color or intensity of the inputs, while al-

lowing our adversarial training to change the object in a

consistent way. Note that the loss does not hinder the fore-

ground from changing but rather encourages the foreground

to change in a consistent way. In this work, we apply a

masked PMSE loss for a single foreground object because

of the nature of our data, but one can trivially extend this to

multiple foreground objects.

4. Evaluation

We evaluate our method on object classification datasets

used in previous work1, including MNIST, MNIST-M [14],

and USPS [10] as well as a variation of the LineMod

dataset [22, 45], a standard for object instance recognition

and 3D pose estimation, for which we have synthetic and

real data. Our evaluation is composed of qualitative and

quantitative components, using a number of unsupervised

domain adaptation scenarios. The qualitative evaluation in-

volves the examination of the ability of our method to learn

the underlying pixel adaptation process from the source to

the target domain by visually inspecting the generated im-

ages. The quantitative evaluation involves a comparison

of the performance of our model to previous work and to

“Source Only” and “Target Only” baselines that do not use

any domain adaptation. In the first case, we train mod-

els only on the unaltered source training data and evalu-

ate on the target test data. In the “Target Only” case we

1The most commonly used dataset for visual domain adaptation in the

context of object classification is Office [39]. However, we do not use

it in this work as there are significant high–level variations due to label

pollution. For more information, see the relevant explanation in [5].

train task models on the target domain training set only and

evaluate on the target domain test set. The unsupervised

domain adaptation scenarios we consider are listed below:

MNIST to USPS: Images of the 10 digits (0-9) from the

MNIST [27] dataset are used as the source domain and im-

ages of the same 10 digits from the USPS [10] dataset repre-

sent the target domain. To ensure a fair comparison between

the “Source–Only” and domain adaptation experiments, we

train our models on a subset of 50,000 images from the orig-

inal 60,000 MNIST training images. The remaining 10,000

images are used as validation set for the “Source–Only” ex-

periment. The standard splits for USPS are used, compris-

ing of 6,562 training, 729 validation, and 2,007 test images.

MNIST to MNIST-M: MNIST [27] digits represent the

source domain and MNIST-M [14] digits represent the tar-

get domain. MNIST-M is a variation on MNIST proposed

for unsupervised domain adaptation. Its images were cre-

ated by using each MNIST digit as a binary mask and in-

verting with it the colors of a background image. The back-

ground images are random crops uniformly sampled from

the Berkeley Segmentation Data Set (BSDS500) [4]. All

our experiments follow the experimental protocol by [14].

We use the labels for 1,000 out of the 59,001 MNIST-M

training examples to find optimal hyperparameters.

Synthetic Cropped LineMod to Cropped LineMod:

The LineMod dataset [22] is a dataset of small objects in

cluttered indoor settings imaged in a variety of poses. We

use a cropped version of the dataset [45], where each image

is cropped with one of 11 objects in the center. The 11 ob-

jects used are ‘ape’, ‘benchviseblue’, ‘can’, ‘cat’, ‘driller’,

‘duck’, ‘holepuncher’, ‘iron’, ‘lamp’, ‘phone’, and ‘cam’.

A second component of the dataset consists of CAD mod-

els of these same 11 objects in a large variety of poses ren-

dered on a black background, which we refer to as Synthetic

Cropped LineMod. We treat Synthetic Cropped LineMod as

the source dataset and the real Cropped LineMod as the tar-

get dataset. We train our model on 109,208 rendered source

images and 9,673 real-world target images for domain adap-

tation, 1,000 for validation, and a target domain test set of

2,655 for testing. Using this scenario, our task involves both

classification and pose estimation. Consequently, our task–

specific network T (x; θT ) → {ŷ, q̂} outputs both a class ŷ

and a 3D pose estimate in the form of a positive unit quater-

nion vector q̂. The task loss becomes:

Lt(G, T ) =

Exs,ys,z

�

− ys� log ŷs − ys� log ŷf+

ξ log
�

1−
�

�

�
qs�q̂

s
�

�

�

�

+ ξ log
�

1−
�

�

�
qs�q̂

f
�

�

�

� �

(6)

where the first and second terms are the classification loss,

similar to Equation 3, and the third and fourth terms are

the log of a 3D rotation metric for quaternions [23]. ξ

is the weight for the pose loss, qs represents the ground
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truth 3D pose of a sample, {ŷs
, q̂

s} = T (xs;θT ),
{ŷf

, q̂
f} = T (G(xs, z;θG);θT ). Table 2 reports the mean

angle the object would need to be rotated (on a fixed 3D

axis) to move from predicted to ground truth pose [22].

4.1. Implementation Details

All the models are implemented using TensorFlow2 [1]

and are trained with the Adam optimizer [26]. We opti-

mize the objective in Equation 1 for “MNIST to USPS” and

“MNIST to MNIST-M” scenarios and the one in Equation 4

for the “Synthetic Cropped Linemod to Cropped Linemod”

scenario. We use batches of 32 samples from each do-

main and the input images are zero-centered and rescaled

to [−1, 1]. In our implementation, we let G take the form of

a convolutional residual neural network that maintains the

resolution of the original image as shown in Figure 2. z

is a vector of Nz elements, each sampled from a uniform

distribution zi ∼ U(−1, 1). It is fed to a fully connected

layer which transforms it to a channel of the same reso-

lution as that of the image channels, and is subsequently

concatenated to the input as an extra channel. In all our ex-

periments we use a z with Nz = 10. The discriminator D is

a convolutional neural network where the number of layers

depends on the image resolution: the first layer is a stride

1x1 convolution (motivated by [33]), which is followed by

repeatedly stacking stride 2x2 convolutions until we reduce

the resolution to less or equal to 4x4. The number of fil-

ters is 64 in all layers of G, and is 64 in the first layer of D

and repeatedly doubled in subsequent layers. The output of

this pyramid is fed to a fully–connected layer with a single

activation for the domain classification loss. 3 For all our

experiments, the CNN topologies used for the task classifier

T are identical to the ones used in [14, 5] to be comparable

to previous work in unsupervised domain adaptation.

4.2. Quantitative Results

We have not found a universally applicable way to opti-

mize hyperparameters for unsupervised domain adaptation.

Consequently, we follow the experimental protocol of [5]

and use a small set (∼1,000) of labeled target domain data

as a validation set for the hyperparameters of all the meth-

ods we compare. We perform all experiments using the

same protocol to ensure fair and meaningful comparison.

The performance on this validation set can serve as an up-

per bound of a satisfactory validation metric for unsuper-

vised domain adaptation. As we discuss in section 4.5, we

also evaluate our model in a semi-supervised setting with

1,000 labeled examples in the target domain, to confirm that

PixelDA is still able to improve upon the naive approach of

training on this small set of target labeled examples.

2Our code is available here: https://goo.gl/fAwCPw
3Our architecture details can be found in the supplementary material.

Table 1. Mean classification accuracy (%) for digit datasets. The

“Source-only” and “Target-only” rows are the results on the target

domain when using no domain adaptation and training only on the

source or the target domain respectively. We note that our Source

and Target only baselines resulted in different numbers than previ-

ously published works which we also indicate in parenthesis.

Model
MNIST to MNIST to

USPS MNIST-M

Source Only 78.9 63.6 (56.6)

CORAL [41] 81.7 57.7

MMD [44, 31] 81.1 76.9

DANN [14] 85.1 77.4

DSN [5] 91.3 83.2

CoGAN [30] 91.2 62.0

Our PixelDA 95.9 98.2

Target-only 96.5 96.4 (95.9)

We evaluate our model using the aforementioned combi-

nations of source and target datasets, and compare the per-

formance of our model’s task architecture T to that of other

state-of-the-art unsupervised domain adaptation techniques

based on the same task architecture T . As mentioned above,

in order to evaluate the efficacy of our model, we first com-

pare with the accuracy of models trained in a “Source Only”

setting for each domain adaptation scenario. This setting

represents a lower bound on performance. Next we compare

models in a “Target Only” setting for each scenario. This

setting represents a weak upper bound on performance—as

it is conceivable that a good unsupervised domain adapta-

tion model might improve on these results, as we do in this

work for “MNIST to MNIST-M”.

Quantitative results of these comparisons are presented

in Tables 1 and 2. Our method is able to not just

achieve better results than previous work on the “MNIST to

MNIST-M” scenario, it is also able to outperform the “Tar-

get Only” performance we are able to get with the same task

classifier. Furthermore, we are also able to achieve state-

of-the art results for the “MNIST to USPS” scenario. Fi-

nally, PixelDA is able to reduce the mean angle error for the

“Synth Cropped Linemod to Cropped Linemod” scenario to

more than half compared to the previous state-of-the-art.

4.3. Qualitative Results

The qualitative results of our model are illustrated in fig-

ures 1, 3, and 4. In figures 3 and 4 one can see the visualiza-

tion of the generation process, as well as the nearest neigh-

bors of our generated samples in the target domain. In both

scenarios, it is clear that our method is able to learn the un-

derlying transformation process that is required to adapt the

original source images to images that look like they could

belong in the target domain. As a reminder, the MNIST-M

digits have been generated by using MNIST digits as a bi-

nary mask to invert the colors of a background image. It is

clear from figure 3 that in the “MNIST to MNIST-M” case,
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Figure 4. Visualization of our model’s ability to generate samples when trained to adapt Synth Cropped Linemod to Cropped Linemod. Top

Row: Source RGB and Depth image pairs from Synth Cropped LineMod x
s; Middle Row: The samples adapted with our model G(xs, z)

with random noise z; Bottom Row: The nearest neighbors between the generated samples in the middle row and images from the target

training set. Differences between the generated and target images suggest that the model is not memorizing the target dataset.

our model is able to not only generate backgrounds from

different noise vectors z, but it is also able to learn this in-

version process. This is clearly evident from e.g. digits 3

and 6 in the figure. In the “Synthetic Cropped Linemod to

Cropped Linemod” case, our model is able to sample, in the

RGB channels, realistic backgrounds and adjust the pho-

tometric properties of the foreground object. In the depth

channel it is able to learn a plausible noise model.

Table 2. Mean classification accuracy and pose error for the “Synth

Cropped Linemod to Cropped Linemod” scenario.

Model
Classification Mean Angle

Accuracy Error

Source-only 47.33% 89.2◦

MMD [44, 31] 72.35% 70.62◦

DANN [14] 99.90% 56.58◦

DSN [5] 100.00% 53.27◦

Our PixelDA 99.98% 23.5◦

Target-only 100.00% 6.47◦

4.4. Model Analysis

We present a number of additional experiments that

demonstrate how the model works and to explore potential

limitations of the model.

Sensitivity to Used Backgrounds In both the “MNIST to

MNIST-M” and “Synthetic-Cropped LineMod to Cropped

LineMod” scenarios, the source domains are images of dig-

its or objects on black backgrounds. Our quantitative eval-

uation (Tables 1 and 2) illustrates the ability of our model

to adapt the source images to the target domain style but

raises two questions: Is it important that the backgrounds

of the source images are black and how successful are data-

augmentation strategies that use a randomly chosen back-

ground image instead? To that effect we ran additional

experiments where we substituted various backgrounds in

place of the default black background for the Synthetic

Table 3. Mean classification accuracy and pose error when vary-

ing the background of images from the source domain. For these

experiments we used only the RGB portions of the images, as

there is no trivial or typical way with which we could have added

backgrounds to depth images. For comparison, we display results

with black backgrounds and Imagenet backgrounds (INet), with

the “Source Only” setting and with our model for the RGB-only

case.

Model–RGB-only
Classification Mean Angle

Accuracy Error

Source-Only–Black 47.33% 89.2◦

PixelDA–Black 94.16% 55.74◦

Source-Only–INet 91.15% 50.18◦

PixelDA–INet 96.95% 36.79◦

Cropped Linemod dataset. The backgrounds are randomly

selected crops of images from the ImageNet dataset. In

these experiments we used only the RGB portion of the im-

ages —for both source and target domains— since we don’t

have equivalent “backgrounds” for the depth channel. As

demonstrated in Table 3, PixelDA is able to improve upon

training ‘Source-only’ models on source images of objects

on either black or random Imagenet backgrounds.

Generalization of the Model Two additional aspects of

the model are relevant to understanding its performance.

Firstly, is the model actually learning a successful pixel-

level data adaptation process, or is it simply memorizing the

target images and replacing the source images with images

from the target training set? Secondly, is the model able to

generalize about the two domains in a fashion not limited to

the classes of objects seen during training?

To answer the first question, we first run our generator

G on images from the source images to create an adapted

dataset. Next, for each transferred image, we perform a

pixel-space L2 nearest neighbor lookup in the target train-

ing images to determine whether the model is simply mem-

orizing images from the target dataset or not. Illustrations
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Table 4. Performance of our model trained on only 6 out of 11

Linemod objects. The first row, ‘Unseen Classes,’ displays the per-

formance on all the samples of the remaining 5 Linemod objects

not seen during training. The second row, ‘Full test set,’ displays

the performance on the target domain test set for all 11 objects.

Test Set
Classification Mean Angle

Accuracy Error

Unseen Classes 98.98% 31.69◦

Full test set 99.28% 32.37◦

are shown in figures 3 and 4, where the top rows are samples

from xs, the middle rows are generated samples G(xs, z),
and the bottom rows are the nearest neighbors of the gener-

ated samples in the target training set. It is clear from the

figures that the model is not memorizing images from the

target training set.

Next, we evaluate our model’s ability to generalize to

classes unseen during training. To do so, we retrain our best

model using a subset of images from the source and target

domains which includes only half of the object classes for

the “Synthetic Cropped Linemod” to “Cropped Linemod”

scenario. Specifically, the objects ‘ape’, ‘benchviseblue’,

‘can’, ‘cat’, ‘driller’, and ‘duck’ are observed during the

training procedure, and the other objects are only used dur-

ing testing. Once G is trained, we fix its weights and pass

the full training set of the source domain to generate images

used for training the task-classifier T . We then evaluate the

performance of T on the entire set of unobserved objects

(6,060 samples), and the test set of the target domain for all

objects for direct comparison with Table 2.

Stability Study We also evaluate the importance of the

different components of our model. We demonstrate that

while the task and content losses do not improve the over-

all performance of the model, they dramatically stabilize

training. Training instability is a common characteristic

of adversarial training, necessitating various strategies to

deal with model divergence and mode collapse [40]. We

measure the standard deviation of the performance of our

models by running each model 10 times with different ran-

dom parameter initialization but with the same hyperparam-

eters. Table 5 illustrates that the use of the task and content–

similarity losses reduces the level of variability across runs.

4.5. Semi-supervised Experiments

Finally, we evaluate the usefulness of our model in a

semi–supervised setting, in which we assume we have a

small number of labeled target training examples. The

semi-supervised version of our model simply uses these ad-

ditional training samples as extra input to classifier T dur-

ing training. We sample 1,000 examples from the Cropped

Linemod not used in any previous experiment and use them

as additional training data. We evaluate the semi-supervised

version of our model on the test set of the Cropped Linemod

Table 5. The effect of using the task and content losses Lt, Lc on

the standard deviation (std) of the performance of our model on the

“Synth Cropped Linemod to Linemod” scenario. Lsource
t means

we use source data to train T ; L
adapted
t means we use generated

data to train T ; Lc means we use our content–similarity loss. A

lower std on the performance metrics means that the results are

more easily reproducible.

Lsource
t L

adapted
t Lc

Classification Mean Angle

Accuracy std Error std

- - - 23.26 16.33

- � - 22.32 17.48

� � - 2.04 3.24

� � � 1.60 6.97

Table 6. Semi-supervised experiments for the “Synthetic Cropped

Linemod to Cropped Linemod” scenario. When a small set of

1,000 target data is available to our model, it is able to improve

upon baselines trained on either just these 1,000 samples or the

synthetic training set augmented with these labeled target samples.

Method
Classification Mean Angle

Accuracy Error

1000-only 99.51% 25.26◦

Synth+1000 99.89% 23.50◦

Our PixelDA 99.93% 13.31◦

target domain against the 2 following baselines: (a) training

a classifier only on these 1,000 target samples without any

domain adaptation, a setting we refer to as ‘1,000-only’; and

(b) training a classifier on these 1,000 target samples and the

entire Synthetic Cropped Linemod training set with no do-

main adaptation, a setting we refer to as ‘Synth+1000’. As

one can see from Table 6 our model is able to greatly im-

prove upon the naive setting of incorporating a few target

domain samples during training. We also note that PixelDA

leverages these samples to achieve an even better perfor-

mance than in the fully unsupervised setting (Table 2).

5. Conclusion

We present a state-of-the-art method for performing un-

supervised domain adaptation. Our PixelDA models outper-

form previous work on a set of unsupervised domain adap-

tation scenarios, and in the case of the challenging “Syn-

thetic Cropped Linemod to Cropped Linemod” scenario,

our model more than halves the error for pose estimation

compared to the previous best result. They are able to do

so by using a GAN–based technique, stabilized by both a

task-specific loss and a novel content–similarity loss. Fur-

thermore, our model decouples the process of domain adap-

tation from the task-specific architecture, and provides the

added benefit of being easy to understand via the visualiza-

tion of the adapted image outputs of the model.
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