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Abstract

The trend to digitize (historic) paper-based archives has emerged in the last years.
The advantages of digital archives are easy access, searchability and machine read-
ability. These advantages can only be ensured if few or no OCR errors are present.
These errors are the result of misrecognized characters during the OCR process.
Large archives make it unreasonable to correct errors manually. Therefore, an un-
supervised, fully-automatic approach for correcting OCR errors is proposed. The
approach combines several methods for retrieving the best correction proposal for
a misspelled word: A general spelling correction (Anagram Hash), a new OCR
adapted method based on the shape of characters (OCR-Key) and context infor-
mation (bigrams). A manual evaluation of the approach has been performed on
The Times Archive of London, a collection of English newspaper articles spanning
from 1785 to 1985. Error reduction rates up to 75% and F-Scores up to 88% could
be achieved.
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Zusammenfassung

Der Trend papierbasierte (historische) Archive zu digitalisieren hat in den letzten
Jahren zugenommen. Die einfache Zugänglichkeit, Durchsuchbarkeit und Maschi-
nenlesbarkeit sind die Vorteile digitaler Archive gegenüber papierbasierten. Diese
Vorteile können nur sichergestellt werden, wenn nur wenige oder keine OCR Fehler
enthalten sind. Solche Fehler werden durch falsch erkannte Zeichen während des
OCR Prozesses verursacht. Da bei großen Archiven eine manuelle Korrektur nicht
sinnvoll ist, wird in dieser Arbeit eine Methode vorgeschlagen, um OCR Fehler voll
automatisch zu korrigieren. Die vorgeschlagene Methode verbindet dabei mehrere
Methoden, um den besten Korrekturvorschlag für ein falsch geschriebenes Wort zu
finden: Eine allgemeine Rechtschreibkorrektur (Anagram Hash), eine neue für OCR
Fehler angepasste Methode, basierend auf der Form bzw. Gestalt von Zeichen und
Kontextinformationen (Bigramme). Eine manuelle Evaluation der vorgeschlagenen
Methode wurde auf dem Zeitungsarchiv (The Times, London) durchgeführt, einer
Sammlung englischer Zeitungsartikel von 1785 bis 1985. Fehlerreduktionsraten bis
zu 75% und F-Scores bis zu 88% konnten erzielt werden.
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1 Introduction

1.1 Motivation

In the last years the trend to digitize (historic) paper based documents such as
books and newspapers, has emerged. The aim is to preserve these documents and
make them fully accessible, searchable and processable in digital form. Knowledge
contained in paper based documents is more valuable for today’s digital world
when it is available in digital form.

The first step towards transforming a paper based archive into a digital archive
is to scan the documents. The next step is to apply an OCR (Optical Character
Recognition) process, meaning that the scanned image of each document will be
translated into machine processable text. Due to the print quality of the documents
and the error-prone pattern matching techniques of the OCR process, OCR errors
occur. Modern OCR processors have character recognition rates up to 99% on
high quality documents. Assuming an average word length of 5 characters, this
still means that one out of 20 words is defect. Thus, at least 5% of all processed
words will contain OCR errors. On historic documents this error rate will be even
higher because the print quality is likely to be of lower quality.

After finishing the OCR process several post-processing steps are necessary de-
pending on the application, e.g. tagging the documents with meta-data (author,
year, etc.) or proof-reading the documents for correcting OCR errors and spelling
mistakes. Data which contains spelling mistakes or OCR errors is difficult to pro-
cess. For example, a standard full-text search will not retrieve misspelled versions
of a query string. To fulfil application’s demanding requirements toward zero er-
rors, a post-processing step to correct these errors is a very important part of the
post-processing chain.

A post-processing error correction system can be manual, semi-automatic or fully-
automatic. A semi-automatic post-correction system detects errors automatically
and proposes corrections to human correctors who then have to choose the correct
proposal. A fully-automatic post-correction system does the detection and correc-
tion of errors by its own. Because semi-automatic or manual corrections require a
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lot of human effort and time, fully-automatic systems become necessary to perform
a full correction.

Spell checkers and post-processing correction systems are mostly dictionary based
and work in two steps. The first step compares each token with a word list.
If the token is not present in the list, it is likely misspelled and presented as
a potential error. The second step generates correction proposals bases on the
underlying dictionary. The proposals are then ranked with different similarity
measures. Usually, these proposal lists are ranked by their likeliness to be the best
matching correction proposal.

Obviously a fully-automatic system relies heavily on the 1-best correction proposal.
One state-of-the-art system for human spelling mistakes is GNU Aspell 0.60.6
[Atk08], here on referenced to as Aspell. It is able to propose correction lists
including an appropriate proposal in about 90% for a test file which contains 547
human spelling mistakes. Unfortunately, only every second misspelling can be
corrected fully-automatically by Aspell using the 1-best proposal.

1.2 Objective of the Thesis

Using static dictionaries for correcting errors has several disadvantages when ap-
plying on historic documents. For example names or language variations are likely
not included in today’s dictionaries and may be detected as wrong or even mis-
corrected to a wrong word. To overcome such problems, high frequent words from
the archive itself can be used to derive adequate word lists. Assuming that fre-
quent words are more likely to be correct, the derived word list enables correcting
names as well as domain specific words. Furthermore, using the archive for cor-
recting errors is language independent and can tackle languages with less resource,
e.g. historic languages. Despite the advantage of a corpus derived dictionary the
method also offers some disadvantages. Questions like “When is a word frequent
enough to be correct?” have to be investigated.

To find the best matching proposal, similarity measures are very important. Since
OCR errors differ from human spelling mistakes they require a special handling.
To enable a better correction of OCR errors, this thesis proposes a new similarity
key technique, called OCR-Key. OCR-Key exploits the nature of OCR systems
and their generated errors based on the shape of characters. OCR-Key classifies
characters into equivalence classes which look similar, e.g. “e ≈ c”. Additionally,
the structure of words is exploited, e.g. iii → m. This can simplify the retrieval
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of adequate words and boost the 1-best proposal rate when used in combination
with other correction techniques.

To find the best matching correction for an OCR error, the context can be used as
another source of information. This can be done by using word pairs (bigrams on
word level). Therefore, a pre-processing step is necessary to collect bigrams and
their occurrence. For example the fragment another sample sentence can be split
up into two bigrams: another sample and sample sentence. Assume that the word
sampe of the fragment another sampe sentence should be corrected. The correction
proposals will be sample, same or something else. But using the context bigram
information the resulting correction of the fragment another sampe sentence will
be another sample sentence.

The core correction method of this thesis is based on the Anagram Hash technique
first introduced by Reynaert [Rey04]. It uses a bad hashing function which assigns
the same number to all words which have the same characters in common, e.g. with
and wtih have the same hash value. Using the hash values of single characters en-
ables to add, subtract or both on word’s hash values to find similarly spelled words,
e.g. adding the hash value of the character l to the hash value of the word sampe
will retrieve the word sample. The advantages of the anagram hash is the speed
of retrieving corrections, the ability to compute on numbers instead of characters
and a natural ranking which will be presented later. Furthermore, bigrams can be
hashed, which makes it possible to split up misspelled words properly, e.g. adding
the character hash values of l and whitespace corrects the token sampesentence to
sample sentence.

This thesis will focus on describing, analysing, applying and evaluating a fully-
automatic post-correction system on the collection of The Times of London [Tim].
The collection spans from 1785 to 1985 and contains over 7 billion white-space
separated tokens and nearly 8 million articles which motivates the usage of a fully-
automatic system. To achieve a good working system, this thesis will combine
the Anagram Hash method which uses a corpus derived dictionary to overcome
dictionary problems, a bigram approach on word level to consider the context and
OCR-Key, a new method specialized in correcting OCR errors.

Due to the lack of ground-truth material of The Times Archive, this thesis cannot
be evaluated automatically using word lists which compare correct with error-prone
word forms. Thus, human assessors will evaluate the presented OCR correction
system with the help of a tool especially designed for the task.
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1.3 OCR Error Classification

Before errors can be corrected they have to be identified and classified. A proper
classification is important in order to know which kind of errors occur. Once this is
known it can help to identify methods which are able to correct them. In related
work there is one main classification scheme widely spread which divides errors
into two classes: non-word and real-word errors (e.g. [Kuk92]).

Non-word error: A non-word error occurs if the original word is not contained
in any dictionary (e.g. tho instead of the). This is the common error most
spell checkers attempt to correct.

Real-word error: A real-word error occurs if the original word is correctly
spelled but incorrectly used (e.g. peace of paper instead of piece of paper).
Those kind of errors are only correctable using context information.

This classification is obviously not sufficient with respect to OCR errors as it only
divides errors into two groups. Furthermore, it is unclear what happens to words
which are correct but not contained in any dictionary, e.g. names, out-dated terms
or (historic) spelling variations. With respect to OCR errors, this classification also
lacks of several OCR related aspects. Hence, a better classification is needed here
to determine which kind of errors occur.

Segmentation errors. Different line, word or character spacings lead to mis-
recognitions of white-spaces, causing segmentation errors (e.g. thisis instead
of this is or depa rtmen t instead of department).

Hyphenation errors. Tokens are split up at line breaks if they are too long,
which increase the number of segmentation errors (e.g. de- partment).

Misrecognition of characters. Dirt and font-variations prevent an accurate
recognition of characters which induce wrong recognitions of words (e.g.
souiid instead of sound or &-Bi1rd#! instead of Bird).

Punctuation errors. Dirt causes misrecognitions of punctuation characters.
This means points, commas, etc. occur more often in wrong places with
missing or extra white-spaces etc.

Case sensitivity. Due to font variations, upper and lower case characters can
be mixed up (e.g. BrItaIn or BRITAIN ).

Changed word meaning. Misrecognized characters can lead to new words
which are often wrong in context but spelled correctly (e.g. mad instead of
sad).
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Error class recognized word correct word

Segmentation (missing space) thisis this is

Segmentation (split word) depa rtme nt department

Hyphenation error de- partment department

Character misrecognition souiid sound

Number substitution 0pporunity Opportunity

Special char insertion electi’on election

Changed word meaning mad sad

Case sensitive BrItaIn Britain

Punctuation this.is this is

Destruction NI.I II I Minister

Currencies ?20 $20

Table 1.1: OCR Error Examples

Some typical sample errors can be found in Table 1.1. Especially destroyed tokens
occur often in OCR processed texts with low quality documents, e.g. NI.I II I

instead of Minister.

1.4 Outline of the Thesis

This work is structured as follows: Chapter 2 gives a survey of related work dealing
with different strategies on correcting (human) spelling mistakes and OCR errors.
Advantages and disadvantages are highlighted. Methods which are used in this
thesis are described in more details. Chapter 3 introduces a new similarity key
technique for correcting OCR errors by exploiting the nature of OCR processors,
mainly based on the shape of characters. Chapter 4 explains the correction strategy
for spell-checking and retrieving correction proposals for misspelled words. The co-
operation between methods presented in related work and the new similarity key
technique are explained in detail. In Chapter 5, the proposed correction strategy
is evaluated on the data of The Times Archive and compared with Aspell. A
discussion about the results is also given. Finally, the thesis concludes in Chapter
6.1 and gives an outlook on future work.
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2 Related Work & Used Methods

There has been much effort in the field of correcting (human) spelling mistakes
and OCR errors. Hence this chapter can only give a small overview of approaches
available. The first section presents mainly general correction methods for spelling
mistakes and some specially adapted methods for human spelling mistakes. Sec-
tion 2.2 presents some works which have applied general and adapted correction
methods on OCR errors. Methods which are used in this thesis are presented in
depth in Section 2.3.

2.1 Correcting Spelling Mistakes

In Section 1.3 two main types of spelling mistakes are presented: non-word errors
and real-word errors. A non-word error occurs if a word is not contained in any
dictionary, e.g. tho instead of the. A real-word error occurs if a word is used in
wrong context, e.g. peace of paper instead of piece of paper. Both error types can
be tackled with different methods presented next.

Non-Word Errors

The general set-up for spell-checking words is to use a dictionary which contains
correctly spelled words. Words are then checked against the dictionary. If they
are not contained in the dictionary, similar words are retrieved from the dictionary
as correction candidates (also called correction proposals). The similarity of two
words can be measured in several ways. Three similarity measures are presented
in the following:

1. Levenshtein-Distance: Minimum number of insertions, deletions and substi-
tutions of characters which are necessary in order to transform a string x

into y [Lev66]. More details about the Levenshtein-Distance can be found in
Section 2.3.
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2. Damerau-Levenshtein-Distance: This is an extension of the Levenshtein-
Distance. It allows transpositions of two adjacent characters additionally,
Damerau [Dam64]. With respect to OCR errors this extension is likely
not meaningful because characters are not transposed by an OCR proces-
sor. This is more typical human spelling mistakes.

3. n-grams on character level: A character n-gram is a subsequence of n char-
acters of a word. The fraction of n-grams which both words have in common
and unique n-grams which both produce, can be used as similarity measure.
A correction method based on n-grams has been used for example by Ahmet
et al. [ALN07].

Depending on the implementation, many similar words are retrieved from the dic-
tionary which have to be compared with the misspelled word. This slows down the
system. The naive way is to simply compare every word of a dictionary. Similarity
key techniques avoids the frequent computation of similarity measures. Similarity
key techniques are based on mapping words to keys in such a way that similarly
(spelled) words have an identical or similar key. Hence, computing the key of a
misspelled word will point to all similarly spelled words in the dictionary, which
constitutes the correction candidates.

One popular approach which uses a similarity key technique is the Soundex algo-
rithm patented by Odell and Rusell in 1918 [OM18]. Words are mapped to keys
based on the sound of characters. An improved version of the Soundex algorithm
is the Double Metaphone algorithm from Philips [Phi00] which claims to retrieve
better similar words for misspellings due to better rules for building the key. Both
methods are specialized for correcting human spelling mistakes because they ex-
ploit the pronunciation of words. Both methods are mainly focusing on English
language. But with some adaptations, other languages can be tackled as well.

Another similarity key technique, which exploits the structure of words, has been
proposed by Pollock and Zamora [PZ84]. The similarity key is in this case a
condensed form of the original word which only contains the most important char-
acters containing structural information. Depending on the corpus, 56% up to
77% of all errors could be corrected using the described technique in combination
with other methods.

A different approach for correcting spelling mistakes is to learn from mistakes first
and then use the learned information to propose correction candidates. The re-
quirement for learning is to have error-prone words and their corresponding correct
word forms (often called ground-truth material). Neural nets or probabilistic meth-
ods are used for learning. One popular approach which uses probability methods
has been presented by Brill and Moore [BM00]. This approach is also called an
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improved noisy channel model. It first learns the probability of substituting char-
acter n-grams. These probabilities are then used for retrieving the most probable
correction candidates from a dictionary. Additionally, a language model with con-
text information is used to find the best correction candidate. An error reduction
of 74% could be achieved on 10000 sample words of which 80% have been used
for learning and 20% for evaluating. With respect to OCR errors, this approach is
very interesting if enough ground-truth material is available. Because this thesis
lacks ground-truth material, it is not a suitable algorithm.

Real-Word Errors

For correcting real-word errors several techniques have been proposed. A very im-
portant technique for correcting real-word errors are n-gram models on word level.
n-grams on word level contain sub-sequences of n words of a sentence (or more
generally, any text). The n-gram model usually contains frequency information
about n-grams which are derived from a large collection.

Mays et al. [MDM91] have proposed a simple trigram (3-gram) approach for
correcting real-word errors. The idea using trigrams is to derive the probability
of a sentence being correct. Beforehand, trigrams have to be collected and stored
with frequency information. By chunking each sentence into trigrams and using
the frequency information, a probability which states the likelihood of having a
correct sentence can be computed. The sentence is then modified by replacing
a word with a spelling variation. The probability of the modified sentence is
calculated again. This procedure is repeated for all (likely) spelling variations. The
sentence with the highest probability indicates the correct sentence. This approach
was later evaluated and compared to other approaches by Wilcox-O’Hearn et al.
[WOHB08].

The approach by Mays et al. is very general and allows very many replacements
of words. Therefore, this approach tend to be slow. Additionally, using n-gram on
word level requires a large amount of data to overcome data-sparseness problems.
If a trigram is not present or is under-represented, wrong corrections will be applied.
Therefore, Islam and Inkpen [II09] have proposed to use the n-grams contained
in the Google Web 1T data containing about one billion trigrams [Goo]. The
described approach first tries to find adequate correction candidates by frequency
information based on Google’s trigrams and then chooses the best candidate by
similarity. The similarity is measured by a modification of the longest common
subsequence algorithm. The F-Score is slightly better in comparison with Wilcox-
O’Hearn et al. [WOHB08]. The F-Score is about 60% for detecting real-word
errors and 50% for correcting them.
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For overcoming data-sparseness problems of n-grams another direction has been
proposed by Fossati and Di Eugenio [FDE07], [FE08]. Their proposal consists of
a mixed trigram model which uses information of a POS (part of speech) tagger.
A POS tagger determines the grammatical category of each word of a sentence.
A mixed trigram consists of words and/ or grammatical categories, e.g. (“the”,
noun, verb). Therefore, far fewer trigrams are necessary. Each word of a sentence
is examined to determine the grammatical order of the sentence based on mixed
trigrams. The examined word has several similar words (from a confusion set)
which have to be checked. The candidate of the confusion set, which matches best
in the sentence according to the mixed trigrams, is then chosen as correction. For
setting up the confusion sets all words in a dictionary are examined beforehand.
Similar words according to the Levenshtein-Distance, length of word and phonetic
distance such as soundex or metaphone are added to the confusion sets. An F-
Score of maximum 46% could be achieved. Using a POS tagger on damaged OCR
material and historic texts is difficult. Therefore, this thesis will rely on only
n-grams for taking the context into account.

For correcting words in context it is also possible to use word sense disambiguation
algorithms (WSD). WSD algorithms identify the meaning of a word which has
several different senses using the context. Such methods can help detecting words
which are used in wrong context and help finding a better word. For example
Ginter et al. [GBJS04] present a technique which uses WSD in a biologic domain
for correcting real-word errors.

One problem is to decide which correction proposal is the most adequate. Wick et
al. [WRLM07] have proposed a method which exploits the topic of a document for
enabling more precise correction proposal retrievals. If the topic is known then cor-
rection candidates which are semantical related to the topic can be ranked higher.
This can be useful with respect to real-word errors as well as non-word errors.
Using the topic makes it necessary to have an adequate dictionary. Because many
domain specific words are not contained in standard dictionaries further sources
have to be used. Strohmaier [Str04] has proposed a method for deriving “tailored”
dictionaries from websites which deal with concrete topics. Unfortunately, using
websites is not an efficient method for correcting many different articles of an
archive. Crawling can become very time consuming.

To achieve better results, several methods mentioned above can be combined to
multi-level feature frameworks. One very rich composition has been described by
Schaback and Li [SL07]. This approach uses methods such as Soundex on phonetic
level, a noisy channel model on character level, a 2-gram model on word level, a
POS tagger on syntactic level and co-occurrences on semantic level. Every level
returns a feature vector and finally a support vector machine determines the best
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feature vector and therefore the best correction proposal. This approach corrects
real-word and non-word errors. Using a POS tagger and phonetic algorithms aims
at correcting human spelling mistakes. A recall and precision of 90% could be
achieved using the top ranked proposal for correction.

There are many more approaches dealing with correcting spelling mistakes. The
above mentioned seem to be the most suitable to correct OCR specific errors. More
techniques and details about correcting spelling mistakes can be found in Kukich
[Kuk92].

2.2 Correcting OCR Based Errors

The correction of OCR errors can be divided into three main areas:

1. Using and improving the scanned image during the OCR process. For exam-
ple Hong [HDH+95] has proposed improved visual and linguistic techniques.

2. Combining several OCR engines and using a voting system to select the best
recognition. For example the work of Strohmaier [Str04] has proposed among
other methods such a combination.

3. Using post-correction systems which rely only on the machine processable
text after applying an OCR processor.

Because the original images are not available for this thesis, this section focuses
on presenting methods related to the third area presented above.

Kukich [Kuk92] has stated, that the number of non-word errors outperforms the
number of real-word errors present in documents after applying an OCR processor.
Hence, OCR correcting systems should consider this fact. Methods for correcting
non-word errors were given in the last section (Section 2.1) and most are adaptable
for correcting OCR based errors. Especially, machine learning techniques and
approaches which use similarity measures.

Some works which focus on OCR errors are given in the following. These methods
can be split up into two categories, according to Perez-Cortes et al. [PCAAL00]:

Deterministic. OCR errors are corrected by utilizing only words contained in a
dictionary. If the desired correct word form is not present in the dictionary
then no proper correction is possible.
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Non-Deterministic. OCR errors can be corrected using the probability of char-
acter confusions caused by OCR processors. Words which are probable cor-
rect are generated and proposed. These generated words are not necessarily
present in a dictionary. That means, such methods do not need a dictionary
and produce corrections which are closer to the correct word form or even
the exact correct word form.

As described in Section 2.1, noisy channel models are important for correcting
non-word errors. Using OCR errors as training material enables the correction
of OCR errors. Kolak and Resnik have described such a noisy channel model for
OCR errors in [KBR03]. The model is implemented as a finite state machine and
needs to be trained. The approach achieves an error reduction up to 80% using
the word error rate (WER) as measure. That means, the corrected words are not
necessarily correct but closer to the correct word form using the WER. Kolak and
Resnik have modified their model for languages with less resources in [KR05], no
dictionary is needed but still some training. Because this thesis focuses on OCR
archives which have no ground-truth material for training, this approach is not
followed.

Tong and Evans [TE96] have proposed a statistical approach using character n-
grams, word bigrams and a mechanism for learning confusion probabilities of char-
acters. Character n-grams are used for retrieving correction candidates from a
dictionary. Only candidates which have enough common n-grams with the origi-
nal token are retrieved. The retrieved candidates are then ranked using a weighted
Levenshtein-Distance measure. The weights are character confusion probabilities,
initially set to an equal probability for all characters. For each sentence the Viterbi
algorithm is applied to get the optimal path of tokens respectively correction can-
didates [FJ73]. This version of the Viterbi algorithm considers the probability of
word bigrams (occurrence in pre-processed text) and the ranking of each correction
candidate. After correcting a certain amount of documents, the used corrections
are used to adapt the confusion probabilities (weights of the Levenshtein-Distance
algorithm). The presented method achieves an error reduction of about 60%. The
problem using a learning mechanism is the learning of wrong confusion proba-
bilities. If the underlying method for correcting errors is not good enough, the
learning strategy can fail. Therefore, a good and reliable correction mechanism
has to be developed at first.

Perez-Cortes et al. [PCAAL00] have proposed a stochastic finite state machine
(SFSM) which is able to correct OCR errors by finding an optimal path in the
SFSM. The path finding is achieved by using an extended Viterbi algorithm. The
machine can be used deterministically and non-deterministically in the sense given
above. Using the SFSM in a deterministic way is the same as searching adequate
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correction candidates from the whole dictionary using the weighted Levenshtein-
Distance, but without computing the distance for each word explicitly. This work
focuses on handwritten names and has training samples for that task. The samples
are used to determine the weights for the SFSM. Furthermore, large dictionaries
with names are used. The approach is able to reduce about 95% of misrecognized
names using the SFSM deterministically and a large amount of misspelled names
for training. This approach is very promising on restricted domains. It is unclear
how such an approach behaves on contiguous texts in OCRed archives.

Besides handwritten document, OCR tasks are often applied to historic documents.
Historic documents tend to vary in language style, used words or names as well
as in used fonts. Hence, a contemporary dictionary is not applicable. Therefore,
Hauser [Hau07] has proposed to combine the noisy channel model presented by
Brill and Moore [BM00] with several dictionaries in order to cover and correct his-
toric language. Sample pairs for training the noisy channel model are taken from a
database which contains spelling variations of historic texts. This approach tackles
especially old German texts, nevertheless most aspects are language independent.
Preliminary experiments showed a small error reductions (< 5%) on a sample doc-
ument. Historic texts are very hard to handle, because of their heavy spelling
variations.

For using a noisy channel model or weights for the weighted Levenshtein-Distance,
training samples have to be available. Because such training samples are reare,
Hauser and Schulz [HS07] have proposed an unsupervised training algorithm. This
algorithm uses a dictionary and the corpus itself to obtain training samples. For
each corpus word, the dictionary retrieves similar words based on the Levenshtein-
Distance. Words which lay in a certain Levenshtein-Distance are then used for
training. They state to achieve better results using weights derived from the
samples than using the standard Levenshtein-Distance, but worse than using hand
generated training data.

Myka and Güntzer [MG96] have presented several methods for performing full-text
searches in document archives which contain OCR errors. They compare an ex-
act search with several fuzzy string matching techniques. Among these methods,
character classifications are used. Characters in strings are replaced by their canon-
ical element and stored in a dictionary which maps to the original word. Such a
method is a similarity key technique described earlier. The approach presented in
Chapter 3 also uses a character classification, but the generated similarity key is
based on different assumptions and a broader classification of characters. Such a
classification achieves promising results if the confusions are known.
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A semi-automatic OCR correction system has been proposed by Taghva and Stof-
sky [TS01], called OCRspell. OCRspell is especially designed as a semi-automatic
approach. That means besides common techniques for correcting OCR errors, a
learning mechanism is used based on the corrections applied by the user. By
comparing error-prone token and the manual replacement by the user, dynamic
mappings are derived, e.g. iiiount@in → mountain the mappings iii → m and
@ → a are derived. Mappings which occur more often are weighted stronger.
With an increasing number of mappings the system slows down, because many
combinations have to be tested for generating appropriate correction proposals.
Additionally, static mappings can be set manually at start-up. With respect to
the similarity key technique presented in Chapter 3 (OCR-Key), static mappings
are included implicitly among others by using character classifications. What this
means will be pointed out in Chapter 3. The computational effort is far lower
using OCR-Key but may not represent every possible rule.

Another work, which uses the archive itself for correcting OCR errors, is presented
by Reynaert [Rey08b]. This work focuses on large sets of OCRed Dutch and
English historic documents. Reynaert proposes a method which uses high frequent
words derived from the corpus which should be cleaned from OCR errors. Instead
of correcting errors in contiguous text, this approach gathers all typographical
variants for any particular focus word that lie within a pre-defined Levenshtein-
Distance. Such a focus word is either a high frequent word from the corpus or a
word from a valid dictionary. The core algorithm for finding similar words, first
presented by Reynaert [Rey04], is extended in this work for coping with OCR errors.
The method achieves good results on the evaluated test set. Up to a Levenshtein-
Distance of 2, the author states that the approach can be used fully-automatically
because it achieves a high F-Score (> 95%).

This thesis will use the algorithm for finding similar words presented by Reynaert
[Rey04]. Instead of using the extended algorithm for tackling OCR errors proposed
by Reynaert in [Rey08b], a similarity key approach will be used. This promises
an enhanced and faster retrieval of similar words since the extended algorithm
requires a higher computational effort. Further details about the algorithm used
in this thesis can be found in Section 2.3.2. In contrast to Reynaert [Rey08b] this
thesis will apply the algorithm on contiguous text.
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2.3 Used Method in Detail

From the presented methods, this thesis uses the Levenshtein-Distance as similarity
measure and the Anagram Hash method as core algorithm. Therefore, in this
section, these methods are described in more detail.

2.3.1 Levenshtein Distance

To measure the similarity of two strings the Levenshtein-Distance (henceforth: ld)
can be used [Lev66]. It gives the minimum number of insertions, deletions and
substitutions of single characters that are necessary in order to transform a string
x = x1 . . . xn into another string y = y1 . . . ym.

To compute the Levenshtein-Distance for two strings x := x1 . . . xn and y :=
y1 . . . ym efficiently, the Wagner-Fischer algorithm [WF74] can be used which uses
dynamic programming. The algorithm uses a (n + 1) × (m + 1) distance matrix
D. Let − be the neutral sign (no character), then each matrix entry Di,j can be
computed recursively in the following way:

D0,0 = 0

Di,0 = Di−1,0 + cost(xi,−), 1 ≤ i ≤ n

D0,j = D0,j−1 + cost(−, yi), 1 ≤ j ≤ m

Di,j = min







di−1,j + cost(xi,−)

di,j−1 + cost(−, yi)

di−1,j−1 + cost(xi, yi)

For the classic ld the following cost function is used:

cost(xi, yi) :=

{

0, if xi = yj

1, otherwise
(2.1)

The distance between two strings x and y is the matrix entry Di,j . The computa-
tional effort is O(nm).
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❅
❅
❅x
y

c o n u t e e r

0 1 2 3 4 5 6 7 8

c 1 0 1 2 3 4 5 6 7

o 2 1 0 1 2 3 4 5 6

m 3 2 1 1 2 3 4 5 6

p 4 3 2 2 2 3 4 5 6

u 5 4 3 3 2 3 4 5 6

t 6 5 4 4 3 2 3 4 5

e 7 6 5 5 4 3 2 3 4

r 8 7 6 6 5 4 3 3 3

Table 2.1: Levenshtein-Distance Matrix: The distance between the words com-
puter and conuteer is 3.

Example 2.1 (Levenshtein-Distance Computation)
This example illustrates the computation of the ld of the two strings x = computer
and y = conuteer . A distance matrix D has to be computed which is shown in
Table 2.1. The element D8,8 = 3 of the distance matrix is the actual ld of x and
y.

Weighted Levenshtein-Distance

The simple cost function for computing the ld (Formula 2.1) can be adapted for
coping with several different error types. Every character substitution as well as
insertion and deletion can have a different cost values. With respect to OCR
errors complex cost functions are an interesting direction, e.g. substitutions of the
character e and c cost less, because they are very similar to an OCR processor.
But this direction is not further investigated in this thesis.
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Character ISO Latin-1 code value

A...Z 65. . . 90

a...z 97. . . 122

(whitespace) 32

’ (apostrophe) 39

- (hyphen) 45

Table 2.2: ISO Latin-1 Character Value Samples

2.3.2 Anagram Hashing

The Anagram Hashing method is used as the core correction mechanism in this
thesis. It was first introduced by Reynaert [Rey04] and further explained in [Rey06].
In this section the theoretical main idea from [Rey04] will be explained in a more
general fashion than it was done in the original work.

The Anagram Hash method uses mainly a hash table and a “bad” hash function.
The hash function is designed to produce a large number in order to identify words
which have the same characters in common. Such words are called anagrams.
In general an anagram is a word which is formed out of another word by only
permuting the characters. For example anagrams of the word tiger are tigre, regit,
riget and all other words which can be formed out of those 5 characters.

To calculate a numerical value for a word, each character ci of a word w = c1 · · · c|w|

with a word length of |w| needs a corresponding numerical value. Therefore, the
Anagram Hash method uses the ISO Latin-1 code values for each character. Some
sample values of the ISO Latin-1 code can be found in Table 2.2. For example
the character a has the value 97. The function, which maps a character to its
corresponding numerical value (ISO Latin-1 code), is denoted as int . To obtain
the hash value for a given word, each character is raised to a power of n and
summed up. Formally, the hash function is defined as follows:

hash(w) :=

|w|
∑

i=1

int(ci)
n, for w = ci . . . c|w| (2.2)

This bad hash function should only produce the same value for words which have
the same characters in common. Therefore, the power n is set empirically to 5.
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Lower powers do not have the desired properties according to Reynaert [Rey04].
Because this hashing function produces the same number for every word with the
same characters in common, the name Anagram Hash is justified. The calculated
hash for a word is called anagram key. This name is used in the original work. In
this thesis the expression anagram key and anagram hash are used interchangeably
as they reference to the same thing, namely the hash value of the hash function
defined in Formula 2.2.

The Anagram Hash Dictionary

In a pre-processing step, a special dictionary has to be set up to work with the
Anagram Hash method. Potential words for the dictionary are word lists from
common spell checkers or high frequent corpus-derived words. The dictionary has
to be implemented as a hash table using the hash function defined in Formula 2.2.
Words which have the same anagram key can be chained.

Anagram Hash Alphabet Definitions

To explain how the Anagram Hash method works in general, some definitions are
needed. This section formalizes the idea introduced in [Rey04].

The alphabet Σk
W contains all character n-grams with 1 ≤ n ≤ k of characters

and signs present in the word-list W concatenated with a heading and tailing
white-space:

Σk
W := {n-grams of all sws | w ∈ W, s whitespace, 1 ≤ n ≤ k} (2.3)

The strict alphabet Σk−
W contains all character n-grams with 1 ≤ n ≤ k of characters

and signs present in the word-list W without concatenating a heading and tailing
white-space:

Σk−
W := {n-grams of all w | w ∈ W, 1 ≤ n ≤ k} (2.4)

For calculations on anagram keys two more alphabets are necessary. The confusion
alphabet Πk

D contains all anagram keys of character n-grams with 1 ≤ n ≤ k

contained in the underlying word-list W :

Πk
W := {hash(σ) | σ ∈ Σk

W} (2.5)
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The focus word alphabet Γk
w contains all anagram keys of character n-grams with

1 ≤ n ≤ k contained in the focus word w:

Note that the focus word alphabet uses the strict alphabet (2.4).

Γk
w := {hash(σ) | σ ∈ Σk−

{w}} (2.6)

A more practical example will help in understanding the definitions given above.

Example 2.2 (Anagram Hash Definition)
To keep this example simple the dictionary only contains two words:

D = {prime,minister}

Depending on the application an appropriate k has to be chosen for the alphabet
Σk

D. For this simple example k = 2 is a good choice. This leads to the following
alphabet Σ2

D with 10 unigrams and 15 bigrams on character level:

Σ2
D = { , p, r, i,m, e, n, s, t, r, p, pr, ri, im,me, e , m,mi, in, ni, is, st, te, er, r }

The confusion alphabet Π2
D therefore contains all hashes of characters appearing

in the alphabet Σ2
D. Note that the confusion alphabet contains 2 hashes less than

n-grams present in the alphabet, due to the fact that hash(im) = hash(mi) and
hash(in) = hash(ni).

The focus word alphabet may use a different k as the confusion alphabet. For this
example k is set to 3. Thus, for the misspelled focus word w = pime the strict
alphabet Σ3−

{w} contains 4 unigrams, 3 bigrams and 2 trigrams on character level:

Σ3
{w} = {p, i,m, e, pi, im,me, pim, ime}

Hence, the corresponding confusion alphabet Γ3
{w} contains all hashes of n-grams

present in the strict alphabet Σ3−
{w}.
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Anagram key based correction

The main task of the Anagram Hashing method is to retrieve similarly (spelled)
words for a given word. Similar words can be generated by inserting, deleting,
substituting or transposing characters [Dam64].

The main characteristic of the anagram hash function is that each character or
character sequence of a word w = c1 · · · c|w| can be calculated separately:

hash(w) =

|w|
∑

i=1

int(ci)
n (2.7)

= hash(c1 · · · ck−1) + hash(ck) + hash(ck+1 · · · c|w|), ∀ 1 ≤ k ≤ |w|

=

|w|
∑

i=1

hash(ci)

This characteristic enables a systematic calculation for retrieving similar words for
a word w in the following way:

Transpositions. To retrieve all transpositions, which are present in the dictio-
nary, only a single lookup for the current anagram key of the word is necessary.
Example:

hash(tiger) = hash(tigre) = hash(regit) = . . .

Deletions. To delete a character or character sequence, each character or charac-
ter sequence of the focus word alphabet Γ has to be subtracted from the original
anagram key. Single deletion example:

hash(tigger)− hash(g) = hash(tiger)

Insertions. To insert a character or character sequence, each character or char-
acter sequence of the confusion alphabet Π has to be added. Single insertion
example:

hash(tigr) + hash(e) = hash(tiger)
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Substitutions. To substitute a character or character sequence each character
or character sequence of the focus word alphabet Γ has to be subtracted and
each character or character sequence of the confusion alphabet Π has to be added.
Single substitution example:

hash(tigar)− hash(a) + hash(e) = hash(tiger)

Algorithm 2.1 summarizes the calculation of similar words for a given word based
on the Anagram Hash method. Practically, the algorithm uses only the substi-
tution formula to handle all four edit operations. For substituting, a value from
the confusion alphabet is added and a value from the focus word alphabet is sub-
tracted. For deletions zero is added and a value from the focus word alphabet
is subtracted. For insertions a value from the confusion alphabet is added and
zero is subtracted. For transpositions nothing needs to be added or subtracted.
Retrieved words are checked against their ld to limit the retrieval.

Obviously this algorithm can be extended by a more sophisticated ld handling
to speed-up the algorithm and to gain more control over the word retrieval. For
example the initial work [Rey04] uses a ld limit based on the word’s length.

If the underlying dictionary contains only single words, the confusion alphabet
does not need to contain white-space characters. Therefore, the confusion alphabet
can use the strict alphabet. If bigrams are included, white-space characters are
important to split up words, e.g. myball → my ball. Because this thesis will
use bigrams, the alphabet containing white-spaces will be used for the confusion
alphabet.

Computational Characteristics

The design of the Anagram Hash method has three interesting characteristics.

Systematic errors. Values of character or character sequences in a word using the
anagram hash function are static. For example the character z has the ana-
gram key 1225 = 27′027′081′632, whereas the character s has the anagram
key 1155 = 20′113′571′875. The difference between s and z is 6′913′509′757.
When comparing spelling variations such as summarize/ summarise or ad-
vertize/ advertise the anagram key difference between these words is always
the same and equals the difference between s and z. Due to Formula 2.7 this
characteristic holds for every systematic error and can enable finding and
correcting typical systematic errors.
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Algorithm 2.1 Find similar words using the Anagram Hash method

Require: Focus word w

Require: Levenshtein-Distance limit ldLimit
Require: Confusion Alphabet Π
Require: Focus Word Alphabet Γ
W ← ∅
focusWordHash ← hash(w);
for all γ ∈ Γ do

for all π ∈ Π do

simulatedWordHash ← focusWordHash + π − γ;
W ′ ← getWords(simulatedWordHash);
for all w′ ∈ W ′ do

if LD(w,w′) ≤ ldLimit then
W ← W ∪ w′;

end if

end for

end for

end for

return W ;

Natural ranking. In general, Algorithm 2.1 adds and subtracts characters. Every
time a new simulated word hash is generated, the hash table is queried and
similar words are retrieved. Some similar words are retrieved more often
than others. Counting how often a word is retrieved gives a natural ranking.
The more often a word is retrieved, the more related it is to the original,
potential misspelled word. For further details see Example 2.3.

Retrieval of adequate similar words. In contrast to a naive approach which com-
pares each word in the dictionary with the misspelled word, only adequate
words are retrieved from the dictionary respectively the hash table. A query
against the hash table is performed in constant time, O(1). However, the size
of the confusion alphabet and focus word alphabet determines the amount
of queries which are necessary. Large alphabets will therefore perform worse
than smaller alphabets.

Especially the natural ranking characteristic is very interesting for this thesis.
Therefore, a more sophisticates example is given here.
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Example 2.3 (Anagram Hash Method: Natural ranking)
For demonstrating the natural ranking of the Anagram Hash method let tiiger
be the misspelled focus word. To simplify the computation of similar words only
some sample additions and deletions are performed on character level instead of
using anagram keys (numbers):

1. Subtract every unigram: iiger (-t), tiger (-i), tiger (-i), tiier (-g), tiigr (-e),
tiige (-r). This first step produces the word tiger twice and some other words
which are not interesting here.

2. Adding unigrams from the confusion alphabet or substituting focus word
unigrams does not return any tiger.

3. Subtracting or adding bigrams does not lead to the word tiger.

4. Substituting unigrams/ bigrams by adding and subtracting unigrams/ bi-
grams: tiger (+i, -ii), tiger (+t, -ti), tiger (+g, -ig), and so on.

All in all, the algorithm retrieved the correction tiger several times for the mis-
spelling tiiger. The more n-grams are used, the more often the correctly spelled
word tiger can be retrieved.
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3 OCR-Key: A new OCR error
correction proposal

OCR errors can be corrected using various methods from Chapter 2, including cor-
rection approaches for human spelling mistakes. But, among OCR related correc-
tion approaches, usually a strong requirement for ground-truth material emerges.
In general ground-truth material consist of lists which contain error-prone words
and their corresponding correct word forms. Furthermore, ground-truth material
needs to have a certain coverage to be applicable. If no ground-truth material is
available these methods do not work properly.

Having no ground-truth material makes it necessary to either generate own ground-
truth material or to follow a method which does not need such material. To find
a good method, the idea of exploiting the nature of OCR processors and their
generated errors seems promising. Finding such a method eliminates the need for
ground-truth material and is still adapted to correct OCR errors.

In this chapter a new algorithm is proposed which uses character classifications,
word frequencies and the Levenshtein-Distance for retrieving correction proposals
for misspelled words. The method is called OCR-Key.

3.1 Introduction & Motivation for OCR-Key

Many OCR related correction methods require ground-truth material. Although
the proposed method in this chapter will not rely on ground-truth material, the
generation of ground-truth material and the caused problems are explained firstly.
This helps understanding why the presented method in this chapter is interesting.
Generating ground-truth material can mainly be done in three ways:

1. Manual generation. Manual correction of documents containing OCR
errors requires a lot of effort. Additionally, large scaled archives tend to
change in paper quality, print quality, fonts and language (spelling, grammar)
over time. Such changes can be divided into several periods. For example,
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a changing font face can introduce a new period of the archive, e.g. an s
is detected as an f. That means the generated ground-truth material for
the earlier period is not longer suitable for the new period. Hence, manual
corrections have to be applied for each period of the archive, in order to
cope with changing conditions. Manual generation of ground-truth material
is very time consuming.

2. Automatic generation using an OCR processor. Digital test docu-
ments can be generated and printed out in order to scan them again and to
apply the same OCR processor used for the archive. By comparing the orig-
inal document with its scanned and OCR processed version, errors can be
identified. The detected errors can be opposed with its error-prone version
in lists. Three things have to be considered using this method:

• The used OCR processor needs to be known and available.

• The paper and print quality should be similar to the ones used in the
archive for achieving adequate results.

• The used font should be similar to the one used in the archive to cope
with font variation problems etc.

3. Archive derived. Several methods can be applied to derive ground-truth
material from an archive. One method is to use a valid dictionary and
gather similarly spelled words from the archive. These words can be used as
training material for algorithms which rely on ground-truth material. But the
produced samples have a lower quality material than the methods described
above (see [HS07]).

These problems are not always resolvable and lead to a search for alternative
methods. In literature there are several algorithms which exploit the nature of
human spelling mistakes, e.g. soundex [OM18], speedcop [PZ84]. But OCR errors
are not caused by humans, but by OCR processors. Therefore, one interesting
idea is to exploit the nature of OCR processors and their generated errors. For
example a classification of characters [MG96]. Because OCR processor rely on
pattern matching techniques, this leads to typical OCR errors. For example the
character e is often recognized as an c. Some OCR errors which typically occur in
The Times Archive can be found in Table 3.1. For example the error-prone word
verv can be corrected to the word very by substituting the last v with y.

In order to correct particular OCR errors, rule based systems can be used (see
Taghva and Stofsky [TS01]). Some rules for sample errors can be found in Table 3.1.
For example the misspelling tiine can be corrected by substituting the characters
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Error Correction Rule

IBritain Britain I → ∅

tiine time in→ m

sanie same ni→ m

Oueen Queen O → Q

thc the c→ e

verv very v → y

vvere were vv → w

Table 3.1: Samples of OCR Errors from The Times Archive

in by m. Usually, a rule based system does not know which rules have to be applied
in order to retrieve the correct word form, therefore every possible rule has to be
applied. Afterwards each generated word has to be verified by looking it up in a
dictionary. This leads to heavy computations and slow retrieval.

Example 3.1 (Disadvantage of Correcting OCR Errors Using Rules)
Applying the rule c → e on the word thc will retrieve the desired word the. Here
only one position for the rule is applicable. Applying the same rule on the word
circlc will lead to seven possible rule applications and seven dictionary look-ups
to verify the transformation. Using more rules will worsen this behaviour.

To overcome the computational problems, rules can be generalized in such a way
that similarity keys for words can be computed. This can be achieved by classifying
characters into equivalence classes of similar characters which leads to the category
of similarity key techniques.

Similarity key techniques are based on mapping words to keys in such a way
that similarly (spelled) words have an identical or similar key. One possible way
to enable the retrieval of correction candidates is to implement the underlying
dictionary as an hash table which uses the similarity key computation as hash
function.

In order to retrieve similar words, the similarity key of the given word has to be
computed. All words in the dictionary corresponding to the computed similarity
key are the similar words.
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mni
mni

original

damaged

structure

Figure 3.1: Structure of Characters Recognized by OCR Processor

3.2 Requirements for OCR-Key

Because the algorithm belongs to the category of similarity key techniques, a
similarity key has to be computed. The basic idea and requirement for computing
the similarity key are given in this section. The concrete algorithm can be found
in Section 3.3.1.

Computing a similarity key for a word, is based on the idea of classifying characters
by their similarity with respect to the underlying OCR processor. That means,
characters which are likely to be confused during the OCR process fall into the
same equivalence class. Due to different OCR processors and used fonts, these
equivalence classes vary. Based on the errors of The Times Archive, the following
equivalence classes are used in this thesis: i, o, c, v, s, z, a. An overview over all
equivalence classes and their contained characters is given in Table 3.2. For ex-
ample the character n belongs to the equivalence class i and has the cardinality 2.
The cardinality value is explained in the following. Classifying characters such as
B or D as i is motivated by the observation of having character insertions in front
of the characters, e.g. IB or ID.

A closer look at common OCR errors helps finding an interesting characteristic. For
example the shape of the character m is similar to iii (missing only the connections
between each i). More formally, each character of the class i can be characterized
by the amount of vertical dashes it includes. This characteristic can be seen in
Figure 3.1. The original text got damaged over the years but the structure (the
dashes) is still recognizable. For example the printed n misses only a small part of
the connection between the dashes. An OCR processor has difficulties to recognize
such damaged characters properly. The processor tend to recognize the damaged
n as ii. This means each character belonging to the equivalence class i needs to
have a certain cardinality which represents the structure of the character (here:
the amount of dashes).

In general the cardinality states the number of atomic parts each character can
be decomposed. For the equivalence class i the atomic part is a horizontal dash
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Class Member Cardinality

i f, i, j, k, l, r, t, B, D, E, F, I, J, K, L, P, R, T, 1, ! 1

i n, h, u, H, N, U 2

i m, M 3

o a, b, d, g, o, p, q, O, Q, 6, 9, 0 1

c e, c, C, G 1

v v, x, y, V, Y, X 1

v w, W 2

s s, S, 5 1

z z, Z 1

a A 1

Table 3.2: Character Classification by Similarity

as shown in Figure 3.1. The atomic part of the class v is a v. This is motivated
by the fact that a w can be decomposed into vv. The cardinality categorization
is only important for the equivalence classes i and v. All other equivalence classes
do not need a cardinality, but for unification reasons they get the cardinality 1.

Example 3.2 (Equivalence Class and Cardinality)
The character m has the cardinality 3. Valid decompositions are all character
sequences which are from of the same equivalence class and whose cardinality
sum equals 3, e.g. in, nI or iii have the same cardinality and are therefore valid
decompositions of m. For the word tiine this means that the characters in can be
exchanged by m to get the correction time.

The character w lays in the same equivalence class as v and has the same cardinality
as vv. Therefore, the characters vv of the word vvhich can be exchanged by the
character w in order to achieve the correction which.

27



3.3 The OCR-Key Algorithm

After introducing the idea of similarity key techniques and the used classification
of characters, this section will present a formal and detailed description of the
algorithm to compute the similarity key, called OCR-Key. In order to find similar
words based on OCR-Key a special dictionary is necessary. The generation of an
adequate dictionary for the OCR-Key method is described in Section 3.3.2. Sec-
tion 3.3.3 will present the main algorithm for retrieving similar words based on
OCR-Key which will be used in Chapter 4, where the correction strategy is pre-
sented. The proposed method retrieves several similar words which are all possible
correction candidates. In order to find the best matching correction candidate, a
ranking is necessary. Therefore, a simple ranking is presented in Section 3.3.4.

The proposed similarity key (OCR-Key) and the corresponding algorithms pre-
sented in this section are new to the author’s knowledge. A similar approach
which uses character classifications for performing a full-text search on an OCR
archive has been described by Myka and Güntzer [MG96].

3.3.1 Computing OCR-Key

The similarity key for a word w is computed as shown in Algorithm A.1 (page
92). It is the basis for finding similar words using the algorithm presented in the
next section. Informally, the algorithm computes a similarity key in the following
way:

1. Start at the first character of the word.

2. Sum up the cardinality of the current character and go to the next character.

3. If the current character belongs to the same equivalence class as the last one,
go to step 2, otherwise continue.

4. Append the representative of the previous character to the output string.

5. Append the computed cardinality sum to the output string and reset the
sum to 0.

6. If all characters of the word have been processed, stop and return the output
string. Otherwise continue at step 2.
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Note that characters which are not included in any equivalence class will be omit-
ted. This can be interesting for special signs like apostrophes (’) or hyphens (-)
because they are often not of interest.

In the following the function “key” will be used to denote a similarity key compu-
tation based on the OCR-Key.

Example 3.3 (Computation of OCR-Keys)
This example illustrates how similarity keys based on the OCR-Key algorithm are
computed. Given the word saturday :

saturday → s
︸︷︷︸
s1

a
︸︷︷︸
o1

tur
︸︷︷︸
i4

da
︸︷︷︸
o2

v
︸︷︷︸
v1

→ s1o1i4o2v1

The first character belongs to the equivalence class s. The following characters
belong to another class. The cardinality of s is 1. Therefore, s1 has to be appended
to the output string. The next three characters tur belong to the same equivalence
class with representative i. Their cardinalities sum up to 4. Therefore, i4 has to
be appended to the output string. The following two characters da belong to the
equivalence class o and their cardinalities sum up to 2. Therefore, o2 has to be
appended to the output string. The last character v produces v1. Hence, the final
OCR-Key for saturday is s1o1i4o2v1.

Note that the format of the OCR-Key is not regular in every aspect. Although,
equivalence class characters and cardinality digits alternate, the character does
always have the length of one, whereas the digit can have the length of one or
more. Example:

key(minimize) = i11z1c1

3.3.2 Generating a Dictionary for OCR-Key

In order to retrieve similar spelled words from the dictionary, two steps are neces-
sary, assuming that the dictionary is implemented as hash table.

1. The dictionary has to be initialized. This can be done by using word-lists
of common spell checkers or corpus derived word-lists. The hash function
determines where words are stored in the table. Hash collision can be resolved
by chaining a new word to the last inserted word with the same hash value.
That means, each hash value points to a linked list. A collision occurs, if
words have the same hash value in common.
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2. In order to retrieve similar words, the hash value of the word has to be com-
puted. Then the dictionary is queried and retrieves the linked list which cor-
responds to the calculated hash value. This list contains the similar (spelled)
words.

Two characteristics of the OCR-Key method have to be considered when generat-
ing the dictionary:

1. Words which contain capital letters, or can be spelled with capital letters,
e.g. at the start of a sentence, need a special handling. All possible (valid)
spelling variations with respect to lower-case and upper-case characters need
to be added to the dictionary. This is necessary because the following
characters are not in the same equivalence class as their lower-case version:
A,B,D,E,G. Example:

key(Britain) 6= key(britain)

2. No OCR errors should be included. If OCR errors are included, the likelihood
to retrieve misspelled words increases, because the map is designed to retrieve
similarly spelled words with respect to OCR errors.

3.3.3 Finding Similar Words Using OCR-Key

The main task of OCR-Key is to enable the retrieval of similar words. Before
similar words can be retrieved, a dictionary based on OCR-Key has to be set up.
Setting up an adequate dictionary is described in the last section. The concrete
retrieval of similar words using such a dictionary is described in the following.

Algorithm 3.1 (page 31) shows one way to implement the retrieval of similar words
using OCR-Key as similarity key. Initially the algorithm uses the OCR-Key of the
given word and retrieves all words which have the same OCR-Key in the dictionary.
To retrieve more similar words, the cardinality of each word is increased and de-
creased by a given number δ. But the cardinality is always greater than 0. For each
cardinality modification the dictionary is queried again to retrieve more words. In
order to extend the control over retrieved words, the Levenshtein-Distance is used
additionally to filter out words. This can be very important because the similarity
key technique may retrieve words which are structural similar, with respect to
the OCR processor, but still no adequate similar word. For example the words
minimum and untruthful have the same OCR-Key i15 but are definitely not very
similar.
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Algorithm 3.1 Find similar words using the OCR-Key method

Require: Word w

Require: δ ≥ 0
Require: Levensthein-Distance (ld) ldLimit

// initialize
S ← null
W ← null

// key = e1c1 · · · encn, e equ. class, c cardinality, n number of equ. classes
key ← ocrKey(w)

// query similar words w.r.t cardinalities
for all i = 1 to n do

for k = 1 to n do

c̃k ← ck
end for

for j = −δ to δ do

c̃i ← max(ci + j, 1)
newKey ← e1c̃1 · · · enc̃n
S ← S ∪ getWords(newKey)

end for

end for

// filter out words w.r.t. Levenshtein-Distance
for all s ∈ S do

if LD(w, s) ≤ ldLimit then

W ← W ∪ {s}
end if

end for

return W
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In order to understand the mechanism of Algorithm 3.1, the OCR-Key method
can be compared to the classic assumption that misspelled words have character
insertions, deletions, substitutions and/ or transpositions [Dam64]. The OCR-Key
method handles these four assumptions in the following way:

Transposition are handled by the fact that equivalent characters are grouped.
This means transpositions can only appear inside a group of similar charac-
ters.

key(time) = key(tmie)

Substitution are handled by the equivalence classes which allow characters to be
used interchangeably if they belong to the same equivalence class and satisfy
the given cardinality. This constraint limits the substitutions in a positive
way, because it only allows to substitute characters which are similar to the
OCR processor.

key(times) = key(timcs) 6= key(timas)

Note that the cardinality limits the substitution of characters. For example
the character n with a cardinality of 2 can not be replaced by the characterm
which has the cardinality of 3. But substituting such characters is necessary.
Therefore, the cardinality has to be increased respectively decreased as shown
in Algorithm 3.1.

Insertion & Deletions can only occur among characters of the same equivalence
class. Insertions and deletions can only be handled if the cardinality is in-
creased respectively decreased. To insert a character the cardinality has to
be increased, whereas the cardinality has to be decreased when deleting a
character.

Example 3.4 (Retrieving Similar Words Using OCR-Key)
This example illustrates how the retrieval of similar words works using algorithm
3.1. Three kind of situations can occur in order to find a correct similar word:

1. No cardinality changes.

key(tinie) = i5c1 = key(time)

2. Cardinalities have to be increased.

key(tine) = i4c1→ i5c1 = key(time)
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3. Cardinalities have to be decreased.

key(tiime) = i6c1→ i5c1 = key(time)

All examples are taken from The Times Archive, year 1985. The frequencies of
the words are: time (32.758), tine (233), tinie (54), tiime (15).

3.3.4 Ranking Retrieved Similar Words

In most cases Algorithm 3.1 retrieves several similar words. In order to find the
best matching candidate for the original, potential misspelled word, a ranking
mechanism has to be applied. Three indicators can be used for ranking retrieved
correction proposals of the OCR-Key method:

Frequency. By assuming that frequent words are more likely to be correct than less
frequent words, the frequency can be used for ranking retrieved correction
proposals. Note that this only works if the correct word is the most, or one
of the most frequent words. The frequency for a word w is denoted as f(w).

Levenshtein-Distance. The Levenshtein-Distance (ld) can be used to determine
the similarity between two words with respect to character insertions, dele-
tions and substitutions. Hence, a small ld indicates that two words are
more similar than a larger distance. The more similar correction proposal
and original word are, the more likely it is that the correction proposal is an
adequate proposal.

Cardinality difference. The algorithm increases and decreases cardinalities of the
OCR-Key. The cardinality difference between the initial computed OCR-
Key for the original word and the modified one for the retrieved word can
indicate how similar both words are. The assumption is that a lower differ-
ence indicates a greater similarity. The cardinality difference is denoted as
cc.

The following formula is used in order to rank the retrieved correction proposals c
for a given word w and its length |w|:

scoreocr (c, w) = ln(f(c)) · (|w| − LD(w, c)− cc)

The correction proposal with the highest score is assumed to be the most appro-
priate correction proposal.
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3.4 Examples of The Times Archive

The randomly chosen word Saturday serves as example in the following to show
which word forms can be tackled by the OCR-Key approach and where the ap-
proach fails. The dictionary was pre-processed on the data of The Times Archive
for the whole year 1985. The algorithm is able to retrieve 69 distinct word forms
besides the original form. All 70 retrieved words have an total occurrence count
of 8102. Word forms with a frequency higher than 4 are shown here:

Saturday (7405), Saturdav (339), SaturdaY (108),

saturday (12), Salurday (21), Saturdy (22), Satuday

(17), Saurday (12), Satirday (12), Saiurday (7),

Saturdayv (9), Satutday (6), Satuiday (6), Satrday (14),

Satturday (8), Satuirday (7), Sattrday (7), Saturay (7),

Saturdax (5), Saturdaw (6), Saiturday (5)

After examining the retrieved word forms it is very likely, that they are all mis-
spellings of the word Saturday. Thus, 8102 − 7405 − 12 = 685 words could be
theoretically tackled by the OCR-Key method. Some more word forms can be
found in the dictionary, which can not be handled by the OCR-Key method:

SaturdaI (1), SaturdaN (4), SaturdaA (1), SaturdaT (1),

Saturdai (7), Saturdaj (1), Saturdak (1), Saturdac (1),

Saturdag (3)

These words can not be handled by the system because their last character does
not belong to the equivalence class v which is necessary in order to retrieve the
correct word saturday.

3.5 Discussion of OCR-Key

In this chapter a new method for correcting OCR errors based on the shape
of characters was presented. Character classifications are used based on the
propable confusion of the underlying OCR processor. The Levenshtein-Distance
and word frequencies are used to rank correction proposals retrieved by the OCR-
Key method.

Because the OCR-Key equivalence classes are inspired by the errors found in The
Times Archive, these classes have to be adapted for different OCR processors.
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The used character classification of Table 3.2 may be incomplete due to lack of
knowledge. The more errors are known, the better equivalence classes can be
chosen.

Using equivalence classes can only cover the systematic errors. As described above,
the word Saturday has several error-prone word variants in the archive, which
can not be covered by equivalence class approaches. These errors are absolutely
unsystematic. That means, the OCR-Key approach can only be used to correct
the most common systematic errors. In order to correct errors in a more general
way, it is necessary to apply an additional approach.

The OCR-Key approach is language independent and relies only on the dictionary
generated in a pre-processing step (see Section 3.3.2) and the used classification
of characters.

Possible Improvements

Algorithm 3.1 is only able to find similar words by increasing or decreasing single
equivalence classes. In order to enhance the algorithm, all possible cardinality
variations could be computed. Of course these computations come at a cost.

Another possible improvement is to add a better control over increasing and de-
creasing cardinalities. For example, an i is probably added or deleted more often
than a g which belongs to the equivalence class o. Therefore, Algorithm 3.1 should
restrict the increasing and decreasing of cardinalities for the equivalence class o
because insertions and deletions of characters of that equivalence class is less likely.
But for adjusting these values, more insights of occurring errors are necessary.

The presented similarity computation using the OCR-Key method uses only a
few equivalence classes. Especially, the handling of upper-case and lower-case
characters is not optimal. This leads to a rough structure of words and may
retrieve similar words which may not be optimal. Therefore, more equivalence
classes could be used in order to represent a better structure of words. For example
the character b is very similar to the character h.
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4 Correction Strategy

This chapter presents the necessary steps for correcting OCR errors fully-auto-
matically. This is done by using mainly the archive itself. The used approaches
and the co-operation between them are discussed in detail.

The presented correction strategy can be seen as a processing pipeline. The pro-
cessing pipeline is divided into 3 processing steps: pre-processing, main-processing
and post-processing. Figure 4.1 gives an overview over these steps. In the pre-
processing step all necessary data-structures are generated using mainly the archive
itself. These data-structures are needed by correction algorithms in the subsequent
processing steps for finding adequate correction proposals. In the main-processing
step, correction proposals are computed and saved for the post-processing in XML
files. The main-processing step uses the Anagram Hash and OCR-Key method
for retrieving correction proposals. Correction proposals are generated for each
document in the archive. In the post-processing step, a new version of the original
document is generated. In this document misspelled words are exchanged by its
best correction proposal which fulfil certain criteria. The whole correction strategy
is implemented in Java.

Pre-

Processing
DATA

Figure 4.1: Correction Strategy: Overview of the necessary steps for correcting
OCR errors contained in an archive.

To correct documents of The Times Archive, the correction strategy is applied for
each year of the archive. That means, correcting a particular year of the archive
requires the pre-processing of all documents for that particular year.
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4.1 Pre-Processing

The first step towards finding and correcting OCR errors is to generate all necessary
data-structures. The later described methods use these data-structures for retriev-
ing adequate correction proposals. In contrast to classic dictionary-based systems,
which use word-lists of contemporary language without frequency information, this
pre-processing step derives “tailored” dictionaries based on the frequency of words
present in the archive. Hence, such tailored dictionaries contain rare words, names
or domain specific words which classic word-lists usually not contain. Assuming
that frequent words are more likely to be correct, such tailored dictionaries enable
detecting and correcting proper and person names as well as domain specific words.
Note that an adequate correction is only possible if the correct word is frequent
enough.

Figure 4.2 summarizes the generation of data-structures in the pre-processing step.
In general tokens are collected, counted and stored in occurrence maps (henceforth:
oms). oms map tokens to its occurrence count. Based on these oms, all neces-
sary data-structures for the correction algorithms in the main-processing step are
generated. The details can be found in the following sections.

4.1.1 Generating Occurrence Maps

The first step of the pre-processing chain is to collect and count as many single
tokens and token pairs as possible from the archive. Single tokens are unigrams
on word level and token pairs are bigrams on word level. The tokens are stored in
occurrence maps (oms).

Generating the Mixed-Case Occurrence Map

In general the mixed-case om contains single tokens and their corresponding token
count. In order to generate the mixed-case om all occurring tokens of the archive
need to be collected and counted. But simply counting all occurring white-space
separated tokens is not enough, first punctuation marks and other unwanted char-
acters have to be handled. Furthermore, hyphenation errors can be reduced using
a heuristic. Therefore, these three important improvements are used to enhance
the counting results over using white-space separated tokens only:
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Generate

Occurrence Maps

Generate

Anagram Hash Map

Generate

OCR-Key Map

Generate

Dictionary

Figure 4.2: Correction Strategy: Pre-Processing. Overview of generated data-
structures. Grey highlighted data-structures are used in the main-
processing step.
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Merging hyphenation errors. Hyphenation errors influence the count in a nega-
tive way. Because this type of error can be handled with a heuristic, potential
hyphenation errors are remedied by merging split terms. The details of the
used heuristic can be found in Section 4.2.1.

Enhanced tokenization. OCR processors tend to omit white-spaces. That means
two words can be accidentally merged by the OCR processor if the white-
space is not detected properly, e.g. thisis instead of this is. Such a fault
can not be remedied in the pre-processing step where only words are col-
lected. But omitted white-spaces around punctuation marks can be handled
by splitting tokens at punctuation marks. This can lead to better token
counts, although not all punctuation marks are really word separators. For
example the word read:er has a false punctuation mark.

Preliminary experiments showed that it is worth splitting tokens on the fol-
lowing punctuation marks: ,.;:()\"&[]?!´‘{}/+#=<>%. Note that there is
no splitting at hyphens (-) and normal apostrophes (’) because these infor-
mation can be important, e.g. middle-aged instead of middle aged or cat’s
instead of cats.

Cleaning. After tokenization, each token is cleaned by removing heading and tail-
ing non alphabetic characters. For example the token 12bi1rds.% becomes
bi1rds after cleaning. Removing these characters enables focusing on only
words without heading and tailing numbers and punctuation marks. For ex-
ample dirty tokens such as cats., cats; and 5cats do all have the same word
in common and therefore increase the occurrence count of cats.

To give a short outlook, the mixed-case om serves as basis for the lower-case om,
alternative-case map, OCR-Key map and anagram-hash map.

Generating the Lower-Case Occurrence Map

It is favourable to lower-case the mixed-case om to reduce the contained upper-
and lower-case spelling variations. The resulting lower-case om contains therefore
only lower-cased token forms. Each token maps to the summed occurrence count,
e.g. the occurrence count of time contains the count of Time, tIme, TIME, etc.
The reduction has several advantages over using the mixed-case om:

Smaller search space. Using only lower-cased characters simplifies the compu-
tation of similar words. Using only lower-cased characters enables the to
compute on 26 characters less (A − Z). This decreases the computational
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effort and the amount of retrieved tokens. The correct word form with re-
spect to upper- and lower-case characters can be calculated later based on
the alternative-case om (see Section 4.1.2).

Summed occurrence counts. Summing up the occurrence counts of the same
tokens with different spellings (with respect to upper- and lower-case char-
acters only) can increases the occurrence count. This can enable a better
separation of potential OCR errors. For example the occurrence counts of
the tokens time, Time, tIme are summed up and only increase the count of
the lower-cased word form time.

Generating the Pruned Lower-Case Occurrence Map

Following the assumption, that high frequent tokens are more likely to be spelled
correctly, infrequent tokens need to be removed form the lower-case om. Removing
infrequent tokens is called pruning in this thesis. The second reason for pruning is
to restrict the search space. Fewer words contained in the dictionary prevent the
retrieval of these words and reduce the computational effort.

Removing infrequent tokens can be done in several ways. This thesis uses a simple
frequency based pruning which removes all tokens which occur less than 8 times
from the lower-case om. Preliminary experiments showed that 8 might be a good
number. Finding a good pruning strategy is very difficult which the following
example illustrates.

Example 4.1 (Frequency Pruning Problematic)
This example illustrates the problematic of finding a proper way to prune oms.
Therefore, OCR errors of the token which are examined. The samples are extracted
from the lower-case om of the year 1985 of The Times Archive. Only some of the
samples are listed here with its corresponding occurrence count:

which (101,733), Which (945), wvhich (1,016), vhich

(449), whichi (316), whieh (63), whIch (60), wlhich

(234)

Obviously, the frequencies of misspelled words are very high. In contrast, many
rare words do not have such high occurrence counts, e.g. names. Hence, it is hard
to find a proper pruning strategy.
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Because the frequency is later used to rank similar retrieved words, the pruning
problematic is a minor problem. However, a better pruning strategy is desirable
and should be considered in future work.

Generating the Bigram Occurrence Map

The bigram om contains word pairs (bigrams) and their corresponding occurrence
count. For generating the bigram om a similar procedure as for the lower-case om
has to be applied. The aim is to collect as many as possible bigrams.

The first step is equal to the step explained for generating the lower-case om.
The text is tokenized, possible hyphenation errors are removed by merging tokens
and the tokens are cleaned on the sides. All bigrams which are added to the
bigram om are lower-cased beforehand to increase the occurrence count of the
same token without respecting case-sensitive spelling variations. Case-sensitive
spelling variations are not interesting for this map, but a high occurrence count.
Two more things have to be considered:

1. Occurrence maps are the basis for generating the anagram-hash map. There-
fore, it is not important in which order bigrams are stored, because they have
an equal anagram key (see Section 2.3.2). For example the word pairs my
cat and cat my have the same anagram key and are therefore the same here.
Hence, only the first occurrence of a word pair needs to be stored in the map.
If a twisted word pair occurs, the occurrence count of the first stored word
pair is increased.

2. This bigram approach does not consider punctuation marks. That means
word pairs are formed regardless of sentence delimiting punctuation marks
such as points, commas, semicolons or double points. Usually, word pairs
which are formed over sentence boundaries are not likely to be contextual.
But with respect to OCR errors it makes sense to not follow this assumption
here, because punctuation marks may not be detected reliably and errors
in words may decrease the bigram count. It makes more sense to collect
as many bigrams as possible to overcome data sparseness problems, when
filtering out infrequent bigrams.

Furthermore, bigrams are used to split up tokens which were wrongly merged
by the OCR processor. Because no other technique is used in this thesis to
split up wrongly merged tokens, is is absolutely necessary to have as many
bigrams as possible.
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Generating the Pruned Bigram Occurrence Map

Following the assumption, that frequent bigrams are likely to have less errors, the
bigram om has to be pruned. The same pruning problematic as for the lower-case
om emerges. However, a simple pruning strategy is applied which removes all
bigrams which occur less than 3 times. Additionally, all bigrams, which contain
a word that is only a single character, are removed, except the character a, e.g.
cat s is removed and a cat is kept. This is necessary to overcome unwanted word
splitting problems in the later process, such as:

• IBritain → I Britain or Britainn → Britain n

Providing no undesired bigrams, which allow unwanted splits, will prevent their
generation in the main-processing step. Additionally, it decreases the search space
which increases the speed of the algorithm. In future work a more sophisticated
pruning strategy should be developed for the bigram om.

4.1.2 Generating the Alternative-Case Map

This correction strategy focuses on computing and retrieving lower-cased correc-
tion proposals. Hence, all generated correction proposals are spelled with lower-
cased characters. It is desirable to compute an adequate spelling variation with
respect to lower-case and upper-case characters at the end of the process. For ex-
ample correction proposals which contain proper or person names should be spelled
with an initial capital letter. For computing these spelling variations which only
differ in lower-case and upper-case characters, the alternative-case map is used for.
The alternative-case map contains all words of the pruned lower-case om and maps
each word to the three most frequent spelling variations present in the mixed-case
om with corresponding occurrence counts.

The motivation for using the three most frequent word variants is derived from
observations. These three different types of spelling variations are likely to occur:

1. All characters are lower-cased, e.g. application.

2. The first character is capitalized, e.g. Application. This mainly occurs at
sentence beginnings or if the word is a name.

3. All characters are capitalized, e.g. APPLICATION. This mainly occurs if a
word is emphasized or an abbreviation.
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Note, that the three assumed word forms are not always present in the archive.
Therefore, the map may contain less than three variants or some corrupt versions,
e.g. fullY instead of fully. Usually corrupt word forms are less frequent than
correct word forms. Hence, corrupt word forms should not affect the retrieval of
correct variants.

4.1.3 Generating the Anagram-Hash Map

The anagram-hash map is the most important data-structure for computing cor-
rection proposals. It is implemented as hash map and uses the anagram key
computation as hash function (see Section 2.3.2). It maps anagram keys to tokens
and their corresponding occurrence count.

The anagram-hash map is generated by using the pruned lower-cased om and
pruned bigram om. Every unigram and bigram is stored with its corresponding
occurrence count in the anagram-hash map. To be more specific, each anagram
key maps to a list containing all tokens with the same anagram key.

4.1.4 Generating the OCR-Key Map

The OCR-Key map is the data-structure for retrieving correction proposals for
misspelled words based on the OCR-Key method. As described in Chapter 3 this
map is a hash map and uses the OCR-Key computation as hash function.

The Times Archive has a font variation problem, especially in the earlier years
(see Section 5.1). The character s is sometimes recognized as an f. In order to
tackle these font variation problems, the equivalence classes of Table 3.2 (page 27)
were modified. Instead of classifying an f as an i, an f is classified as an s with
cardinality 1.

For generating the OCR-Key map two requirements have to be considered in more
detail:

1. The map needs to contain upper-case and lower-case spelling variations of
the same word.

2. No OCR errors should be included.

The first requirement can be fulfilled using the mixed-case om to generate the
OCR-Key map. It contains lower-case and upper-case words forms. Each token
of the map is stored to its corresponding OCR-Key in lower-cased form with its
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corresponding occurrence count. Lower-casing the token has the advantage to
group words with the same key, which only differ in lower-case and upper-case
characters. For example Britain, BrItain, BrItaIn have all the same OCR-Key.
Their occurrence count can be summed up and stored as one single token in the
map. Note that the word britain has a different OCR-Key and will be stored
separately from the three words given above with a different occurrence count.

Fulfilling the second requirement, OCR errors have to be removed from the mixed-
case om. This has to be done before words are inserted into the OCR-Key map.
Unfortunately, pruning strategies are a trade-of between removing as many OCR
errors as possible and keeping words which are infrequent but correct, such as
names and domain specific words. This means a pruned map is likely to contain
too many OCR errors to generate the OCR-Key map directly. To overcome this
problem, the dictionary of Aspell is used additionally. Only tokens of the mixed-
case om are added to the OCR-Key map if they appear in the Aspell dictionary.

Using a dictionary to decide which words can be added to the map limits the
amount of words which can be corrected, but is a good way to control the genera-
tion until a better pruning strategy is available.

4.1.5 Generating the Collection-Based Dictionary

Checking and trying to correct every single word will slow down the system dramat-
ically. Therefore, a dictionary check can be applied before generating correction
proposals. This can filter out correct words which should not be handled by the
system.

The collection-based dictionary for performing a dictionary check is build using
the lower-case om and the Aspell dictionary in the following way: All words which
are contained in both are added to the dictionary.

If no external dictionary should be used, only very high frequent words of the
lower-case om could be added to the dictionary. Unfortunately, the lower-case om
contains many high frequent words with OCR errors which make it difficult to
distinguish between misspelled and correctly spelled words.

The increased speed comes at a cost. The more words a dictionary contains,
the more likely it is that wrongly spelled words are omitted. For example the
misspelled word thc instead of the is detected as correct and will not be corrected
using the Aspell dictionary since thc is a correct term. Because this error occurs
frequently, the word thc is removed from the dictionary in this thesis.
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Example 4.2 (Collection-Based Dictionary for The Times Archive in 1985)
This example illustrates the impact of using the Aspell dictionary to filter out
unwanted words. Initially the lower-case om contains roughly 2 million tokens.
After removing all tokens which occur less than 8 times the map still contains
roughly 110k tokens. Generating the dictionary using the lower-case om and the
Aspell dictionary with about 138k tokens results in a dictionary with about 79k
tokens. That means 110k −79k = 31k words are not included in the collection-
based dictionary, although they are told to be frequent. It is very likely, that most
of these 31k words are OCR errors. But on the other hand names and domain-
specific words may also be removed by Aspell.

4.2 Main Processing: Generating Corrections

This section describes the spell checking and generation of correction proposals.
Therefore, several steps are necessary. An overview over this processing step is
depicted in Figure 4.3 and described in the following. Each step is explained in
more detail later:

1. All white-space separated tokens of a document are read in and stored into
a token list.

2. A heuristic is applied to detect and merge hyphenation errors.

3. A general cleaning of each token is applied to get rid of punctuation marks
and other dirt characters. Therefore, heading and tailing “dirt” characters
of each token are removed, i.e. all characters which are not a− z and A−Z

are removed from the sides of each token.

4. Two rules for filtering out tokens which are too short or contained in the
collection-based dictionary are applied.

5. Tokens which are not filtered out are now tackled by the Anagram Hash
method. Correction proposals are stored in a separate list for each token.

6. Each token is then passed to the OCR-Key method, which generates and
stores its correction proposals in a second proposal list for each token.

7. Both generated proposal lists are merged to one final list. The merging has
to be applied with respect to the ranking of correction proposals.

8. Three rules are applied:
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Figure 4.3: Correction-Strategy: Main-Processing. Necessary correction steps for
generating correction proposals for a single document.
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• The bigram rule, which allows to retrieve a better sorted proposal list
based on co-occurring words.

• The alternative case rule, which computes the best matching lower- and
upper-case variation of a word.

• The ignore word rule, which filters out word for which no proposals
should be proposed.

9. The five best correction proposals for relevant misspelled words are stored
into an XML file for each processed document. The correction proposals are
used in the post-processing step for exchanging misspelled words.

To rank the computed correction proposals a simple scoring system is used, which
will be explained at the end of this section.

4.2.1 Heuristic: Merging Hyphenation Errors

Scanned OCR documents often contain structural information about positions of
words. Such information can help correcting hyphenation errors (see 1.3).

This approach uses a heuristic which requires that the following 4 conditions are
fulfilled in order to merge two words:

1. A line-break or column-break has to be between both words.

2. The token before the break has to end with an hyphen after removing all tail-
ing characters which are not alphabetic. For example “1.depart-,” becomes
“1.depart-” and is appropriated, whereas “1.depart-d,” becomes “1.depart-d”
and is not appropriated because it ends with a character instead of a hyphen.

3. The token before the break occurs, has to have a lower-case alphabetic char-
acter in front of the hyphen.

4. The first character of the word after the break has to be a lower-case character
after removing all heading characters which are not alphabetic. For exam-
ple “.ment.?” becomes “ment.?” and is appropriated, whereas “.Ment.?”
becomes “Ment.?” and is not appropriated because it starts does not start
with a lower-case character.

OCR errors sometimes hinder a proper recognition of hyphenation occurrences,
because dirt or vertical lines to separate text segments on both borders of the text
can produce additional characters such as punctuation marks, e.g. de-. instead
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of de- or ,partment instead of partment. Naturally, more characters besides punc-
tuation marks can occur on the sides, such as alphabetic characters or digits, e.g.
IBritain instead of Britain. But those can or should not be removed because it
is not clear if they are a part of the original token. Therefore, only punctuation
marks can be removed from the sides of the tokens.

If digits or upper-case characters occur around a hyphen the merge will not be
performed, because it is likely to be a false merge, e.g. Hyde- \n Park.

It has to be pointed out, that this is only a heuristic and may lead to wrong merges.
An evaluation of the heuristic is given in Chapter 5. Wrong merges can be caused
by two things:

1. Due to dirt on the right side of a document, a hyphen can be added to a
token accidentally by the OCR processor, e.g. as- \n the becomes asthe.

2. Words which are naturally spelled with a hyphen can be split up at line
breaks and therefore be merged wrongly, e.g. full- \n scale becomes fullscale.

Wrongly merged words can sometimes be recovered by the anagram-hash correction
algorithm. For example correction proposals for the wrongly merged token fullscale
could be full-scale or full scale.

Detecting Hyphenation Errors in The Times Archive

Given the following two XML tags of The Times Archive1:

<wd pos="626,2608,797,2653">procure-,</wd>

<wd pos="139,2640,255,2686">ment</wd>

The pos attribute of the tag wd contains information about the position of the
top left corner (x1, y1) and the bottom right corner (x2, y2). A hyphenation can
occur at line-breaks or column-breaks. In Figure 4.4 depicts a line-break and a
column-break example.

Given the token t with position x1, y1, x2, y2 and token t̃ with positions x̃1, ỹ1, x̃2, ỹ2.
Then line-breaks and column-breaks can be detected as follows:

1Example taken from: The Times Archive 1985-02-04, page 12, article 1
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Figure 4.4: Hyphenation Errors: Line-Breaks and Column-Breaks. A schematic
illustration of occurring line-breaks and column-breaks in The Times
Archive.

Line-Break A line-break occurs if x1 > x̃1. No further information is necessary.

Column-Break A column break occurs if y1 > ỹ1 + δ. The tolerance value δ is
necessary for compensating alignment problems while scanning documents.
Usually two neighbour tokens are not scanned absolutely horizontal. Lines
of text tend to move up or down. If they move up, then y1 is greater than ỹ1
and a false column-break can be detected. Using a tolerance value δ prevents
the detection of false column-breaks. Based on preliminary experiments δ is
set to 20.

4.2.2 Filtering Rules

Applying the Anagram Hash and OCR-Key method to all words present in the
text dramatically slows down the system. Therefore, two rules are applied to filter
out tokens which should not be corrected. The rules are applied in the order they
are mentioned.

Short Word Rule

Words with a length ≤ 2 are filtered out in the following process. This is done
because it is very hard to correct words which consist of only one or two characters.
Due to OCR errors short words can be dirt, error-prone, subsequence of other
words which were separated accidentally or even correct.
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Dictionary Rule

The dictionary rule uses the collection-based dictionary (from the pre-processing
step in Section 4.1.5) to filter out correct words. Omitting these words has two
advantages. Firstly, potential correct words can not accidentally be corrected to a
wrong word. Secondly, the speed of the system increases.

The dictionary rule applies a second, more sophisticated clean of each token. Until
now the token is cleaned only on the sides. But sometimes punctuation marks or
other “dirt” characters are included in the token. Therefore, every character which
is not a digit or alphabetic character is removed. The resulting token is checked
again against the dictionary. If it is contained in the dictionary, the token is filtered
out and the cleaned version of the token is added to the correction proposal list
which can be used later as a proper correction candidate.

4.2.3 Anagram Hash Correction

The general Anagram Hash method for retrieving correction proposals for mis-
spelled words is described in Section 2.3.2. The concrete implementation details
are given here.

Implementation Details

The underlying anagram-hash-map was already generated in the pre-processing
step (Section 4.1.3). It includes frequent lower-cased tokens and token pairs.

The size of the alphabet Σk
W is limited to k = 2. The word-list W for defining

the alphabet contains all words of the pruned lower-case om. The choice of k is a
trade-off between computational effort and ability to find more similar words.

Because the anagram-hash map still contains OCR errors, the alphabet can not
be generated by simply applying the definition of Σ2

W . The alphabet should only
contain characters which are necessary to spell words.

Because this approach computes only on lower-cased words, the following char-
acters are necessary to spell a word: a − z, a hyphen (-), an apostrophe (’) and
a white-space ( ). Therefore, the alphabet Σ2

W contains the following character
n-grams:
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unigram: Characters a− z, a hyphen (-), an apostrophe (’) and a white-space ( ).

bigram: All character bigrams which can be formed out of sws with w ∈ W and
s white-space. Bigrams which contain characters that are not necessary to
spell a word are removed, e.g. a( or a$.

The confusion alphabet Π2
W therefore contains all anagram keys of the alphabet

defined above. The focus word alphabet Γ2
{w} contains all anagram keys of char-

acter unigrams and bigrams of the focus word using the strict alphabet. Note
that the focus word alphabet is not restricted as the confusion alphabet. This is
important to be able to delete and/ or substitute all appearing character n-grams
of the focus word.

Remembering the computation of correction proposals using the Anagram Hash
Method. The computation uses the following formula:

simulatedWordHash ← focusWordHash + π − γ, π ∈ Π, γ ∈ Γ

This formula requires that π = 0 to delete a character and γ = 0 to add a character.
Therefore, the zeros are added to the confusion alphabet Π2

W and focus word
alphabet Γ2

{w}.

A Levenshtein-Distance (ld) limit is used to limit the retrieval of correction pro-
posals. Therefore, the ld between the original word in the text and the retrieved
word has to be computed. If the retrieved word exceed the limit, it will be dis-
carded. This implementation uses a ld limit of 3 for all words. That means only
words which have a limit ≤ 3 will be retrieved. The retrieved words are added to
the anagram proposal list. Note that only lower-cased words are retrieved. For
computing the ld the implementation of the Java Open Source Spell Checker
Jazzy [Idz10] is used.

Because the Anagram Hash method retrieves the same correction proposal several
times, the ld computation is only necessary for words which were not already
retrieved. This increases the speed of the algorithm.

Impact of Bigrams

Because the anagram-hash map includes bigrams on word level, and the confusion
alphabet a white-space and hyphen, the algorithm is able to split up words, e.g.
inBritain → in Britain or fullscale → full-scale. The first splitting using a white-
space is only possible if enough bigrams on word level are present in the anagram-
hash map. Therefore, as many bigrams as possible have to be collected in the
pre-processing step.
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4.2.4 OCR-Key Correction

The OCR-Key method was extensively explained and discussed in Chapter 3. Us-
ing the OCR-Key map generated in the pre-processing step (Section 4.1.4) three
more implementation details are necessary for applying the OCR-Key method.

1. Algorithm 3.1 (page 31) modifies the cardinalities of each equivalence class
by adding an subtracting a δ. This δ is set to 2.

2. Retrieved words are limited by a Levenshtein-Distance limit of ≤ 2. The
retrieved words are added to the OCR-Key proposal list. Note that only
lower-cased words are retrieved.

3. Because of the s/f-problem the OCR-Key map uses a different classification
of characters as described in Section 4.1.4.

4.2.5 Generating the Final Proposal List

After computing correction proposals for potential misspelled words, two proposal
lists are present for a single token. Both lists have to be merged to a final proposal
list. This is done in three steps:

1. Use the anagram-hash proposal list as final list.

2. The five highest ranked proposals of the OCR-Key proposal list are used to
boost the ranking of already existing equal proposals in the final list. Details
are explained in Section 4.2.8 about the score computation (ocrBoost).

3. If not already present, the ten highest ranked proposals of the OCR-Key
proposal list are additionally added to the final proposal list.

4.2.6 Correction Proposal Enhancement Rules

After processing every token, each token should have one or more proposals. If
the anagram hash method and the OCR-Key method did not find any correction
proposal the token itself is set as correction proposal. In order to enhance the
found correction proposals of tokens, which were not filtered out, three rules are
applied. The first rule uses context information of bigrams to influence the ranking
of the five top-most proposals. Because all correction proposals are lower-cased, the
second rule computes for each correction proposal a case-sensitive version which
can be used later. The third rule is used to filter out some more tokens which
should not be written to the XML correction files.
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Bigram Rule

In addition of using bigrams to correct words, these bigrams can also be used to
influence the ranking of the five top-most correction proposals of the final proposal
list.

Let wi be the i-th word of the text. Further, let cij be the j-th correction proposal
of the word wi and |c

i| the number of correction proposals. Then there exists two
ways to form a bigram including the word wi.

1. The bigram bi−jk , which is formed using the proposals of the word wi and wi−1.

2. The bigram bi+jk which is formed using the proposals of the word wi and wi+1.

Formally, the bigrams are defined as follows, using as white-space:

1. bi−jk = ci−1
j ◦ ◦ cik, 1 ≤ j ≤ min(5, |ci−1|), 1 ≤ k ≤ min(5, |ci|)

2. bi+jk = cik ◦ ◦ c
i+1
j , 1 ≤ k ≤ min(5, |ci|), 1 ≤ j ≤ min(5, |ci+1|)

To respect the context, bigrams are only generated if they are not blocked by
punctuation marks. If wi−1 end with a punctuation mark no bigram between wi−1

and wi will be formed. If wi ends with a punctuation mark no bigram between
wi and wi+1 is formed. As punctuation mark all non-digit and non-alphabetic
characters are considered.

The bigrams are now queried against the anagram-hash map to retrieve their
occurrence count. The frequency of the bigram b in the anagram-hash map is
denoted as f(b). The resulting bigramBoost ik for the correction proposal cik (of the
word wi) is computed as follows:

bigramBoost ik =

min(5,|ci−1|)
∑

j=1

f(bi−jk ) +

min(5,|ci+1|)
∑

j=1

f(bi+jk ), 1 ≤ k ≤ min(5, |ci|) (4.1)

This bigramBoost value is later used for computing the score.
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Alternative Case Rule

The anagram-hash and the OCR-Key method generate and retrieve lower-cased
correction proposals only. The correction proposals can be enhanced by adding
a spelling variation with respect to lower-case and upper-case characters. For
example a name should be spelled with an initial upper-case letter. Therefore, the
alternative-case map can be used (see Section 4.1.2) which contains the three most
frequent spelling variations of tokens occurring in the pruned lower-case om.

The best spelling variation with respect to lower-case and upper-case characters
using the alternative-case map is computed in the following way:

1. A token (in the text) starts with a capital letter and contains more than two
capital characters. Then the most frequent spelling variation which starts
with a capital letter and which has more than two capital characters is used.

Example: The token AppLicAtioN will likely be transformed to APPLICA-
TION if it is present in the alternative-case map.

2. A token (in the text) starts with a capital letter and contains ≤ 2 capital
characters. Then the most frequent spelling variation which starts with a
capital letter and contains ≤ 2 capital characters is used.

Example: The token ApplIcation will likely be transformed to Application if
it is present in the alternative-case map.

3. If no initial capital letter is recognized or no matching token could be found,
then the most frequent spelling variation is used.

Example: The most frequent spelling variation for the token britain is
Britain.

The capital character threshold of two is chosen because of the fact that some
names usually contain more than one capitalized character, e.g. McChrystal. Fur-
thermore, OCR errors may insert additional capital characters, e.g. ApplIcation.
These words shall not use their complete capitalized spelling variation.

Ignore Word Rule

Because the correction strategy should be able to correct misspellings fully-auto-
matically, it is necessary to make sure that few false corrections are applied. There-
fore, a special rule is used to ignore some words.
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If the best correction proposal equals the original token in the text, no correction is
necessary. Therefore, these tokens can be ignored when generating the correction
XML file.

Names are often hard to correct. For example similar names such as Miller and
Miler could be both correct, or Miler is a misspelling of Miller or the other way
around. If the initial letter of a potential misspelled token starts with a capital
letter it can be a name. Then the top five proposals are checked against the original
token with respect to upper- and lower-case characters. If the original token is
among the top five proposals with exact the same case-sensitive spelling, the token
will be ignored when generating the correction XML file. Note that proposals got
a case-sensitive spelling variation from the alternative-case rule (Section 4.2.6).

4.2.7 Generate Correction XML File

For the post-processing step, the computed correction proposals of each document
are stored into an XML file. The exact structure can be found in Appendix A.

In this correction XML file only tokens which have valid correction proposals are
saved, e.g. short words or words that fulfil the ignore word rule are ignored. Merged
tokens are also saved because they contain information for the post-processing
step.

After determination which correction proposals need to be stored, only the five best
ranked proposals are stored with its normalized score. The ranking mechanism
using a scoring system will be explained in the next section in detail.

4.2.8 Score: Ranking of Correction Proposals

The Anagram Hash method and the OCR-Key method both produce correction
proposals. Usually, they produce several proposals. In order to say which correc-
tion proposal is the best one, they have to be ranked. For this a simple scoring
system is used.

A scoring function assigns a number to a correction proposal which states how
suitable a proposal is. Because the Anagram Hash and the OCR-Key method rely
on different numbers and behave differently, they have different score functions.
For ranking the OCR-Key method the scoring function proposed in Section 3.3.4
is used. For ranking proposals of the Anagram Hash method a similar scoring
function is used.
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To compute the score for a correction candidate, there are initially two general
influencing variables:

Frequency. Because the underlying dictionary, which is used to retrieve correction
candidates, is derived from the archive, it still contains OCR errors. Hence,
the correction algorithm will likely retrieve error-prone candidates among
others. By assuming that frequent tokens are more likely to be correct, the
frequency can be used to rank the retrieved correction proposals.

Levenshtein-Distance The Levenshtein-Distance (ld) can be used to determine
the similarity of two words with respect to character insertions, deletions
and substitutions. Hence, a small ld indicates that two words are similar.
The more similar correction proposal and original word are, the more likely,
that the correction proposal is an adequate proposal.

Ranking Anagram Hash Proposal

Let w a word with the length |w| for chich correction proposals should be proposed.
A correction proposal is denoted as c and its frequency as f(c). Internally, a
correction proposal can be retrieved several times by the Anagram Hash method
(see Section 2.3.2). The amount of internal retrievals is denoted as cr. The following
scoring function is used for the Anagram Hash method:

scoreana(c, w) = ln(f(c)) · (|w| − LD(w, c)) · cr

In order to restrict the influence of the frequency, the natural logarithm of the
frequency is used here. To put the ldinto relation with the length of the word,
the ldis subtracted from the token length of the original token.

Ranking OCR-Key Proposals

Additional to the definitions above, let cc be the cardinality difference which lays
between the OCR-Key of the focus word w and the OCR-Key of c (see Section
3.3.4). Then the score function for the OCR-Key method is computed as follows:

scoreocr (c, w) = ln(f(c)) · (|w| − LD(w, c)− cc)
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Ranking the Final Proposal List

The anagram-hash proposal list and the OCR-Key proposal list are merged to
the final proposal list at the end of the main-processing step. In order to rank
this final proposal list a unified formula needs to be applied. Because two further
factors influence the ranking computation, a normalization is not computed before
all steps of the correction strategy are finished.

The first factor is the ocrBoost variable which occurs while merging the anagram-
hash proposal list and the OCR-Key proposal list (see Section 4.2.5). The second
factor is the bigramBoost variable which occurs while applying the bigram rule
(see Section 4.2.6).

The final proposal list uses the following unified scoring function for ranking the
computed correction proposals:

scorefinal(c, w) = ln(f(c)) · (|w| − LD(w, c)) · cr · ocrBoost · ln(bigramBoost)

The variable bigramBoost is initially set to 2, because of the logarithm. The
variable ocrBoost is initially set to 1. This makes sense in order to keep the initial
computed scores as much as possible. The variables for each correction proposal
are computed as follows:

ocrBoost. This variable is computed while merging anagram and OCR-Key pro-
posal lists to the final list.

Before OCR-Key proposals are added, the five best ranked OCR-Key pro-
posals are compared with the ones in the final list. The ocrBoost value of a
proposal which is also in the final list is set to the score of the proposal in
the OCR-Key list.

Then, the ten top ranked proposals of the OCR-Key proposal list, which
are not included in the final proposal list, are added to the final proposal
list. Because the score function differs from the OCR-Key score function,
the additional value cr = 1 is used. The value cc is discarded.

bigramBoost. The bigramBoost of each proposal comes from the computation in
Section 4.2.6 (Formula 4.1).

The correction XML file contains only the top five correction proposals for each
token and the corresponding scores which are normalized with the sum of all five
scores to give a value between 0 and 1. The score represents the confidence for
each proposal.
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4.3 Post-Processing

This section describes how correction proposals are chosen for automatic replace-
ment of misspelled words. The first step determines if the correction proposals are
good enough based on the score. In a second step they are replaced.

Choose Proposals 

& Exchange

Figure 4.5: Correction-Strategy: Post-Processing.

4.3.1 Choose Adequate Correction Proposals

Each correction proposal has a score between 0 and 1. The assumption is that a
proposal with a high score is more likely to be a correct correction proposal than a
proposal with a low score. Thus, the best correction proposal is the one with the
highest score. Following this assumption, every misspelling can be replaced by its
best correction proposal.

Experiments showed that the system can produce correction proposals with two
characteristics. Firstly, the scores may not be high enough to be significant. Sec-
ondly, the best score may be very close to the second best score. To prevent
automatic corrections in these two situations thresholds can be constructed and
applied. If these thresholds are not satisfied, the system will not apply an auto-
matic replacement:

Minimum Threshold. The score of the first best correction proposal needs to
exceed a minimum threshold tmin :

score1-best ≥ tmin

Logarithmic Threshold. The second best proposal’s score has to be set into re-
lation with the first best proposal’s score. The natural logarithm of this
relation has to exceed a certain threshold t′min :

ln

(
score1-best
score2-best

)

≥ t′min
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Another possible threshold for preventing automatic correction is to limit the
Levenshtein-Distance:

LD1-best ≤ LDLimit

4.3.2 Applying the Correction Proposals

After determining if the correction proposals are good enough, they can be replaced.
Two things have to be considered in order to replace the proposals correctly:

1. Heading and tailing “dirt” characters were removed during the correction
process. When exchanging the original word of the text with the correction
proposal these characters have to be kept. They contain structural informa-
tion, such as points and commas.

2. Hyphenation errors were merged and saved as single correction proposals.
Therefore, two tokens in the text have to be replaced by a single correction
proposal.

4.4 Discussion

This chapter described the generation of correction proposals in three processing
steps and the cooperation between the Anagram Hash and the OCR-Key method.
In the pre-processing step occurrence maps (oms) were generated by collecting
words and word pairs from the archive. In order to remove potential OCR errors
from these oms a simple pruning strategy was applied. In order to remove more
OCR errors an improved pruning strategy should be developed and applied in
future work.

Besides oms, the OCR-Key map was generated in the pre-processing step. This
map uses a different classification than proposed in Chapter 3 in order to cope
with the s/f spelling variation problem. It has to be investigated in future work
where these spelling variation occur and if it is worth to differ from the proposed
classification.

The used frequency counts in the OCR-Key map can be further improved. The
map uses separate counts for tokens which have the same spelling but different
OCR-Keys due to case-sensitive spelling variations. For example the token Britain
has another OCR-Key than britain. The occurrence count of the token Britain,
BrItaIn or BrItain are summed up and stored as occurrence count for the token
Britain, but the token britain does only have the occurrence count of britain,
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brItain or brItaIn. That means the tokens Britain and britain have different
occurrence counts in the OCR-Key map. This behaviour can be desirable because
tokens with different OCR-Keys should not be similar, but on the other hand they
refer to the same token and could therefore have the same occurrence count.

The used Anagram Hash method retrieves correction proposals by using charac-
ter unigrams and bigrams. A further improvement could be to use also character
trigrams in the confusion and focus word alphabet to expand the search for alter-
native spellings. This can increase the retrieval of adequate words but will also
increase the computational effort. Furthermore, the Levenshtein-Distance limit
could be increased for the Anagram Hash as well as for the OCR-Key method
to retrieve more words. The current limit is a trade-off between retrieving ade-
quate correction proposals and preventing a mis-correction by proposing wrong
proposals.

Because the proposed correction strategy uses only words which are contained in
the archive itself limits the retrieval of adequate correction proposals in the fol-
lowing sense. A word which is not contained in the archive, because it is never
recognized properly (or is not frequent enough), cannot be retrieved as correction
proposal. Proper corrections are especially not possible in years where font vari-
ations problems occur. For example, the misspelled word plcefe can at least be
corrected to pleafe in years where an s is spelled as an f.
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5 Evaluation

This chapter deals with the evaluation of the correction strategy described in Chap-
ter 4. The correction strategy is evaluated on The Times Archive. Therefore, some
background information about the archive can help putting the right emphasis on
the correction strategy and evaluation. Hence, Section 5.1 first introduces the used
dataset and gives an overview of the data, the quality and some special character-
istics. The next section introduces and explains the used evaluation methods and
gives the final results in Section 5.3. The chapter concludes with a discussion and
a comparison with related work.

5.1 The Dataset (The Times Archive)

The OCR processed newspaper articles from The Times Archive in London, span-
ning from 1785 to 1985. The OCR quality will be investigated in Section 5.1.1 in
order to give an approximation of contained OCR errors in The Times Archive.
Section 5.1.2 analyses the contained article categories. In Section 5.1.3 some spe-
cial characteristics of the archive are presented.

In general The Times Archive contains 201 years of data with roughly 7.1 billion
white-space separated tokens and about 7.8 million articles. In average each year
contains about 35 million white-space separated tokens. The number of tokens
ranges from about 3.9 to almost 68 million white-space separated tokens.

Figure 5.1 illustrates the size of The Times Archive with respect to contained
articles and white-space separated tokens. The archive starts with about 4400
articles and almost 3.9 million tokens. The number of articles and tokens increases
steadily. Especially in the early 20th century the number of articles and tokens
reaches the archive’s peak with about 68 million token and nearly 92.000 articles.
In 1940 the number of articles and tokens decreases about 50%.
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Figure 5.1: Statistics over Times Archive: Number of articles and white-space sep-
arated tokens.

5.1.1 OCR Quality

The amount of OCR errors in The Times Archive is approximated by measuring
the dictionary recognition rate. The dictionary recognition rate measures the
amount of tokens from the archive which also appear in a dictionary. Hence, the
approximate amount of OCR errors is

OCRerrors ≈ 1− fD(t) (5.1)

where fD(t) is the dictionary recognition rate for the dictionary D and the year
t ∈ [1785, 1985].

Using a dictionary recognition rate is an approximation of contained OCR errors
because contemporary dictionaries usually do not contain out-dated terms, names
or domain specific words. Besides the lack of these words, some error types are
counted wrongly. For example, segmentation errors such as de pa rt ment should
be counted as a single error, but a dictionary does not know, that the character
segments belong together. Depending on the used dictionary, zero to four errors
could be counted for the split word de pa rt ment. Hence, the dictionary recognition
rate can only be a rough approximation of OCR errors.

In order to spell-check the text, all single white-space separated tokens are cleaned
from heading and tailing dirt before they are checked against a dictionary. That
means, all characters which are non alphabetic are removed from the sides of a
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Figure 5.2: Unique Token Rate vs OCR Error Rate: The rate of OCR errors is
approximated using 1 minus the Aspell dictionary recognition rate (see
Equation 5.1).

token until an alphabetic character occurs. For example the token 12bi1rds.%
becomes bi1rds after cleaning. All tokens are checked against the dictionary in
lower-cased form.

The used dictionary is extracted from GNU Aspell 0.60.6 [Atk08]. The Aspell
dictionary contains about 138k single tokens. All tokens are converted to a lower-
cased form. The extracted Aspell dictionary contains lemmas, names and irregular
word forms. Therefore, no lemmatization is necessary in order to spell-check all
tokens properly.

In Figure 5.2 the unique token rate is depicted against the OCR error rate, com-
puted by Formula 5.1, using the Aspell dictionary. With respect to the OCR error
rate, the archive can roughly be divided into three periods. The first period from
1785 to 1814 has a relatively high and steadily increasing error rate. The second
period from 1815 to 1932 and the third from 1933 to 1985 have both relatively
stable errors rates but the third has a lower error rate.

Nearly 39% of the cleaned tokens cannot be recognized by the Aspell dictionary in
the first year. The approximated error rate increases in the following years until
the year 1814 where the error rate drops about 20%. The decreased error rate
can be explained by the increasing print quality produced by steam presses which
were introduced in November 1814 [Tim14]. In the following years the error rate
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Figure 5.3: Unique Token Rate vs Qualitative Article Rate: The fraction of qual-
itative articles is plotted against the fraction of unique tokens. The
dictionary recognition rate of qualitative articles is higher than 90%
using Aspell (see Equation 5.1).

is relatively constant and decreases again between 1930 and 1940. Until 1985 the
rate is again relatively stable.

The unique token rate (percentage of unique tokens with respect to all tokens)
behaves very similar as the error rate. This is clear because OCR errors produce
several spelling variations of the same word, e.g. time, t1me, tine, which are usually
OCR errors. That means, if the rate of unique tokens is higher, then the rate of
OCR errors is higher, and vice versa.

The correlation between unique tokens and OCR quality can also be seen in Figure
5.3. The figure plots the unique token rate against the qualitative article rate.
Qualitative articles are articles which achieve a dictionary recognition rate higher
than 90% using Aspell (see Equation 5.1) and contain more than 20 tokens after
cleaning. Until 1816 only few qualitative articles are present in the archive and
the unique token rate is relatively high. Between 1816 and 1880 more qualitative
articles can be found. The rate of qualitative articles is relatively stable in these
years. Between 1880 and 1930 the qualitative article rate is higher than in the
previous period. The corresponding unique token rate is slightly lower. From 1930
the qualitative article rate increases dramatically and is more than twice as high
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Category #token

#article

#token

#allToken
[%] #article

#allArticle
[%]

Arts and Entertainment 591 2.5 3.9

BIRTHS;MARRIAGES AND DEATHS; 541 2.1 3.6

BUSINESS AND FINANCE 670 8.5 11.7

COURT AND SOCIAL 370 0.8 2.0

Classified Advertising 4681 24.6 4.8

Display Advertising 239 1.8 7.0

Editorials/Leaders 936 2.8 2.7

Feature Articles (aka Opinion) 343 0.2 0.4

Law 861 5.1 5.5

Letters to the Editor 449 3.0 6.0

NEWS 565 21.7 35.2

Obituaries 306 0.6 1.8

Official Appointments and Notices 661 1.7 2.4

Politics and Parliament 3048 5.2 1.6

Property 3856 9.5 2.2

Sport 791 4.9 5.6

Stock Exchange Tables 1296 4.6 3.3

Weather 683 0.4 0.5

Table 5.1: Statistics for Times Archive Categories: Average length and portion
with respect to tokens and articles

between 1930 and 1985 as in the period before. The unique token rate decreases
in the last period. The high qualitative article rate in the last period is likely
caused by the higher quality of documents which allows more articles exceed the
90% threshold.

5.1.2 Categories

The Times Archive is categorized into 18 categories when digitizing the archive.
Some statistics about the average length of articles and the portion of categories
with respect to the amount of tokens and articles can be found in Table 5.1. The
two most dominating categories with respect to the amount of tokens are Classified
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Advertising with 24.6% and News with a portion of 21.7%. The two most domi-
nating categories with respect to the amount of articles are News with 35.2% and
Business and Finance with 11.7%. The longest articles can be found in the cate-
gory Classified Advertising with an average length of 4681 white-space separated
tokens per article.

5.1.3 Special Characteristics

The Times Archive has several characteristics. Two of these characteristics are
pointed out in the following: The used character set and the font variation prob-
lem.

Used Character Set

In order to correct OCR errors it is important to know which character set is
used in the archive. Depending on the used language, different character sets are
meaningful. The following characters can be found in The Times Archive:

• Alphabetic: a-z, A-Z

• Numbers: 0-9

• Punctuation marks: ’-!#$%&()*,./:;?@[]^ ‘|+<=>{}∼\

• Special characters: Â, Ã

All standard alphabetic characters and digits are present. Furthermore, nearly all
punctuation marks are present. Likely the special characters Â and Ã are OCR
errors, since these characters do not appear naturally in English texts.

It is interesting that the archive lacks of currency symbols. Although it is an
British newspaper no £-symbol is present in the archive, only the $-symbol.

During World War II German names such asGöring occur frequently. The problem
is, that such names cannot be represented, because the character “ö” is not present
in the character set. Another example is for the German word “Börse” (stock
market). The word “Börse” is for example recognized as “B&rse” and cannot be
corrected using only the archive itself since important characters are missing.

The lack of characters hinders a proper recognition of some words. With regard
to the mainly used language in the archive not many words are affected. Hence,
a reduced character set prevents the formation of OCR errors. Dirt can cause
undesired misrecognitions of several characters easily, e.g. o and ö or u and ü.
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Figure 5.4: Font Variation Problem: s/f. The character s is misrecognized by the
OCR processor because it looks like an f 1.

Font Variation

The lower dictionary recognition rate in the earlier years is not only caused by
bad quality of documents but also by a font variation problem. The character s is
often recognized as an f. This problem is further referenced to as the s/f-problem.
A sample document which contains the s/f-problem can be found in Figure 5.41.
In this short sentence, six words use the character s which looks like an f. These
words are: these, some, unquestionably, please, those, spare. All these words are
recognized with an f instead of an s.

The s/f-problem mainly occurs in the earlier years, especially before 1804. Be-
cause the s/f-problem also occurs a few times in 1985, in future work it should be
investigated where and how frequently the problem occurs.

5.2 Evaluation Method

This section describes the method used for evaluating the correction strategy pro-
posed in Chapter 4.

Because the archive itself is used to generate correction proposals, enough qualita-
tive data has to be available. Due to the heavy s/f-problems before the year 1804 it
is not meaningful to use any data of these years for evaluation. Other evaluations
on The Times Archive used a specific 10% sample such as Tahmasebi [Tah09] and
Tahmasebi et al. [TNTR10]. The subset used in this thesis for evaluation are the
following eight years of The Times Archive: 1835, 1838, 1885, 1888, 1935, 1938,
1982, 1985.

1Example taken from: The Times Archive 1985-01-02, page 25, article 2. Copyright of The
Times, Times Newspapers Limited.
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Out of these 8 years, sample documents were randomly chosen and correction
proposals were generated. Human assessors counted the errors of each chosen
document. Then they chose adequate correction proposals generated by Aspell as
well as the proposed correction strategy presented in Chapter 4, here on referenced
to as OCRpp. Based on these data the evaluation of OCRpp could be applied and
compared to the performance of the Aspell spell-checker.

Because no specialized OCR error correction system was available as baseline,
Aspell was chosen. It claims to perform very well on correcting human spelling
mistakes and is easy to run parallel to OCRpp.

5.2.1 Choosing Documents and Generating Correction
Proposals

From each chosen sample year, four documents were randomly chosen which ful-
filled the following two criteria:

1. The document is classified as News.

2. The document contains between 500 and 1000 white-space separated tokens.

The News category has been chosen because it is one of the most dominating
category with valuable content. For having comparable articles, the length of each
article was limited to a lower bound of 500 tokens and an upper bound of 1000
tokens. The chosen documents can be found in Appendix A.

In order to retrieve similar token counts for each evaluated year, all documents were
shortened. Therefore, the first occurring full stop after 500 tokens was chosen as
a cut off and the rest of the text was removed. Using a sentence separator instead
of a fixed number can preserve the context of the last sentence and make it easier
for human assessors to read and use the documents.

On these samples the described correction strategy was applied yearly (see Chapter
4). That means, each four documents were corrected using the pre-processed data
of the corresponding year.

In order to compare the quality of the generated correction proposals by OCRpp
the spell-checker Aspell version 0.60.3 was applied in parallel as base-line. Further-
more, the ignore word rule was not applied if Aspell detects an error and returns
any correction proposals. Additionally, Aspell uses the heuristic for merging hy-
phenation errors. Both modifications are necessary for evaluating both OCRpp
and Aspell, properly. Preliminary experiments showed that it is reasonable to
tackle only tokens of the length > 2. Hence, both system ignore short tokens.
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Because the evaluation is done manually, the generation of correction proposals
was limited to five. Having more than five proposals for each potential misspelling
is not manageable for human assessors because it causes too high effort. Therefore,
only a 1-best and 5-best evaluation is possible. 1-best evaluations consider only
the top ranked proposal. 5-best evaluations consider all five proposals.

5.2.2 Counting the Errors

For evaluation, knowing the number of errors of the chosen documents is neces-
sary. Because no fully corrected documents of The Times Archive are available,
human assessors had the task to mark and count errors on printed documents. In
order to ease this task, the OpenOffice spell checker version 3.2 marked potential
misspellings beforehand [Ope10]. Additionally, the assessors were allowed to use
the internet, e.g. online dictionaries to check unknown words.

Because the OpenOffice spell checker was used to mark potential errors, the asses-
sors were told not to focus on these marks only. This was only thought to ease
the job. Furthermore, they were told to mark and count the marks, to get more
reliable counts.

The assessors were told to find the following error types: segmentation errors,
hyphenation errors and misrecognized characters. The following three error types
are not interesting in this thesis and should therefore not be counted: punctuation
errors, case sensitivity errors and changed word meaning errors. (See Section 1.3
for more information on these error types)

Because this approach focuses on correcting words, one misspelled word counts as
one error. That means, if a segmentation error occurs, each involved word counts
as one error. For example de par t ment does only count as one error because
it contains the word department. The error thiswasa counts as three errors, as it
includes three words this was a.

Each assessor got four documents each from one of these four periods: 1835/ 1938,
1885/ 1888, 1935/ 1938, 1982/ 1985. This was done to divide the work equally,
because the earlier documents contain more errors.
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5.2.3 Choosing proposals

After counting all errors in each document, the assessors were provided a tool,
especially designed for choosing adequate correction proposals. This tool is called
OCR Correction GUI in the following. The assessors used the tool for evaluating
the same documents which they already processed by hand.

The OCR Correction GUI is depicted in Figure 5.5. It contains the full article
on the left hand side. Errors found by Aspell and OCRpp are marked yellow
in the text field. Evaluated errors are marked green. Correction proposals and
other choices for a token are displayed on the right hand side. The navigation is
underneath the correction proposal lists. The next button cannot be chosen unless
a choice has been made for the previous error. At the bottom, information about
the open document can be found including a text field where the counted errors
can be filled in.

Figure 5.5: OCR Correction GUI. A GUI for evaluating correction proposals gen-
erated by OCRpp and Aspell.
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For choosing the correct proposals, the following guidelines should be followed:

1. Proposals were allowed to be chosen case insensitive, e.g. for the original
word IBritain the correction proposals Britain, britain or BRITAIN are all
correct and could be chosen. If proposals only differ in their case then the
best matching proposal should be chosen (e.g. for IBritain the best matching
proposal is Britain).

2. A proposal without a hyphen is still correct, e.g. well-organized and well
organized are both correct.

Although case-insensitive word forms and missing hyphens are not absolutely cor-
rect, the proposed words are correctly spelled. For this evaluation the correct
spelling was more important than the appearance of tokens.

It has to be pointed out, that a correction proposal is only counted as correct,
if its spelling matches exactly. For example, singular and plural word forms are
differentiated. The proposal for the misspelled word lcvels has to be levels and
not level.

For each token the following choices had to be made:

Token is correct. This option should be selected if the token was correctly spelled.

Don’t know. If the assessor was not sure what the correction should be, this
option had to be chosen.

No matches. This option should be chosen if none of the displayed proposals
matched (for each proposal list).

Select proposals. If none of the above choices were made a proposal for Aspell
and OCRpp should be selected.

In order to enable a proper evaluation, the OCR Correction GUI has the following
features:

1. Aspell and OCRpp proposals are separately displayed in two proposal lists.
Not only the proposals in the lists are randomly ordered but also the sep-
arated lists. That means the assessor does not know in which list which
proposals are displayed and which are the most likely to be correct.

2. The assessor always has to make a proper choice in order to continue choosing
proposals.
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5.2.4 Measuring the Performance

The task of an automatic spell checking and correction system (henceforth: scc)
is to detect and correct misspelled words. In general, four possible alternatives
can occur when applying an scc:

1. correct→ correct: A correct word form is still correct after applying an scc.
This is a true negative (TN).

2. correct → wrong: A correct word form word is “corrected” to a wrongly
spelled word after applying an scc. This is a false positive (FP).

3. wrong → correct: A wrongly spelled word is corrected by an scc. This is a
true positive (TP).

4. wrong → wrong: A wrongly spelled word is still wrong after applying an
scc. This is a false negative (FN).

From the FP, TP and FN the measures precision and recall can be derived and
combined to the harmonic mean, the F-Score [MS03, pages 268-269].

Recall = R =
TP

TP + FN
(5.2)

Precision = P =
TP

TP + FP
(5.3)

F−Score = F =
2 ·R · P

R + P
(5.4)

Using these measures for evaluating an scc has been proposed and discussed by
Reynaert [Rey08a] and are used here. The recall measures the ability of an scc

to correct errors. More corrections (TP) and fewer false corrections (FN) increase
the recall. The precision measures the ability of correcting errors only (distin-
guish between correctly and wrongly spelled tokens). More corrections (TP) and
fewer introduced errors (FP) increase the precision. The F-Score combines both
measures to one.

Because Aspell and OCRpp propose five correction proposals a distinction be-
tween the 1-best proposal and the 5-best proposal can be made. Using only the
1-best correction proposal gives insights on the performance of the system if used
fully-automatically. Using the 5-best correction proposals enables to measure the
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potential of the approach and the room for improvement with respect to the pro-
posal ranking system.

In order to apply the stated measures, the amount of TP, FP and FN have to be
determined. Because this approach is interested in correcting words, the number
of involved words is essential for counting TP, FP and FN. That means, each word
which is involved in a correction proposal has to be counted. The same counting
as in Section 5.2.2 is applied.

5-best Evaluation

For determining the number of TP the selected proposals in the OCR Correction
GUI are examined. The 5-best evaluation requires only one selected proposal
among the 5 proposed corrections.

For unification, Aspell uses the heuristic for merging hyphenation errors which
belongs to OCRpp. By default Aspell does not have the ability to merge tokens.
Therefore, the number of TP which Aspell achieves using the heuristic are sub-
tracted from Aspell’s TP count.

The number of FP can be determined using tokens which are marked as correct.
If no proposal of such a token equals the original token in the text, then this is a
FP for the 5-best evaluation.

Because Aspell and OCRpp do not tackle all errors, the number of FN can only
be computed by using the counted errors. The sum of TP and FN equals the total
number of errors. Hence, the number of FN can be computed as follows:

FN = #errors − TP (5.5)

1-best Evaluation

For the 1-best evaluation the counting of TP and FP is done by considering only
the top ranked correction proposal in the Correction GUI. The FN count stays the
same for the 1-best evaluation.
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cat. deviation

[percentage points]

Year #token #errors error rate all news

1835 2045 505 24.7 −7.8 1.2

1838 2075 407 19.6 −12.1 −1.6

1885 2028 145 7.1 −7.8 −5.0

1888 2032 231 11.4 −19.8 −3.3

1935 2047 68 3.3 −15.4 −6.3

1938 2058 81 3.9 −22.6 −6.5

1982 2038 258 12.7 −7.3 1.3

1985 2067 152 7.4 −14.1 −4.1
∑

16390 1847 11.3 −13.4 −3.0

Table 5.2: Statistics for Chosen Samples for Evaluation: Number of tokens, errors
and error rate in comparison with the mean Aspell error rate for all
categories and the news category

5.3 Evaluation Results

This section presents the evaluation results. These results give insights about
the performance of OCRpp in comparison to Aspell. An overview of the chosen
samples is given first. Furthermore, the impact of don’t knows and hyphenation
errors is examined. An error reduction rate is defined in Section 5.3.5 which
considers corrected and introduced errors. Randomly chosen example correction
of OCRpp are given in Section 5.3.6

5.3.1 Chosen Samples Overview

Some statistics about the chosen samples used for evaluation can be found in
Table 5.2. The average token count lays slightly above 2000 per year as desired in
the choosing process. The total number of evaluated tokens is 16390. The total
amount of counted errors is 1847. This leads to an error rate of 11.3%. This
error rate can be compared to the dictionary recognition rate using the Aspell
dictionary. The error rate of the chosen samples is 13.4 percent points higher than
the average error rate of all categories and 3 percentage points higher than the
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average error rate of the news category. The fact, that fewer errors occur in the
chosen documents can be caused by four factors:

1. Human assessors did not find all errors.

2. The chosen samples have fewer errors.

3. The Aspell dictionary does not contain all correct words.

4. Human assessors counted errors in a different way than it is done using the
dictionary recognition rate. For example the number of errors for wrongly
segmented tokens are counted differently. Hence, the dictionary recognition
rate is not very exact for measuring the amount of errors.

Though all four factors are possible, the third and fourth factor are most plausible
for the observed difference in error rates.

Using a student t-test with α = 5% shows that the mean number of errors in the
years 1935 and 1938 is lower than the mean number of errors in the remaining
years.

5.3.2 Performance of OCRpp and Aspell

As described in Section 5.2.4, the performance of OCRpp and Aspell can be mea-
sured using recall, precision and F-Score.

Figure 5.6 illustrates the performance by computing the F-Score. Using the 1-best
proposal, OCRpp achieved an F-Score ranging from about 57% to 88%, whereas
Aspell ranges from 24% to 49%. That shows that Aspell is vastly outperformed
by OCRpp for correcting OCR errors.

On average, the 1-best F-Score is about 33% for Aspell and about 72% for OCRpp.
That means OCRpp performs more than twice as good as Aspell for the top ranked
proposal.

With respect to the 5-best evaluation, the F-Scores are higher for both systems.
The average F-Score rises from 33% to 51% for Aspell and from 72% to 79% for
OCRpp. Obviously, Aspell’s performance increases more than the performance of
OCRpp which indicates, that the ranking system of Aspell is not as well adapted
to OCR errors as the ranking system of OCRpp.

The 5-best OCRpp F-Score is on average 7 percent points above the F-Score for
1-best OCRpp. This shows that the ranking system for OCRpp has room for
improvements.
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Figure 5.6: Evaluation F-Score: Comparison between Aspell and OCRpp with re-
spect to 1-best and 5-best proposals.

Comparing the 1-best OCRpp and 5-best Aspell F-Score shows that Aspell is
outperformed in all years, even with five proposals, compared to OCRpp’s top
ranked proposal.

In years with more errors, both systems have a lower F-Score than in years with
fewer errors. This is mainly caused by a high don’t know rate which decreases
the amount of possible TP and therefore increases the amount of FN (see Formula
5.5). Hence, a high don’t know rate hinders a proper evaluation.

Although the OCR error rate in the archive decreases over time, the F-Score in
the years 1983 and 1985 is lower than in the years 1935 and 1938. This is caused
by the high error rate of the chosen samples and their contained don’t knows

(Section 5.3.1). Note, that the quality of chosen articles is very high in 1935 and
1938 (Section 5.3.1).

Detailed information about precision, recall and F-Score can be found in Table
A.1, Table A.2 and Table A.3 in the appendix. One can see that the precision
is significantly higher than the recall. This is clear, because the high number
of don’t knows increases the number of FN which decreases the recall. Fur-
thermore, short words which contain errors are not considered by the correction
methods and increase the number of FN additionally.

The average precision of OCRpp using the 1-best proposal is about 92%, whereas
the precision of Aspell is 72%. This indicates, that only few errors are introduced
by OCRpp but far more by Aspell. A reason for this behaviour of OCRpp can
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Year Destroyed Names Language
∑

Percentage [%]

1835 146 41 13 200 40.6

1838 48 13 22 83 23.7

1885 12 13 9 34 19.9

1888 42 15 15 72 29.9

1935 1 11 2 14 13.2

1938 1 11 1 13 10.9

1982 27 18 3 48 17.0

1985 22 11 2 35 24.0
∑

299 133 67 499 26.1

Table 5.3: Categorization of don’t knows found in chosen samples into destroyed,
names and language. The percentage is the fraction of don’t knows

and detected tokens.

be the usage of an archive derived dictionary which contains names and domain
specific words.

The average recall of OCRpp using the 1-best proposal is about 62% and is nearly
three times as high as 22% for Aspell. This indicates the ability of actually cor-
recting errors. Because of the high don’t know rate this value is likely higher
for both than shown by the recall.

Giving Aspell the ability to correct hyphenation errors using the heuristic of
OCRpp increases the F-Scores of Aspell. Still the 5-best F-Score is still lower
than the 1-best F-Score of OCRpp. That means, OCRpp outperforms an en-
hanced version of Aspell using the top ranked proposal. This behaviour of Aspell
can be seen in Figure A.1 (page 100).

5.3.3 Impact of don’t knows

It is very difficult to measure the performance of correction systems if human
assessor do not know what the proper correction of a misspelled word is. Therefore,
the assessors were told to mark tokens as don’t know if they do not know the
proper correction. After evaluation occurring don’t knows were classified into
three categories:
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1. Totally destroyed tokens. The token cannot be restored to a proper word
even with the help of the context.

2. Names. The assessor is not sure if the name is spelled correctly.

3. Language problems. The assessor does not know enough about the language.
Language problems mainly occur if out-dated terms from earlier periods or
domain specific terms are used.

Table 5.3 shows which don’t know types are contained in the chosen samples
for each year. In the earlier years, language problems occur more often than in
the later years. Unknown names are distributed equally over the years, except in
1835. The articles from 1835 contain many names of persons, cities and countries.
A relation between error rate (see Table 5.2) and occurring destroyed tokens can
be drawn. In years with a high error rate the fraction of destroyed don’t knows

is higher than in years with a lower error rate.

About 3% of all tokens and 26% of all detected tokens are marked as don’t

knows. Detected tokens are those, for which Aspell or OCRpp retrieved correction
proposals and the assessor had to make a choice. More than the half of don’t

knows are destroyed tokens. That means about one fourth of detected errors have
no chance to be categorized as TP in the evaluation. This is the main reason why
the evaluation gives bad F-Scores in years with high don’t know rates.

5.3.4 Impact of Hyphenation Errors

Hyphenation errors are those errors which occur if a token is too long for a line and
has to be split up (see Section 1.3 for definition). In order to evaluate the heuristic
which merges possible hyphenation errors, two evaluations steps are necessary.

1. Evaluate correctly-merged rate:
Two tokens can be merged correctly, although they are not spelled correctly.
This is the most important indicator for evaluating the heuristic.

2. Evaluate correctly-corrected rate. After merging two tokens, the merged
token is tackled by the correction algorithm. Misspelled tokens may get
corrected. It could also happen that wrongly merged tokens may get slit and
corrected in the correction step.

Tokens which were merged by the heuristic were categorized into wrongly and
correctly merged tokens. Table 5.4 shows amongst others the ratio of correctly
merged hyphenation errors per evaluated year. It can be seen, that the ratio is
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Year #merged
correctly
merged [%]

merge (1-best) merge (5-best)

#TP rate [%] #TP rate [%]

1835 29 100.0 25 86.2 26 89.7

1838 26 92.3 19 73.1 19 73.1

1885 18 100.0 17 94.4 17 94.4

1888 21 90.5 19 90.5 21 100.0

1935 26 84.6 25 96.2 25 96.2

1938 30 100.0 30 100.0 30 100.0

1982 52 94.2 50 96.2 51 98.1

1985 25 84.0 20 80.0 20 80.0
∑

227 93.4 205 90.3 209 92.1

Table 5.4: Merged Hyphenation Errors. Ratio of correctly merged tokens and cor-
rectly corrected merged tokens.

higher than 90% in most years and even reaches 100% in three years. Only two
years have a ratio around 84%.

The hyphenation heuristic produced 227 merged tokens over all evaluated years.
Out of these, 205 tokens could be corrected using the 1-best correction proposal
which constitutes about 90%. Using the 5-best correction proposals, 209 tokens
could be corrected, which amounts to 92%.

Wrongly merged tokens are mainly caused by words which are naturally spelled
with an hyphen but merged, due to a line-break, e.g. full \n scale → fullscale. It
should be pointed out that OCRpp can correct words which were wrongly merged
by the heuristic. This can be seen in the year 1935 where the correctly merged
ratio is around 84%, whereas the correction rate is about 96%. That means all
but one merged token could be corrected properly.

5.3.5 Error Reduction Rate

Measuring the system using precision, recall and F-Score gives insights about
strengths and weaknesses of correction systems but does not show the practical
usage. One valuable question to answer is, “how many errors can be reduced when
applying the correction algorithm”.
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Figure 5.7: Error Reduction Rate: Using Aspell and OCRpp 1-best and 5-best
correction proposals.

Measuring an error reduction rate for OCRpp can be achieved by computing the
following fraction:

rocrpp =
#corrected −#introduced

#errors
(5.6)

The number of corrected tokens are all TP. The number of introduced errors equals
the FP. The number of errors are the counted errors by the assessors.

Because Aspell is not able to merge hyphenation errors by default, the number of
TP which Aspell produces using the hyphenation heuristic introduced in OCRpp
is subtracted from Aspell’s TP. Formally:

raspell =
#corrected −#introduced −#TPheuristic

#errors
(5.7)

The error reduction rate is depicted in Figure 5.7 for Aspell and OCRpp. The
error reduction rate for the 1-best correction proposal ranges from 39% to 75%
for OCRpp and −9% to 24% for Aspell. That means in the years 1935 and 1938
Aspell introduces more errors than it corrects. In contrast, OCRpp performs best
in those years. This is because about one third of occurring errors are hyphenation
errors. These errors can be handled well by OCRpp.

The error reduction rate for both systems is better, when considering the 5-best
correction proposals. The average error reduction rate rises from about 50% to 58%
for OCRpp, and from about 14% to 30% for Aspell. The big difference between

80



1-best 5-best

Aspell OCRpp Aspell OCRpp

Year TP FP TP FP TP FP TP FP

1835 96 7 203 6 148 5 237 5

1838 58 12 175 10 115 7 207 6

1885 53 18 94 7 73 10 107 1

1888 47 2 128 2 81 2 151 1

1935 16 22 60 11 29 13 63 1

1938 18 20 72 11 30 12 73 6

1982 53 28 169 6 102 21 182 5

1985 33 12 77 12 52 4 85 7
∑

374 121 978 65 630 74 1105 32

Table 5.5: Number of TP and FP (1-best) of Aspell and OCRpp on chosen samples.

1-best and 5-best indicates again, that Aspell’s proposal ranking system is not
appropriate for correcting OCR errors. The difference between 1-best and 5-best
is not as big as for OCRpp but large enough to indicate that the ranking system
of OCRpp can and should be improved.

The best error reduction rates are archived using OCRpp and the 5-best proposals
with about 91% error reduction in 1935. The best value for 5-best Aspell is 43%
in the year 1885.

Note, that Figure 5.7 only considers corrected and introduced errors. Errors which
are present and corrected wrongly are not considered.

In Table 5.5 TP and FP are given for Aspell and OCRpp with respect to 1-best
and 5-best evaluation. It can be seen, that the number of FP for OCRpp is on
average lower than for Aspell. This can be explained by the usage of a corpus
derived dictionary. More names and domain specific words can be detected using
such a dictionary.

If Aspell uses the hyphenation heuristic of OCRpp, the error reduction rate of
Aspell increases. In Figure A.2 (page 100, appendix) the increased error reduction
rate is depicted. Nevertheless, 1-best OCRpp is still better than the improved 5-
best Aspell, except in 1985 where both achieve equal correction rates. This shows
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again the impact of hyphenation errors which increase the error reduction rate of
Aspell by about 10 percentage points.

5.3.6 Sample Correction Proposals of OCRpp

Some sample correction proposals are given in the following for TP, FP, don’t
knows and FN.

Table A.4 lists 20 randomly chosen tokens which could be corrected using the first
best correction proposal of OCRpp (TP). It can be seen that simple character mis-
recognitions, hyphenation errors and segmentation errors can be corrected using
OCRpp.

Ten randomly chosen sample tokens which are marked as correct but wrongly
corrected by applying the top ranked correction proposal of OCRpp can be found
in Table A.5 (FP). For example the name Pattinson is marked to be a correct
word. But using the first best correction proposal of OCRpp mis-corrects the
word. Therefore, the ignore word rule was introduced which would not correct the
word, because the second best correction proposal equals the original string. But
for evaluation, this rule was deactivated for having more insights and for being
comparable to Aspell. FP are mainly caused by rare words which are removed
when pruning the occurrence maps. This indicates again, the need for a better
pruning strategy which also respects rare words.

15 randomly chosen don’t knows are listed in Table A.6 with corresponding
correction proposals generated by OCRpp. For each don’t know category five
samples are listed. For example the name Niorrison could be a misspelling. The
top ranked proposal of OCRpp is Morrison which sounds more familiar. But also
Niorrison is proposed. However, it is a don’t know because it is not clear what
is correct. For destroyed tokens it is even harder to make a correct guess. For
example orry could be anything, even with context information such an error is
hardly to correct. But the word rcla4ses is probably the word relapses which is the
second best correction proposal of OCRpp. That means, not all destroyed don’t

knows are necessarily destroyed, although human assessors marked them. For
correcting language problems more informations about the domain or language
are needed in general. For example, the word gerumin is likely neither destroyed
nor a name.

24 tokens which could not be corrected using the first correction proposals of
OCRpp are listed in Table A.7, 3 for each evaluated year (FN). It can be seen,
that the quality of correction proposals in earlier years is worse than in later years.
This is caused by a high amount of OCR errors contained in the anagram-hash map.
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Reducing OCR errors in the map using a better pruning strategy can enhance the
results. It can be seen that some FN are only FN for the top ranked correction
proposal, e.g. Recretary which should be Secretary using the second best proposal.
Some tokens are not corrected using the top ranked correction proposal, e.g. beten.
That means, the error is still in the document but not corrected to a different
wrong word. FN are also caused by the restricted character set of The Times
Archive as described in Section 5.1.3, e.g. the German word B&rsen-Zeitung lacks
of the character ö instead of &.

Among all proposed correction proposals it can be seen, that OCRpp proposes
many error-prone words. They are sometimes close to a correct word form but still
not correct. This indicates, that the derived dictionaries from the archive needs
to be enhanced by filtering out OCR errors in order to achieve better corrections,
e.g. by applying a better pruning strategy of oms.

5.4 Discussion

This chapter described the evaluation method and gave the results of the evalu-
ation. A 1-best and 5-best evaluation was performed with respect to all errors
contained in the chosen documents. The different results showed the importance
of examining spell checking and correction systems from different angles. The av-
erage F-Score for OCRpp with 72% is more than twice as high than for Aspell for
the 1-best evaluation. The F-Score using the 5-best correction proposals increases
the F-Score to 79% for OCRpp and 51% for Aspell. An error reduction rate up
to 75% could be achieved using OCRpp which is nearly three times as high as the
best rate for Aspell.

One difficulty of the evaluation was the fact that human assessors evaluated the
generated correction proposals. This introduced an uncertainty about the evalua-
tion results. Due to the amount of errors in the older documents, it is not clear
if these errors were counted properly. Distinguishing between errors and counting
them is a hard task with respect to the used counting guidelines. Furthermore,
different correctors behave differently. Some marked names more often as don’t
knows than others did. Some had a better knowledge about the used language
and could therefore correct errors better. But all in all the don’t know rate of
about 26% is very high and worsen the evaluation results.

The high don’t know rate also has an impact on the error reduction rate. The
overall error reduction rate is about 50% for OCRpp and 14% for Aspell, where the
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don’t know rate is about 26%. Hence, a higher reduction rate can be expected
if fewer don’t knows occur.

It can be seen in Figure 5.6 and Figure 5.7 that the 5-best OCRpp evaluation
achieves better results than the 1-best OCRpp evaluation. That means, the rank-
ing system has room and need for improvements. Hence, investigating and im-
proving the ranking system is one possible way to improve the performance of
OCRpp.

Comparison with Related Work

A comparison with related work is difficult because of the quality differences of
datasets and different evaluation methods. Still some rough comparisons can be
given.

Tong and Evans [TE96] state that their approach for correcting OCR errors is able
to reduce about 60% of all errors. That is more than the average error reduction
rate of OCRpp but less than the highest achieved rates of OCRpp on higher quality
sample documents.

Kolak and Resnik [KBR03] stated an error reduction up to 80% using the word
error rate (WER) as measure. This measure states how near a correction is in
relation to the correct word using the Levenshtein-Distance. Unfortunately, this
cannot be measured using the proposed evaluation method in this thesis, because
the WER requires all correct and error-prone word pairs. But it is likely that
OCRpp has an higher error reduction rate using the WER as measure than the
absolute numbers of corrected words, because generated correction proposals are
often close to the correct word.

OCRpp behaves worse than highly domain adapted approaches which consider
only single misspelled words. For example Perez-Cortes et al. [PCAAL00] achieve
error reduction rates up to 95% when correcting the OCR output of handwritten
names. This can be explained by training a high amount of domain specific data
and using “complete” dictionaries. Another approach which is only applied on
single tokens is for example Reynaert [Rey06] which claimed cumulative F-Scores
up to 95% for Levenshtein-Distances up to two. It is not clear how both methods
behave on contiguous text.

84



6 Conclusion and Future Work

6.1 Conclusion

This thesis presented an unsupervised post-correction system for OCR errors which
uses mainly the archive itself for correcting OCR errors. The thesis showed that
archive derived frequency information about words and word pairs are useful for
correcting OCR errors. High frequent words can be used as correction proposals
and enable a correction of names and domain specific words. Removing infrequent
tokens from the collected tokens was solved using a simple pruning strategy. All
tokens which occurred less than a certain number were removed.

The proposed correction strategy achieved error reduction rates up to 75% on
test samples using only the first best correction proposal. Considering all sample
documents, the error reduction rate was on average 50%. Considering, that about
26% of all detected tokens could not be evaluated because they were marked as
don’t know, this is a relative good value. The high precision of about 92%
indicates that the algorithm introduced only few new errors (FP).

For correcting hyphenation errors, a heuristic was applied. The heuristic used the
positions of tokens in the original scanned documents. More than 93% of tokens
of all sample documents could be merged correctly.

Due to the size of many archives, it is necessary to perform a clean-up fully-auto-
matically. In order to finish this task in a meaningful amount of time, the proposed
system is a trade-off between generating high qualitative correction proposals and
computational effort. For example a collection based dictionary was used to speed
up the system by filtering out words which are likely correctly spelled and should
not be corrected. Short words were also not corrected. Both leads to a decreased
number of corrected words.

Although OCRpp achieves relatively high F-Scores, the amount of introduced and
wrongly corrected errors is too large for using OCRpp fully-automatically. Instead
the 5-best OCRpp method could be used semi-automatically.
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The newly proposed OCR-Key method is especially useful for tackling systematic
OCR errors, where the Anagram Hash method is able to tackle all kind of errors.
Using both methods in combination enabled a better ranking of generated correc-
tion proposals. Taking the context into account by using collected bigrams from
the archive enhanced the ranking of correction proposals further.

The strong Levenshtein-Distance limitation of both systems showed advantages
and disadvantages. The limit hindered the retrieval of words which are less likely
to be correct. Rare tokens could therefore be kept which were otherwise wrongly
corrected. But on the other hand, fewer correction proposals could be proposed.
Especially the OCR-Key method could not correct words for which it was originally
designed for, e.g. minimiiumii → minimum.

6.2 Future Work

In contrast to related works, this thesis used no ground-truth material for training
special algorithms. Nevertheless, the system showed a good performance. There-
fore, the proposed correction method could use generated correction proposals to
train weights for a weighted Levenshtein-Distance which can improve the retrieval
and ranking of adequate correction proposals.

The used Levenshtein-Distance limit could be increased to retrieve more words.
The current limitation hinders the retrieval of correctly spelled tokens which are
more damaged. Furthermore, the Anagram Hash Method could be used using a
more sophisticated algorithm which is able to insert, delete or substitute more
than character bigrams. Although this increases the computational effort, it could
be worth to achieve better results.

One important error which was only tackled partly in this thesis is segmentation
errors. Two tokens can be merged at line breaks (hyphenation errors) but not
in a sentence, e.g. de part ment → department. Tokens can only be split up at
most into two tokens using the Anagram Hash and bigrams. Therefore, a more
sophisticated splitting and merging strategy could be added in future work.

For ranking correction proposals a simple scoring system was proposed. The sys-
tem worked well in many cases but has room for improvement. The combination of
many different factors in different computation steps is difficult to handle. For ex-
ample the weighting of methods is difficult. Therefore, each method should assign
a normalized score to its generated correction proposals which can be combined
using weights at the end of the process. The improvements of the scoring system
including the search for optimal weights is left as future work.
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A Appendix

91



Algorithm for computing the OCR-Key

Algorithm A.1 Computing the OCR-Key for a given word w

Require: Word w

// initialize
ocrKey ← null
lastRrepresentative ← null
counter ← 0

for i = 1 to |w| do
representative ← classRepresentative(wi)

// character has no equivalence class
if representative = null then
continue

end if

// character of different equivalence class detected
if representative 6= lastRepresentative then

if counter 6= 0 then

append counter as string to ocrKey
end if

counter ← 0
append representative as string to ocrKey

end if

counter ← counter + classCardinality(wi)
lastRepresentative ← representative

end for

append counter as string to ocrKey
return ocrKey
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Correction XML File Structure

General Structure

<?xml version="1.0" encoding="ISO-8859-1"?>

<document>

<articleid></articleid>

<correction>

<term pos="">

<merge pos="" />

<proposals>

<proposal score=""></proposal>

</proposals>

</term>

</correction>

</document>

Evaluation Example Proposals

<term pos="28">

<merge pos="29" />

<proposals>

<proposal score="0.9086044">Tonypandy’s</proposal>

<proposal score="0.09178387">Tonypandy</proposal>

</proposals>

<aspell>

<proposal score="1.0">Tenant’s</proposal>

<proposal score="2.0">Townsend’s</proposal>

<proposal score="3.0">Downland’s</proposal>

<proposal score="4.0">Tenpins’s</proposal>

<proposal score="5.0">Tenpin’s</proposal>

</aspell>

</term>
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Documents Used for Evaluation

• ARCHIVE-The Times-1835-01-15-07-015.xml
ARCHIVE-The Times-1835-02-13-03-005.xml
ARCHIVE-The Times-1835-04-20-01-004.xml
ARCHIVE-The Times-1835-04-30-05-013.xml

• ARCHIVE-The Times-1838-02-08-04-007.xml
ARCHIVE-The Times-1838-02-26-03-006.xml
ARCHIVE-The Times-1838-09-14-03-008.xml
ARCHIVE-The Times-1838-10-19-04-013.xml

• ARCHIVE-The Times-1885-02-06-05-013.xml
ARCHIVE-The Times-1885-05-29-05-014.xml
ARCHIVE-The Times-1885-08-27-04-006.xml
ARCHIVE-The Times-1885-12-21-05-002.xml

• ARCHIVE-The Times-1888-02-14-04-014.xml
ARCHIVE-The Times-1888-08-04-05-012.xml
ARCHIVE-The Times-1888-08-14-05-017.xml
ARCHIVE-The Times-1888-08-20-06-012.xml

• ARCHIVE-The Times-1935-02-12-14-002.xml
ARCHIVE-The Times-1935-03-13-08-001.xml
ARCHIVE-The Times-1935-06-01-17-010.xml
ARCHIVE-The Times-1935-12-14-07-011.xml

• ARCHIVE-The Times-1938-07-08-08-001.xml
ARCHIVE-The Times-1938-10-14-14-002.xml
ARCHIVE-The Times-1938-12-10-12-017.xml
ARCHIVE-The Times-1938-12-12-08-006.xml

• ARCHIVE-The Times-1982-01-19-01-003.xml
ARCHIVE-The Times-1982-02-19-06-002.xml
ARCHIVE-The Times-1982-07-15-06-002.xml
ARCHIVE-The Times-1982-10-05-26-001.xml

• ARCHIVE-The Times-1985-01-18-15-005.xml
ARCHIVE-The Times-1985-02-04-12-001.xml
ARCHIVE-The Times-1985-09-19-14-006.xml
ARCHIVE-The Times-1985-09-23-04-005.xml
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Detailed Evaluation Results

1-best Aspell 1-best OCRpp

Year Recall Precision F-Score Recall Precision F-Score

1835 19.0 93.2 31.6 40.2 97.1 56.9

1838 14.3 82.9 24.3 43.0 94.6 59.1

1885 36.6 74.6 49.1 64.8 93.1 76.4

1888 20.3 95.9 33.6 55.4 98.5 70.9

1935 23.5 42.1 30.2 88.2 84.5 86.3

1938 22.2 47.4 30.3 88.9 86.7 87.8

1982 20.5 65.4 31.3 65.5 96.6 78.1

1985 21.7 73.3 33.5 50.7 86.5 63.9

x̄ 22.3 71.9 33.0 62.1 92.2 72.4

Table A.1: Evaluation Results (1-best): Recall, precision and F-Score for Aspell
and OCRpp using the 1-best correction proposal.
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5-best Aspell 5-best OCRpp

Year Recall Precision F-Score Recall Precision F-Score

1835 29.3 96.7 45.0 46.9 97.9 63.5

1838 28.3 94.3 43.5 50.9 97.2 66.8

1885 50.3 88.0 64.0 73.8 99.1 84.6

1888 35.1 97.6 51.6 65.4 99.3 78.9

1935 42.6 69.0 52.7 92.6 98.4 95.5

1938 37.0 71.4 48.8 90.1 92.4 91.3

1982 39.5 82.9 53.5 70.5 97.3 81.8

1985 34.2 92.9 50.0 55.9 92.4 69.7

x̄ 37.1 86.6 51.1 68.3 96.8 79.0

Table A.2: Evaluation Results (5-best): Recall, precision and F-Score for Aspell
and OCRpp using the 5-best correction proposals.

1-best Aspell (strict) 5-best Aspell (strict)

Year Recall Precision F-Score Recall Precision F-Score

1835 22.5 93.2 36.3 32.4 96.7 48.5

1838 16.7 82.9 27.8 30.6 94.3 46.2

1885 43.2 74.6 54.7 55.8 88.0 68.3

1888 26.1 95.9 41.0 40.0 97.6 56.7

1935 42.9 42.1 42.5 57.1 69.0 62.5

1938 42.2 47.4 44.6 53.2 71.4 61.0

1982 32.8 65.4 43.7 49.0 82.9 61.6

1985 29.6 73.3 42.2 40.8 92.9 56.7

x̄ 32.0 71.9 41.6 44.9 86.6 57.7

Table A.3: Evaluation Results for Aspell + Heuristic: Recall, precision and F-
Score for Aspell using the hyphenation heuristic.
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Sample Correction Proposals of OCRpp

original string proposals by OCRpp

cxecutlon [execution, cxecution, exccution]

renweed [renewed, entered, rendered, renowned, we need]

c!ected [elected, erected, ejected, clected, crected]

sinall [small, snail, stall, sinall, shall]

repalrswas [repeal was]

Parlialmet [Parliament, Plarliament, Parliamnent, Parliaments, Parlianment]

AmertTan [American, Ameriean, Aderman, tert an, age tman]

eari-est [earliest, earnest, nearest, dearest, fairest]

foundtiton [foundation, foundations]

retsoled [resolved, resorted, restored, resulted, Rtesolved]

interpreters,and [interpreter and]

com- btatits [combatants]

aihould [should, ahould, shouild, ihould, shiould]

charaactr [character, charactcr, charactr, characetr, charatctr]

dc- lincated [delineated]

lIumanity [humanity, inhumanity, humnanity]

l:riend [friend, friends, friendl, frilend, triend]

LTurope [Europe, Troupe, Lurope, Letrop, urope]

generaUy [generally, generaUy, generaly, generaUly, generaDy]

Coffee.-August [coffee august]

Table A.4: Samples of true positives (TP) using the top ranked correction proposal
of OCRpp.
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original string proposals by OCRpp

Pattinson [Parkinson, Pattinson, Pattison, Pattisson, Mattinson]

Ruddock’s [Ruddock]

Anile [Annie, Anne, Aline, Arnie, Lanie]

tuciled [tickled, tucked, LUnited, quilted, LUmited]

bodyguarding [bodyguard in, bodyguards in]

I’lle [Lille, Elle, I’le, I’lie, Ille]

Canning-a [Canning, cunning a]

EAton-street [Dean-street, East-street, ton-street, Gate-street, Water-street]

peasticks [east hicks, practices, pastimes, penaltics]

A.R.A. [ARA]

Table A.5: Samples of false positives (FP) using OCRpp.

original string proposals by OCRpp type

Malet [Market, Mallet, Malet, Mater, Motet] name

GARGETI [ARGENTI, gardeti, GARREIT, GARAGE, garagte] name

Niorrison [Morrison, Niorrison, niorris on, Miorrison, NMorrison] name

Kurier [Currie, Kuiper, Kourie, Trier, Kruger] name

Rohinisoni [Robinison] name

orry [only, sorry, orly, airy, arty] destroyed

moeth [mo the, month, mother, mothe, mouth] destroyed

MuanUi [Manu, Anum, Anui, Muan, Manual] destroyed

ciqlue [clique, Cinque, clue, calUed, cluse] destroyed

rcla4ses [clarges, relapses] destroyed

desiat [design, desist, Dasent, die at, desite] language

protcisors [protectors, proctors] language

occultation [occupation, consultation, occupations, occuipation] language

bainbars [brain as, in bars] language

gerumin [Germian, resuming, retuming, Germain, ferming] language

Table A.6: Samples of marked don’t knowswhile evaluation, categorized into
name, destroyed and language.
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original string proposals by OCRpp year

beten [beten, beent, betn, beaten, beetn] 1835

c4vil [evil, civil, cvil, cavil, cvils] 1835

pre2ent [prent, prevent, present, preent, pretend] 1835

mlonIths [monthis, moniths, mionths, montlhs, monthls] 1838

prosecutoread [prosecutor and, prosecutor had, prosecuter and, prosecutor he] 1838

Btelief [Relief, Belief, Rtelief, beleft, but lie] 1838

lwhich [wlhich, lwhich, whichl, whlich, whiclh] 1885

mnimbers [numbers, mnembers, nuimbers, menibers, niembers] 1885

Inan7interview [Inan7interview] 1885

Y09IK [YORIK, YOIK, YOIRK, by ik] 1888

Decembar [Decembar, Decamber, Decemaber, December, Decomber] 1888

otfcring [coTering, of tring, storing, of ting, to ring] 1888

thic [the, tic, thic, Eric, tihc] 1935

Recretary [Sceretary, Secretary, ECRETARY, VECRETARY, CECRETARY] 1935

Ofliccrs [Ofliccrs, Oflicers, Officcrs, Ofliccs, Olficers] 1935

Ms4r [Mfr, Mst, MSr, Mrs, MSrs] 1938

iisttitLition [Instittition] 1938

B&rsen-Zeitung [B&rsen-Zeitung] 1938

univer [driver, UNIVER, Univers, unider, under] 1982

otlihes [outlines, hotlines, othiers, Hotline, otlhers] 1982

Palestiniianl [palestinian ol, Palestiniani] 1982

lhand [land, hand, Bland, brand, Handl] 1985

LonAon [loan on, Nolan, Landon, Lonaon, London] 1985

Shodyguard [Bodyguards, Bodyguard, body guard] 1985

Table A.7: Samples of false negatives (FN) with corresponding correction proposal
of OCRpp.
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Additional Diagrams for Evaluation
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Figure A.1: F-Score: Comparison between Aspell and OCRpp with respect to 1-
best and 5-best proposals. Aspell uses the hyphenation heuristic of
OCRpp.
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Figure A.2: Error Reduction Rate: Using Aspell and OCRpp 1-best and 5-best
correction proposals. Aspell uses the hyphenation heuristic of OCRpp.
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