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Unsupervised Pre-training of 
a Deep LSTM-based Stacked 
Autoencoder for Multivariate Time 
Series Forecasting Problems
Alaa Sagheer 1,2,3* & Mostafa Kotb2,3

Currently, most real-world time series datasets are multivariate and are rich in dynamical information 
of the underlying system. Such datasets are attracting much attention; therefore, the need for accurate 
modelling of such high-dimensional datasets is increasing. Recently, the deep architecture of the 
recurrent neural network (RNN) and its variant long short-term memory (LSTM) have been proven to be 
more accurate than traditional statistical methods in modelling time series data. Despite the reported 

advantages of the deep LSTM model, its performance in modelling multivariate time series (MTS) data 
has not been satisfactory, particularly when attempting to process highly non-linear and long-interval 
MTS datasets. The reason is that the supervised learning approach initializes the neurons randomly in 

such recurrent networks, disabling the neurons that ultimately must properly learn the latent features 
of the correlated variables included in the MTS dataset. In this paper, we propose a pre-trained LSTM-
based stacked autoencoder (LSTM-SAE) approach in an unsupervised learning fashion to replace 
the random weight initialization strategy adopted in deep LSTM recurrent networks. For evaluation 
purposes, two different case studies that include real-world datasets are investigated, where the 
performance of the proposed approach compares favourably with the deep LSTM approach. In addition, 
the proposed approach outperforms several reference models investigating the same case studies. 

Overall, the experimental results clearly show that the unsupervised pre-training approach improves 
the performance of deep LSTM and leads to better and faster convergence than other models.

Recent advances in sensors and measurement technology have led to the collection of high-dimensional data-
sets from multiple sources recorded over time. Such complex datasets may include several correlated variables; 
therefore, they are denoted as multivariate time series (MTS) datasets1. They are continuously produced in a wide 
spectrum of industrial, environmental, social, and healthcare applications, such as health monitoring, volatility 
analysis in financial markets, control systems in automobiles and avionics, and monitoring in data centres, to 
mention just a few. In such complex applications, one of the key requirements is to maintain the integrity of the 
sensory data so that it can be monitored and analysed in a trusted manner. In related research, sensor integrity has 
been analysed by non-parametric methods, such as Bayesian methods2. However, it is demonstrated that regres-
sion models based on non-parametric methods are highly sensitive to the model parameters3. Thus, exploring the 
optimum parameters of a regression model with multivariate sequential data is still in demand.

The artificial neural network (ANN) is a widely used model employed for the time series forecasting problem 
in the context of its universal approximation capabilities4. conventional ANNs that have shallow architectures 
are difficult to train if they become too complex, e.g., when the network includes many layers and, consequently, 
many parameters. In contrast to shallow ANN architectures, it is widely demonstrated that the deep ANN archi-
tecture, which is called a deep neural network (DNN), outperforms the conventional shallow ANN architecture 
in several applications5. Recently, deep learning has gained substantial popularity in the machine learning com-
munity since it is considered a general framework that facilitates the training of deep neural networks with many 
hidden layers6. The most important advantage of deep learning is that it does not need any hand-crafted features 
to learn and can easily learn a hierarchical feature representation from the raw data directly7.
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There are many neural network models that are widely used to solve several types of time series forecasting 
problems. Among these models, recurrent neural networks (RNNs) have received much attention4,5. The reason 
for such attention is that RNNs are a class of ANN models that possess an internal state or short-term memory 
due to the recurrent feedback connections, which makes RNNs suitable for modelling sequential or time series 
data. In such modelling, the RNN maintains a vector of activation parameters for each time step, especially when 
short-term dependencies are included in the input data. However, if they are trained with stochastic gradient 
descent, they will have difficulty in learning long-term dependencies that are encoded in the input sequences 
due to the vanishing gradient problem8,9. This problem has been addressed by using a specialized neuron or cell 
structure in the long short-term memory (LSTM) network that maintains constant backward flow in the error 
signal that enables the LSTM to learn long-term dependencies10,11.

Despite the advantages cited for the LSTM, its performance for time series problems is not always satis-
factory12. Similar to the shallow RNN, the shallow LSTM architecture cannot represent the complex features 
of sequential data efficiently, particularly if they are utilized to learn long-interval time series data with high 
non-linearity. As a recent remedy, the authors of this paper recently presented a deep LSTM model, called 
DLSTM5, capable of circumventing the limitations of the conventional shallow LSTM model. DLSTM includes 
stacked LSTM layers, one above another, such that each layer contains multiple cells.

Here, it is worth mentioning that our DLSTM model is different from the hierarchical connectionist temporal 
classification (HCTC) model that was presented a decade ago as the first attempt to stack LSTM layers13. HCTC 
consists of two levels of connectionist temporal classification (CTC) network, where each CTC network uses 
the bi-directional LSTM and every network has its own softmax layer. To learn the model, every network needs 
a label, makes its own prediction, and computes an error signal. The model runs when the first CTC network 
takes as the input the external signal, and every network forwards its predicted label to the next network. In 
contrast, our DLSTM model5 consists of stacked layers (or blocks) of LSTM and only one output layer comprises 
the final layer. Thus, only the output layer takes a label and makes a prediction. The DLSTM runs when the first 
LSTM layer takes the input sequence, and every LSTM layer feeds its hidden state to the next LSTM in the stack. 
The second difference between both models concerns the calculation of the error signal propagated through the 
stack. The DLSTM calculates only one error signal at the final output layer, and then backpropagates it through 
all previous layers. However, in the HCTC model, every network in the hierarchy computes an error signal, and 
then backpropagates it to every lower level. Thus, the final error signal calculated at each network is the sum of 
its own error signal and the backpropagated signal from the upper networks. The third difference between both 
models is the design purpose, where HCTC is designed for assigning a sequence of labels to unsegmented data, 
such as speech or hand-writing14, whereas DLSTM is designed for analysing time series data for forecasting or 
classification applications.

Empirically, the DLSTM model showed better performance compared with RNN, LSTM, deep RNN, and 
other statistical and ANN modules in performing forecasting, but using univariate time series (UTS) data5. 
Unlike UTS problems, when DLSTM is used to perform forecasting using MTS data, we found that its perfor-
mance was not satisfactory to some extent. For this reason, using LSTM, either shallow or deep architectures, 
in modelling MTS problems is not common in the literature. The reason for this is due to the way that the neu-
rons in the DLSTM model are initialized. It is widely demonstrated that the neurons’ weights in most standard 
ANN approaches are initialized randomly in the context of learning using stochastic gradient descent15. In such 
cases, the backpropagation algorithm may be trapped within multiple local minima, particularly when several 
non-linear variables are modelled16. Accordingly, sincere efforts are exerted to investigate new methods for weight 
initialization in standard ANN approaches15–17.

Therefore, there is little doubt that DLSTM performs well in UTS classification problems5 where only one 
variable or feature is modelled. In contrast, the features in MTS classification problems, with several variables, 
are highly correlated. The random initialization of a large numbers of neurons in such situations will lead the 
learning algorithm to converge to different local minima, depending on the values of the parameter initialization. 
Furthermore, and as a general practice, previous studies have demonstrated that training deep networks with 
several layers using random weights initialization and supervised training provide worse results than training 
shallow architectures8,18,19.

Several treatments have been introduced in order to facilitate either the architecture or the training of deep 
learning models that suffer from all the aforementioned limitations. One of the earlier treatments that facil-
itated supervised learning by unsupervised pre-training of a hierarchical RNN architecture is known as the 
chunker-automatizer module20. This module uses a gradient descent optimizer to compress the learned behaviour 
of the chunker RNN layer into the automatizer RNN layer. This procedure learns to imitate the chunker network 
and repeats training to avoid forgetting of previous skills. At that early time, this learning fashion was known as 
collapsing (or compressing) the behaviour of one learner into another20, similar to the recent learning approach 
of the teacher-student learner, known as knowledge distillation21. Certainly, this enables data compression and, 
thereby, the vanishing gradient problem of RNN becomes less relevant.

More than a decade later, another approach applied an unsupervised greedy layer-wise pre-training algorithm 
to the deep belief network (DBN)22,23. The proposed DBN shows a successful performance in computer vision 
applications. The rectified linear units24 and the Maxout networks25 are two other treatments, as well. When they 
are applied to the convolutional neural network (CNN), they were shown to be useful to reduce the impact of 
vanishing gradient in deep models. Stacking many convolutional layers26 instead of fully connected layers is an 
effective treatment to overcome this problem in deep neural networks19.

Motivated by the success of unsupervised pre-training in data compression20, dimensionality reduction20,27, 
classification20,28, and UTS forecasting20 problems, we extend it to the regression problem via deep recurrent 
neural networks solving the MTS forecasting problem. In this paper, we introduce our previous model DLSTM in 
an unsupervised pre-training fashion based on a stacked autoencoder training architecture to avoid the random 
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initialization of LSTMs’ units. We tested the proposed model to solve the MTS forecasting problem using two 
real-world datasets. We conduct a comparison between the proposed approach and our previous model DLSTM, 
where the impact of replacing the randomized supervised method in DLSTM with the unsupervised pre-training 
method is promising. Furthermore, we conduct a comparison with other reported regression baselines and refer-
ence models that solve the same problems using the same datasets, indicating a clear superiority of the proposed 
approach using three different performance metrics. The main contributions of this paper are as follows:

 1. Develop an unsupervised pre-training framework for our previous model DLSTM5.
 2. Present a new LSTM-based autoencoder learning approach to solve the random weight initialization prob-

lem of DLSTM.
 3. Propose a robust forecasting module based on unlabelled time series data, which could be used to convert 

the time series observations into representative features that can be utilized easily for further use and 
analysis.

The rest of the paper is organized as follows: Section 2 briefly summarizes the related work to this paper. 
The MTS problem and the proposed methodology are presented in section 3. Section 4 shows the experimental 
settings and datasets used in this paper. The experimental results of two case studies are provided in section 5. 
Discussion and analysis of the results are given in section 6 and, finally, the paper is concluded in section 7.

Related Work
It is demonstrated that analysing UTS data is easy and common; however, analysing MTS data is complex due to 
the correlated signals involved29. The key challenge in MTS problems is to model such complex real-world data, 
as well as to learn the latent features automatically from the input correlated data3. For this reason, the machine 
learning community has afforded scant attention to the MTS forecasting problem versus much attention to fore-
casting problems using UTS data. This section shows an overview of state-of-the-art methods that adopt the 
unsupervised pre-training procedure to facilitate the overall learning process. Then, the section shows the recent 
achievements of state-of-the-art techniques that are implemented to solve the MTS forecasting application using 
same datasets utilized in this paper to assess the proposed model.

State-of-the-art models. It is widely known that the conventional ANN does not provide a very good 
result when the function to be approximated is very complex, especially in regression problems30. There are var-
ious reasons for this, such as the neurons’ initialization or the overfitting or the function becoming stuck in local 
minima15. As such, different training approaches along with different network architectures for the conventional 
ANNs are introduced4,31,32. One of these approaches, as a trial towards a fine analysis for complex real-world data, 
is to develop robust features that are capable of capturing the relevant information from data. However, develop-
ing such domain-specific features for each task is expensive, time-consuming, and requires expertise in working 
with the data12. The alternative approach is to use an unsupervised feature learning strategy to learn the feature 
representation layers from unlabelled data, which was early presented by Schmidhuber14,20. In fact, the latter 
approach has many advantages, such as conducting learning based on unlabeled data, and having the availability 
and abundance of unlabelled data, in contrast to labelled data. In addition, learning the features from unlabelled 
data in advance, which is called pre-training, is much better than learning them from hand-crafted features33,34.

Beside these advantages, the most important advantage is the ability to stack several feature representations 
layers to create deep architectures20, which are more capable of modelling complex structures and correlated fea-
tures that are included in MTS problems12,30. These unsupervised pre-training approaches alleviate the underfit-
ting and overfitting problems that had restrained the modelling of complex neural systems for a period of time35. 
Most of the current unsupervised pre-training models are developed in a layer-wise fashion, which is enough to 
train simple models, and then stack them layer-by-layer to form a deep structure.

Hinton et al. developed a greedy layer-wise unsupervised learning algorithm for deep belief networks (DBNs), 
a generative model with many layers of hidden variables22. Hinton’s approach consists of a stack of restricted 
boltzmann machines (RBMs), where two consecutive learning steps are conducted: a pre-training step, which is a 
kind of unsupervised learning using the gradient of the network energy of the RBM, and a fine-tuning step, which 
is a kind of supervised learning step to calculate the backpropagation errors. Then, the learned feature activations 
of an RBM layer are used as the input layer to train the following RBM in the stack22.

Next, Bengio et al. presented a theoretical and experimental analysis for Hinton’s approach, asserting that the 
greedy layer-wise pre-training approach will help to optimize the modelling of the deep networks23. In addition, 
Bengio concluded that this approach can yield a good generalization because it initializes the upper layers with 
better representations of relevant high level abstractions. Moreover, Ehran et al. tried specifically to answer the 
following question: how does unsupervised pre-training work? They empirically showed the effectiveness of the 
pre-training step and how it guides the learning model towards basins of attraction of minima that support a good 
generalization from the training dataset33. Furthermore, they showed evidence that the layer-wise pre-training 
procedure performs the function of regularization perfectly. Sarikaya et al. applied Hinton’s DBN model to the 
natural language understanding problem and compared it with three text classification algorithms, namely, sup-
port vector machines (SVM), boosting, and maximum entropy36. Using the additional unlabelled data for DBN 
pre-training and combining DBN-based learned features with the original features provides significant gains to 
DBN over the other models.

Le Paine et al. empirically investigated the impact of unsupervised pre-training in contrast to a number of 
recent advances, such as rectified linear units (ReLUs), data augmentation, dropout, and large labelled data-
sets34. Using CNNs, they tried to answer the question: When is unsupervised pre-training useful given recent 
advances? Their investigation, in an image recognition application, was based on three axes: first developing 
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an unsupervised method that incorporates ReLUs and recent unsupervised regularization techniques. Second, 
analysing the benefits of unsupervised pre-training compared to data augmentation and dropout on a bench-
mark dataset, while varying the ratio of unsupervised to supervised samples. Third, verifying their findings using 
benchmark datasets. They found that unsupervised pre-training is a perfect way to improve the performance, 
especially when the ratio of unsupervised to supervised samples is high34. Tang et al. presented a new pre-training 
approach based on knowledge transfer learning35. In contrast to the layer-wise approach, which trains the model 
components layer-by-layer, their approach trains the entire model as a whole. In their experiments on speech 
recognition, they could learn complex RNNs as a student model by a weaker deep neural network (DNN) as a 
teacher model. Furthermore, their approach can be combined with a layer-wise pre-training of CNN to deliver 
additional gains.

Recently, Saikia et al. empirically analysed the effect of different unsupervised pre-training approaches in 
modelling regression problems using four different datasets30. They considered two methods separately, namely, 
DBN and stacked autoencoder (SA), and compared their performance with a standard ANN algorithm without 
pre-training. Liu et al. applied Hinton’s model on stacked autoencoders (SAEs) to solve gearbox fault diagno-
sis37. The proposed method can directly extract salient features from frequency-domain signals and eliminate 
the exhaustive use of hand-crafted features. Meng et al. used it also in order to train the stacked denoising sparse 
autoencoder layer-by-layer38.

As we mentioned in this section, most of the previous work in unsupervised pre-training NN (or deep NNs) 
has focused on data compression20, dimensionality reduction20,27, classification20,28, and UTS forecasting20 prob-
lems. Importantly, time series forecasting with deep learning techniques is an interesting research area that needs 
to be studied as well19,26. Moreover, even the recent time series forecasting research in the literature has focused 
on UTS problems. Very few works in the literature are devoted to forecasting via MTS data. For example, Romeu  
et al. used a pre-trained autoencoder-based DNN for UTS forecasting of indoor temperature26. Kuremoto et al. 
used the earlier Hinton model for unsupervised pre-training step and backpropagation for the fine-tuning step 
using an artificial UTS dataset39. Malhotra et al. extended an approach that uses a CNN with data from audio 
and image domains to be used in the time series domain and trained a multilayer RNN that can then be used as a 
pre-trained model to obtain representations for time series40. Their method overcomes the need for large amounts 
of training data for the problem domain. Wang et al. used Hinton’s DBN model in a cyclic architecture instead of 
the single DBN model that was earlier presented by Hinton41. However, while they used MTS data in their exper-
iments, their target was a classification problem and not a forecasting problem, such as our target in this paper. In 
addition, their model architecture is completely different from ours as presented here.

Overview of the reference models. Furthermore, given the complexity of MTS data that are described 
in the previous section, few works have been introduced to solve forecasting applications using MTS data-
sets. Indeed, specific methodologies are required for treatment rather than traditional parametric methods, 
auto-regressive methods, and Gaussian models2,42. In the following, we briefly review previous contributions in 
the literature that are used to solve the same forecasting problems that are studied in this paper.

Wu et al. presented a hybrid prediction model that combines a natural computation algorithm, namely, the 
artificial immune system (AIS) with regression trees (RT)43. The cells in AIS represent the basic constituent ele-
ments of the model and the RT forecasting sub-models are embedded in the AIS model to form the cells’ pool. 
They applied their hybrid model to solve the bike sharing system problem, which we also solve in this paper. 
Huang et al. developed a deep neural network model that integrates the CNN and LSTM architectures to solve 
the PM2.5 mass concentrations forecasting problem44. In this simple combination, the CNN is used for feature 
extraction and the LSTM is used to analyse the features extracted by the CNN, and then predict the PM2.5 
concentration of the next observation. The authors added a batch normalization step to improve the forecasting 
accuracy. The proposed hybrid approach outperformed the single CNN and LSTM models.

Qi et al. proposed a hybrid model that integrates graph convolutional networks (GCN) and long short-term 
memory (LSTM) networks to model and forecast the spatio-temporal variation of the PM2.5 mass concentra-
tions forecasting problem45. The role of the GCN is to extract the spatial dependency between different stations, 
whereas the role of the LSTM is to capture the temporal dependency among observations at different times. In a 
subsequent section of our paper, we also treat the PM2.5 concentrations problem. Cheng et al. developed three 
hybrid models combine statistical learning approaches with machine learning approaches to forecast the PM2.5 
mass concentrations problem46. These models are: wavelet-ANN, wavelet-ARIMA, and wavelet-SVM. Their 
experimental results showed that the proposed hybrid models can significantly improve the prediction accuracy 
better than their single counterpart models. In addition, the wavelet-ARIMA model has the highest accuracy 
compared to the other two hybrid models.

Last, Zhao et al. proposed a hybrid method that combines five modules to solve the PM2.5 mass concentra-
tions forecasting problem47. These five modules are the data preprocessing module, feature selection module, 
optimization module, forecasting module and evaluation module. They used the complete ensemble empirical 
mode decomposition with adaptive noise and variational mode decomposition (CEEMDAN-VMD) to decom-
pose, reconstruct, identify and select the main features of PM2.5 observations through the data preprocessing 
module. Then, they used the auto-correlation function (ACF) to extract the variables that have relatively large 
correlation with the predictor, thereby selecting the input variables according to the order of correlation coeffi-
cients. Next, the least squares support vector machine (LSSVM) is used to predict the future points of concen-
trations. Finally, the parameters of the LSSVM are optimized using the whale optimization algorithm (WOA).

It is clear that most of the aforementioned state-of-the-art methods in the literature that are used to solve 
the same MTS forecasting problems are hybrid methods that combine more than a model, in contrast to the 
model proposed in this paper, which is a standalone model. In summary, undoubtedly, the layer-wise architecture 
that was earlier presented by Hinton has a concrete theoretical foundation as well as an empirical assessment. 
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However, it is not easy to employ such a layer-wise structure to pre-train models without a clear multilayer struc-
ture35. In the following section, we propose a novel layer-wise structure for the LSTM-based autoencoder in a 
deep architecture fashion. We will show that the proposed approach outperforms our previous deep LSTM model 
as well as other reported baseline approaches.

Problem and Methodology
The multivariate time series (MTS) forecasting problem. Time series data comprise a sequence of 
observations recorded in uniform intervals over a period of time. A time series forecasting problem is the task of 
predicting future values of time series data either using previous data of the same signal (UTS forecasting) or 
using previous data of several correlated signals (MTS forecasting)29. Mathematically, the UTS problem can be 
formalized as a sequence of n real-valued numbers = ∈ = ...Rx x i i n{ ( ) : 1, 2, , } and n represents the length 
of the series that is recorded for the corresponding pattern. In UTS forecasting problems, the forecast model 
usually predicts the variable of interest x using past values that precede x. In this manner, the forecasting model 
perceives the structure and learns the trend of the underlying pattern and extrapolates the interested process into 
the future.

The MTS forecasting problem is very common in real life applications. Intuitively, it is more complex since it 
has two or more variables. It is defined as a finite sequence of UTS problems, such that each UTS problem repre-
sents a pattern. In a formal way,

= …X x x x( , , , ) (1)m1 2

represents an MTS that includes m variables, where the corresponding component of the jth variable xj is a UTS 
problem of length n and can be given as:

= ∈ = … = … .Rx x i i n j m{ ( ) : 1, 2, , }( 1, 2, , ) (2)j

In MTS forecasting problems, as in this paper, the forecast model will predict the interested variable xk not 
only using its past values but also using values of other variables ...x x x( , , , )m1 2

19.

The long short-term memory (LSTM). LSTM is the elegant variation of the RNN architecture11, which 
is a recursive neural network approach that can be applied for the modelling of sequential data. The key feature 
of an RNN is the network delay recursion, which enables it to describe the dynamic performance of systems48. In 
addition, RNNs maintain a vector of activations for each time step, which makes the RNN an extremely deep neu-
ral network49. However, it is often difficult to train RNNs to learn the long-term dependencies in time series data 
due to the exploding and the vanishing gradient problems8,9,50. Both problems are caused by the iterative property 
of the RNN, whose gradient is essentially equal to the recurrent weight matrix but raised to a high power. These 
matrix powers cause the gradient to grow or to shrink at a rate that is proportional to the number of time-steps 
in the dataset49.

Nevertheless, it is demonstrated that the exploding gradients problem is relatively simple to cope with using 
a technique known as gradient clipping, which simply shrinks the gradients whose norms exceed a threshold50. 
One of the advantages of the gradient clipping technique is keeping the gradient small to some extent for most 
of the learning time, whereas the learning or convergence will suffer if the gradient is reduced too much49. In 
contrast, the problem of the vanishing gradient is extremely difficult because it causes the gradient’s component 
in the trends that correspond to long-term dependencies to be minor, whereas it causes the gradientâ€™s com-
ponent in the trends that correspond to short-term dependencies to be large. For this reason, the RNN can learn 
the short-term dependencies easily, but it suffers with long-term dependencies8,9,51.

The design of the LSTM makes it an effective solution to combat the vanishing gradient problem of the 
RNN8,9. It uses a memory cell capable of representing the long-term dependencies in sequential data. As depicted 
in Fig. 1, the LSTM memory cell is composed of four gates (or units); namely, the input gate, the output gate, the 
forget gate, and the self-recurrent neuron. These gates are responsible for controlling the interactions among 
different memory units. Specifically, the input gate controls whether the input signal can modify the state of the 
memory cell or not. In contrast, the output gate controls whether it can modify the state of other memory cells or 
not. Whilst the forget gate can choose to forget (or remember) its previous status. The gates, hidden outputs, and 
cell states can be represented as follows11:

σ= + +−f X U S W b( ) (3)t t
f

t
f

f1

σ= + +−i X U S W b( ) (4)t t
i

t
i

i1

σ= + +−o X U S W b( ) (5)t t
o

t
o

o1

= + +−
C X U S W btanh( ) (6)t t

c
t

c
c1

= ⊗ ⊕ ⊗−
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= ⊗S o Ctanh( ) (8)t t t
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where U U U U( , , , )f i o c , W W W W( , , , )f i o c  and b b b b( , , , )f i o c  are input weights, recurrent weights and biases, 
respectively. Xt, St and Ct are input, hidden and cell state at time step t, respectively. −St 1 and −Ct 1 are the hidden 
and cell state at time step −t 1, respectively. ⊗, ⊕ and σ are pointwise multiplication, pointwise addition and 
sigmoid activation, respectively.

It is demonstrated that there are other attempts to overcome the vanishing gradient problem of RNN; however, 
the LSTM is the most efficient attempt. The LSTM solves this problem by truncating the gradients in the network 
where it is innocuous to do so by enforcing the constant error flows through the constant error carousels within 
special multiplicative units. These special non-linear units learn whether to open or close the gates of the network 
in order to adjust such a constant error flow. Briefly, we can say that the LSTM approximates the long-term infor-
mation with a significant delay by speeding up the conventional RNN algorithm52.

The autoencoder (AE). The AE is an ANN that consists of a sequentially connected three-layer arrange-
ment: the input layer, the hidden layer, and the output (or reconstruction) layer, where all layers are working in an 
unsupervised learning paradigm, as shown in Fig. 2. The AE is often used for data generation, or as a generative 
model, where its training procedure consists of two phases: encoding, in which the input data are mapped into 
the hidden layer, and decoding, in which the input data are reconstructed from the hidden layer representation. In 
the encoding phase, the model learns a compressed representation (or latent variables) of the input. In contrast, in 

Figure 1. The LSTM block, where f i o, ,
t t t are forget, input, and output gates respectively.

Figure 2. The autoencoder architecture.
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the decoding phase, the model reconstructs the target from the compressed representation during the encoding 
phase.

Given an unlabelled input dataset Xn, where n = 1, 2, …, N and ∈ Rxn
m, the two phases can be formulated as 

follows:

= +h x f Wx b( ) ( ) (9)1 1

= +x̂ g W h x b( ( ) ) (10)2 2

where h x( ) represents the hidden encoder vector calculated from input vector x, and x̂ is the decoder (or recon-
struction) vector of the output layer. Additionally, f is the encoding function and g is the decoding function, W1 
and W2 are the weight matrix of the encoder and decoder, respectively, and b1 and b2 are the bias vectors in each 
phase, respectively37.

The difference between the input and the reconstructed input (or output) is usually called the reconstruction 
error. This reconstruction error is represented in the form of an objective function, where during training, the 
model tries to reduce it, e.g. to minimize || − ||ˆx x 2. Stacking multiple AE layers is possible such that useful high 
level features are obtained, with some qualities such as abstraction and invariance. In such a case, a lower error 
reconstruction will be obtained, and thereby, better generalization is expected53.

LSTM-based stacked autoencoder (LSTM-SAE). This section shows the proposed architecture and 
learning algorithm of the proposed model LSTM-SAE.

Architecture. Here, we propose a new architecture as a variation of the original architecture of the autoencoder 
to enable it to extract features from MTS, or generally, time series problems. In particular, we changed the original 
AE architecture from the feed forward neural network base, as depicted in Fig. 2, into the LSTM recurrent net-
work base, as depicted in Fig. 3, and we denote it as the LSTM-based autoencoder (LSTM-AE). LSTM-AE relies 
on the concept that the recurrent network is more suitable for modelling time series data. As shown in Fig. 3, the 
LSTM-AE architecture consists of two LSTM layers; one runs as an encoder and the other runs as a decoder. The 
encoder layer takes the input sequence ( ...x x x, , , n1 2 ) and encodes it into a learned representation vector. Then, 
the decoder layer takes that vector as input and tries to reconstruct the input sequence into ( ...ˆ ˆ ˆx x x, , , n1 2 ). The 
cost function of the LSTM-AE is the mean squared error of the difference between the original input sequence 
and the reconstructed sequence. Motivated by the first pre-training hierarchical RNN approach early presented 
by Schmidhuber14,20 as well as the greedy layer-wise unsupervised pre-training DBN approach presented by 
Hinton et al.22, we are stack more than an LSTM-AE layer in a deep fashion and call it as LSTM-based stacked 
autoencoder (LSTM-SAE).

It is worth mentioning that the proposed LSTM-AE is different from the sequence-to-sequence model that 
was presented recently by Sutskever et al.54. Indeed, both models use two LSTM layers: one LSTM as an encoder 
and the other LSTM as a decoder in a seq-to-seq fashion. Sutskever’s model is designed essentially for language 
modelling, so that the decoder layer is an LSTM-based language model (LSTM-LM), and it computes the condi-
tional probability of the outputs given the input sequence from the learned representation vector by applying a 
softmax output layer. In contrast, the decoder layer in the proposed LSTM-AE reconstructs the input sequence 
from the learned representation without using any softmax or output layers. Another difference is that, the initial 
hidden state of the decoder in the LSTM-LM is set to the learned representation (see Fig. 1 in Sutskever’s paper54), 
whereas the initial hidden state in our LSTM-AE model is randomly initialized(S0 in Fig. 3). The most important 
difference is related to the architecture of both networks, where the seq-to-seq model54 uses a multilayered LSTM, 

Figure 3. LSTM-based autoencoder architecture.
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namely, four layers for both the encoder and decoder layers. In contrast, the proposed LSTM-AE model uses a 
shallow LSTM, namely, one LSTM layer for the encoder and decoder layers. Certainly, this distinguishes the pro-
posed LSTM-AE from a computational complexity point of view.

Learning. The learning algorithm of the LSTM-SAE model consists of two phases: a pre-training phase and a 
fine-tuning phase.
•	 Greedy Layer-wise Pre-training Phase:

In the pre-training phase, we construct a greedy layer-wise structure to train three LSTM-SAE blocks, as 
shown inFig. 4. The pre-training procedure can be summarized in the following four steps:

 1. Train the first LSTM-AE block in the stack; then, save its LSTM encoder layer to be used as input for the 
second LSTM-AE block in the stack.

 2. Load the saved encoder layer and use it to encode the inputs; then, train the second LSTM-AE block in the 
stack with the encoded version of inputs, and train it to reconstruct the original inputs, not the encoded 
inputs, in order to enforce the encoder to learn the features of the original inputs. Then, save its LSTM 
encoder layer to use it as input for the third LSTM-AE block in the stack.

 3. Load the two saved encoder layers and use them to encode the inputs twice; then, train the third LSTM-
AE block with the encoded version of inputs to reconstruct the original inputs, and save its LSTM encoder 
layer.

 4. Use the three saved LSTM encoders to initialize a three-layer DLSTM model5; in the same way described in 
the training phase of that model.
Obviously, this phase can be generalized for more than three layers, if needed.

•	 Fine-tuning Phase:
At the end of the pre-training phase, we manage to initialize three hidden layers the DLSTM model. The 
fine-tuning phase starts by adding an output layer on top of the three hidden layers of the DLSTM model, 
where the output layer consists of just one neuron, as long as the problem at hand is a regression problem. 
Then, we start to fine-tune the model in a supervised learning fashion, where the input is a sequence of MTS 
data in time step t and the label is the value of the corresponding variable (the variable that we need to predict 
its future values) from the MTS data in the next time step t + 1. In this phase, we evaluate the prediction of 
DLSTM using out-of-sample testing data. The results that are recorded and compared in the experiments 
section in this paper are the results of this phase using the testing data.
It is worth noting here that the proposed model LSTM-SAE is an extension to our previously presented 

model DLSTM5 that is shown in Fig. 5. The difference here is that the LSTM-SAE uses unsupervised pre-trained 
LSTMs in an autoencoder fashion, rather than the random initialization fashion that was adopted in the DLSTM 
model. In the experiments section of this paper, we will compare the performance of the original DLSTM5, with-
out the pre-training phase, with the pre-trained DLSTM proposed in this paper to precisely ascertain how the 
pre-training phase enhances the overall DLSTM’s performance.

It is worth mention that, there are some differences between the proposed LSTM-SAE model and the hierar-
chical RNN model that early presented by Schmidhuber20, particularly in the unsupervised pre-training phase. 
The first difference concerns the objective of the prediction task of Schmidhuber’s model, which is predicting 
the next input from the previous inputs. In contrast, the LSTM-SAE model tries to reconstruct the inputs by 
establishing the LSTM autoencoder. Nevertheless, the major difference lies in the way of pre-training scenario; 
Schmidhuber’s model starts when the first (lowest-level) RNN takes the external input and tries to predict the 
next input. The second (higher-level) RNN can’t be established unless the first RNN stops improving its predic-
tions. At a given time step, if the first RNN fails to predict the next input, the updating of the first RNN’s weights is 
stopped. Then, the second RNN takes, as input, the concatenation of this next input plus a unique representation 
of the corresponding time step. Following this procedure, higher levels are adding to the hierarchy. In contrast, 
the LSTM-SAE model starts by training the first LSTM-AE to reconstruct the original inputs, then training the 

Figure 4. The greedy layer-wise pre-training of LSTM-SAE model.
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second LSTM-AE by the encoded version of the inputs to reconstruct the original inputs, and so on, in the same 
way as described in the pre-training phase.

Experimental Settings
This section shows the experimental settings, the datasets, and the parameters selection of the proposed model. 
In addition, the section gives a brief overview for the performance metrics that will be used in the validation and 
comparisons in this paper.

Datasets. For validation purposes, two different case studies, where each case study uses a benchmark data-
set, are used to validate the proposed and reference models. For the step of data preprocessing, we adopted the 
same data preprocessing scheme that we described in our previous paper5. The two datasets are as follows.

The capital bike sharing dataset. This dataset is a public dataset available in UCI Machine Learning Repository55 
provided by Fanaee-T et al.56. They provide a two-year usage log of a bike sharing system, called capital bike shar-
ing (CBS) in Washington D.C., USA. They calculated the number of rental bikes, weather states, and the hourly 
calendar during the time period between Jan 1st, 2011 to Dec 31st, 201256. It is a multivariate dataset that consists 
of ten variables, as follows: Season, Holiday, Weekday, Working day, Weather sit, Temperature in Celsius, Feeling 
temperature in Celsius, Humidity, Wind speed, and Count of total rental bikes. The total number of data samples is 
17,379 observations, which we split into three sets of 10,512 for training, 2628 for validation, and 4238 for testing. 
In the experiments with this dataset, the requirement is to predict the future hourly total number of rented bikes 
given the scope of the other variables.

The PM2.5 concentration in the air of CHINA dataset. This dataset is another benchmark public dataset that is 
widely used in many disciplines in the literature. Its importance stems from its inclusion of the hourly concen-
tration observations in the air of several cities in China; therefore, it is a massive dataset. In this paper, we will 
consider only the data samples of the city of Beijing, where the observations were collected in the time period 
between Jan 1st, 2010 to Dec 31st, 201457. This dataset is a multivariate dataset that consists of eight variables, 
as follows: PM2.5 concentration, Dew Point, Temperature, Pressure, Combined Wind Direction, Cumulated Wind 

Figure 5. The architecture of DLSTM recurrent network5.
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Speed, Cumulated hours of snow, and Cumulated hours of rain, and we integer-encoded Wind Direction. The 
dataset includes a total number of 43,800 observations, which we split into sets of 30,660 for training, 4380 for 
validation, and 8760 for testing. In the experiments with this dataset, the requirement is to predict the future 
hourly concentration given the scope of the observations of the other variables.

Performance measures. In the time series forecasting problem, two kinds of errors are usually measured, in 
order to estimate the forecasting precision and performance evaluation of the forecasts, namely, scale-dependent 
error and percentage error. Due to their importance for our subject, we will devote this section to describe both 
of them
 (1) The scale-dependent error measure

The scale-dependent errors are on the same scale as the data themselves. Therefore, as a limitation, the accu-
racy measures that are based directly on this error cannot be used to make comparisons between series that are 
on different scales. In this paper, two known scale-dependent error measures have used, namely, the root mean 
square error RMSE and the mean absolute error MAE58.

RMSE measures the average magnitude of the errors. Specifically, it is the square root of the average of squared 
differences between theprediction and actual observations. Therefore, the RMSE will be more useful when large 
errors are particularly undesirable. RMSE can be represented mathematically as follows
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MAE measures the average magnitude of the errors in a set of predictions, regardless of their direction. 
Therefore, it is the average over the test sample of the absolute differences between the prediction and actual 
observation where all individual differences have equal weight.
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Based on the definition of both measures, we can note that both RMSE and MAE are negatively oriented scores 
and they express average prediction errors. However, it is widely demonstrated in the literature that the MAE 
error measure is more preferred than the RMSE error measure, for the following reasons59:

 1. The MAE measure is steadier than RMSE, whereas the latter increases as the variance that is associated 
with the frequency distribution of error magnitudes increases.

 2. The RMSE measure is related to the sample size, where it has a tendency to be increasingly larger than MAE 
as the test sample size increases. This can be a problem when using RMSE with different-sized test samples, 
which is frequently the case in real-world situations.

 3. The RMSE gives a relatively high weight to large errors (in bad prediction situations), since the errors are 
squared before they are averaged. This may skew the metric towards overestimating the modelâ€™s bad-
ness. This is particularly problematic behaviour if we have noisy data samples. In contrast, MAE penalizes 
huge errors but not as badly as RMSE does. Thus, it is not that sensitive to outliers as RMSE is, as long as it 
does not make use of a square.

 4. The MAE measure is easier to interpret and justify than RMSE.

 (2) The percentage error measure

The percentage error measures are more accurate and efficient in tracking the forecasting precision and per-
formance evaluation of the forecasts, since they have the advantage of being scale-independent. Therefore, these 
kinds of error measures are frequently used to make comparison among forecast models, especially when dif-
ferent scaled datasets are used58. One of the most common percentage errors is the symmetric mean absolute 
percentage error (SMAPE)60.

∑=
−

+=n

y y

y y
SMAPE

100

(13)i

n
i
obs

i
pred

i
obs

i
pred

1

Parameters selection. During the validation experiments of this paper, there are a few hyper-parameters 
that need to be selected. Specifically, these parameters are:

 1. Sequence length (lag)
 2. Batch size
 3. Number of units in the encoder layer
 4. Number of epochs for training the LSTM-SAE in the pre-training phase
 5. Number of epochs for training the pre-trained model in the fine-tuning phase
 6. Dropout rate (we use a dropout layer after each LSTM layer in the fine-tuning phase).
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For these hyper-parameters selection, we used the Hyperopt: Distributed Asynchronous Hyper-parameter 
Optimization library61, along with using the RMSE on the validation data as a criterion for selecting the 
hyper-parameters. For both phases of pre-training and fine-tuning, we used the ADAM optimizer62 and the mean 
squared error (MSE) as a cost function. For the implementation phase of our model, we used the Keras library63.

Experimental Results
This section shows the empirical results of our experiments that assess the proposed model. In this evaluation 
phase, we assess the performance of the LSTM-SAE model and compare its performance with the reference 
model DLSTM5 to solve the same problems using the same datasets that are described in the previous section. 
More comparisons with other baseline and reference models using the same datasets are given in the following 
section. To provide a fair evaluation and comparison, the aforementioned experimental settings of all experi-
ments are unified, and we utilized the three performance measures described in the previous section. All tables in 
this section show the results based on the testing (or unseen) data.

Case study-I: Predicting the hourly total number of rented bikes in the capital bike sharing sys-
tem. Table 1 shows the results of both models using one and two hidden layers. To avoid overfitting, we did not 
increase the number of hidden layers; in particular, we found that the error values did not change, and therefore, 
the performance is still the same. In addition, the table shows the best values of each parameter that show the best 
performance of each model. It is clear from Table 1 that the LSTM-SAE model outperforms the DLSTM model 
on the three performance measures. Given that both models have a deep structure using the original LSTM, these 
results assert the impact of adopting the approach of the unsupervised pre-trained LSTM instead of the rand-
omized initialization for LSTM cells. For visual assessment, the relation between the original data and their pre-
diction for the LSTM-based SAE model and the DLSTM model is illustrated in Figs. 6 and 7 for one hidden layer 
and two hidden layers, respectively. For clarity, these two figures show the last 100 observations of the testing data.

Case study-II: Predicting the hourly PM2.5 concentration in the air of Beijing. In a similar way, 
Table 2 shows the results of both models using one and two hidden layers. Again, it is obvious that the LSTM-SAE 
model outperforms the DLSTM model on two performance measures, namely, MAE and SMAPE. Regarding 
the RMSE measure, we found that the DLSTM outperforms the LSTM-SAE, where the former shows 23.75 and 
the latter shows 24.04, i.e., a minor difference. The visual relation between the original data and their predictions 
using both models is illustrated in Figs. 8 and 9 for one hidden layer and two hidden layers, respectively, for only 
the last 100 observations of testing data.

Results Analysis and Discussion
In the previous section, we validated the performance of the proposed LSTM-SAE model against our previ-
ous model DLSTM5 to solve the MTS forecasting problem. In this section, we will validate both models against 
state-of-the-art machine learning models that are used to solve the same problems using the same datasets. We 
already overviewed these reference models in the section of Related Work. All validations are based on the three 
performance metrics RMSE, MAE, and SMAPE. As we explained in the performance measures subsection, the 
performance metric MAE is more accurate than RMSE, and SMAPE is more accurate and efficient than both of 
them. The reason for this is widely demonstrated in the literature, indicating that the percentage error measures 

Model
No. of hidden
layer

No. of hidden
units Dropout lag batch RMSE MAE SMAPE

DLSTM 1 47 0.4 20 146 52.062 32.468 12.088

DLSTM 2 23,24 0.3 25 219 49.811 31.524 12.183

LSTM-SAE 1 33 0.1 30 219 49.389 32.192 13.878

LSTM-SAE 2 5,47 0.1 30 73 46.927 30.041 11.646

Table 1. The results of DLSTM5 and LSTM-SAE using dataset of case study-I.

Figure 6. Original data vs. prediction for case 1 with 1 layer.
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are the most appropriate tools to assess the performance of forecasting models60. Accordingly, in this discussion 
section, we will mainly rely on the values of the SMAPE measure if its values are available. However, if SMAPE’s 
value is not available in the corresponding reference, we will rely first on the MAE values, and then we will rely 
on the RMSE values. Additionally, since both case studies have similar experimental conditions, we will base our 
analysis on the error values or performance comparison across both cases.

LSTM-SAE vs. DLSTM. For easier comparison, we will merge both Tables 1 and 2 for both case studies into 
one table. It is clear from Table 3 that the proposed model LSTM-SAE outperforms our previous model DLSTM5 
in all performance measures except in the RMSE measure in case study-II. On the scale of this measure, the 

Figure 7. Original data vs. prediction for case 1 with 2 layer.

Model
No. of hidden
layer

No. of hidden
units Dropout lag batch RMSE MAE SMAPE

DLSTM 1 47 0.2 30 60 23.993 12.124 10.919

DLSTM 2 3,42 0.2 30 73 23.750 12.452 12.181

LSTM-SAE 1 20 0.1 30 219 23.907 12.509 11.052

LSTM-SAE 2 25,26 0.3 25 146 24.041 12.060 9.864

Table 2. The results of DLSTM5 and LSTM-SAE using data set of case study 2.

Figure 8. Original data vs. prediction for case 2 with 1 layer.

Figure 9. Original data vs. prediction for case 2 with 2 layer.
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DLSTM gains 23.7, whereas the LSTM-SAE gains 24.1, whilst in the other two measures, MAE and SMAPE, the 
latter approach outperforms the former. If we adhere to our justifications about the three performance measures, 
then we can confirm the superiority of the LSTM-SAE over the DLSTM in solving MTS forecasting problems.

These results clearly show the impact of stacking LSTMs in an autoencoder fashion as a kind of pre-trained 
DLSTM, and its performance is better than the original DLSTM that depended on randomized initialization to 
the units of the LSTM. In other words, the unsupervised pre-training approach enhances the DLSTM’s perfor-
mance better than the supervised approach of the DLSTM5. The reason is because UTS problems usually include 
one variable or one feature, where there is no correlation with other variables. Therefore, it is expected that the 
DLSTM will perform well in such regression problems. However, there are many variables in MTS regression 
problems and they are highly correlated as well. In such complex situations, the random initialization of cells will 
lead the learning algorithm to become trapped in different local minima, depending on the values of the other 
parameters’ initialization. This coincides with what is demonstrated in the machine learning literature, indicating 
that training deep architectures with several layers using random weights initialization and supervised training 
provides worse results than training shallow architectures18,19.

Furthermore, we noticed that the unsupervised pre-training approach assists the model to converge faster 
than the supervised approach of DLSTM. Table 4 lists the number of epochs required from each model to con-
verge in both case studies; in the case of the LSTM-SAE model, this is the number of epochs in the fine-tuning 
phase. We extended the list to show number of epochs required up to three hidden layers to track the convergence 
closely. In case study-I, the DLSTM model needs 500 epochs to converge, whereas LSTM needs 355 epochs to 
converge. Likewise, in case study-II, the DLSTM model needs 1182 epoch, whereas the LSTM-SAE needs 197 
epochs to converge. Of course, these parameters are mainly dependent on the dataset, but they provide us with an 
indication about computational requirements for each model.

Overall, the unsupervised pre-training indeed enhances the performance of the DLSTM model and leads to 
better convergence but with the cost of increasing the overall training of the LSTM-SAE model because of the 
two phases of training (pre-training and fine-tuning), and this is the trade-off with the improved performance.

LSTM-SAE vs. reference models. Towards an overall evaluation and analysis for the proposed model, 
Table 5 shows a comparison for the proposed model with other reference models using the same dataset of case 
study-I to solve the same problem43. In principal, a comparison with the results of other models in different 
experimental conditions is common in the machine learning community, as long as the comparison is based 
on tracking the computational performance of each model to solve the same problem using the same dataset 
across the same performance measures. The benefit of such a comparison is that it will confirm the validation of 
the proposed model against several counterparts. As the authors of reference models43 used the RMSE measure, 
similar to our paper here, we will compare their results with ours for the RMSE measure only, as shown in Table 5.

The reference models assessed here are: artificial immune system with regression trees (AIS-RT), regression 
tree (Reg Tree), ensemble regression tree, ridge regression, adaboost regression, gradient boosting regression, and 
random forest regression. It is clear that the proposed LSTM-SAE model, and even our previous DLSTM model, 
outperform the other reference model43, which is AIS-Tree, as well as the other reference models developed 
and compared in the same article43. Therefore, we can conclude that the proposed LSTM-SAE model provides a 
greater performance improvement than ensemble approaches on regression trees.

In case study-II, we assess our two models against several recently reported approaches used to solve the same 
problem using the same dataset. Table 6 shows a comparison with the results of other reference models reported 
in the literature. We conduct the comparison using the performance measures that are used in these reference 
papers and the current paper as well, namely, RMSE, MAE, and SMAPE. Again, according to each measure of 
accuracy and efficiency reported in the literature58,59, we will rely first on the values of SMAPE, then on the values 
of MAE, then finally on the values of RMSE.

Case Study

DLSTM LSTM-SAE

RMSE MAE SMAPE RMSE MAE SMAPE

I 49.811 31.524 12.183 46.927 30.041 11.646

II 23.750 12.452 12.181 24.041 12.060 9.864

Table 3. The comparison between DLSTM5 and LSTM-SAE in case of 2 layers in both case studies.

Case Study No. of hidden layers

DLSTM LSTM-SAE

No. of epochs No. of epochs

I

1 299 285

2 414 255

3 500 355

II

1 123 244

2 127 463

3 1182 197

Table 4. The number of epochs needed for the two models to converge in both cases studies.
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The reference models assessed here are: graph convolutional network-LSTM (GC-LSTM), the original 
LSTM, the original feed forward neural networks (FNN), the original multiple linear regression (MLR), wavelet 
auto-regressive integrated moving average (wavelet-ARIMA), wavelet-artificial neural networks (wavelet-ANN), 
CNN-LSTM, the original CNN, complete ensemble-least squares support vector machine (LSSVM), the original 
general regression neural network (GRNN), and the traditional and original auto-regressive integrated moving 
average (ARIMA). These models are reported originally in many articles in the literature.

It is clear from Table 6 that the proposed LSTM-SAE model and our previous model DLSTM outperform all 
other models on the level of both MAE and SMAPE performance measures, which confirms the superiority of 
our model (the models in Zhao et al.47 is measured on MAPE that is the baseline measure and belong to same cat-
egory of the SMAPE measure that is used in Table 6). There is only one exception, where the GC-LSTM45 model 
outperforms our models and all other reference models on the scale of the RMSE performance measure. Again, 
we can conclude that the LSTM-SAE model provides a greater performance improvement than several machine 
learning baseline and top-of-the-line models.

Conclusion
In this paper, we proposed a pre-trained LSTM-based stacked autoencoder (LSTM-SAE) approach in a layer-wise 
unsupervised learning fashion to replace the random weight initialization approach of the units of the deep LSTM 
(DSLTM) model that we previously presented. The proposed approach is tested and validated to solve the multi-
variate time series forecasting problem using different two case studies and different datasets. The experimental 
results clearly show that the layer-wise pre-training approach improved the performance of DLSTM and led to 
better and faster convergence. In addition, the layer-wise pre-training fashion is more suitable to problems that 
include multiple and correlated variables. It could learn the latent features automatically from the dynamically 
changing multivariate inputs that are included in the two case studies treated in the paper. This performance is 
further confirmed by its favourable comparative performance with several machine learning baseline models 
that solve the same case studies. However, the side effect of the unsupervised pre-training approach lies in the 
longer training time that is required to sequentially implement the two phases: the pre-training phase and the 
fine-tuning phase. This will motivate us to combine a suitable selective attention mechanism to improve the train-
ing time and reduce the time complexity.
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Baseline Model RMSE MAE SMAPE

LSTM-SAE (Proposed) 46.92 30.04 11.64

DLSTM5 49.81 31.52 12.18

AIS-RT (Presented in)43 62.98 — —

Reg Tree43 69.20 — —

Ensemble Regression Tree43 82.59 — —

Ridge Regression43 79.32 — —

Adaboost Regression43 102.46 — —

Gradient Boosting Regression43 312.69 — —

Random Forest Regression43 336.17 — —

Table 5. Comparison of the proposed model with other models using data set of case study-I.

Model RMSE MAE SMAPE

LSTM-SAE (Proposed) 24.04 12.06 9.86

DLSTM5 23.75 12.45 12.18

GC-LSTM45 22.41 13.72 —

LSTM45 27.19 16.82 —

FNN45 28.8 17.77 —

MLR45 38.03 24.35 —

Wavelet-ARIMA46 26.43 19.82 —

Wavelet-ANN46 32.87 24.20 —

CNN-LSTM44 24.23 14.74 —

CNN44 24.60 16.13 —

CE-WOA-LSSVM47 — — 11.34

GRNN47 — — 22.77

ARIMA47 — — 39.44

Table 6. Comparison of the proposed model with other models using data set of case study-II.

https://doi.org/10.1038/s41598-019-55320-6


1 5SCIENTIFIC REPORTS |         (2019) 9:19038  | https://doi.org/10.1038/s41598-019-55320-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Batal, I., Sacchi, L., Bellazzi, R. & Hauskrecht, M. Multivariate time series classification with temporal abstractions. Int. J. Artif. Intell. 

Tools 22, 344–349 (2009).
 2. Krause, A., Singh, A. & Guestrin, C. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and 

empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008).
 3. Yi, S., Ju, J., Yoon, M.-K. & Choi, J. Grouped convolutional neural networks for multivariate time series. arXiv 1703, 09938 (2017).
 4. Tealab, A. Time series forecasting using artificial neural networks methodologies:a systematic review. Futur. Comput. Informatics J. 

3, 334–340 (2018).
 5. Sagheer, A. & Kotb, M. Time series forecasting of petroleum production using deep lstm recurrent networks. Neurocomputing 323, 

203–213 (2019).
 6. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 61, 85–117 (2015).
 7. Zheng, Y., Liu, Q., Chen, E., Ge, Y. & Zhao, J. Exploiting multi-channels deep convolutional neural networks for multivariate time 

series classification. Front. Comput. Sci. 10, 96–112 (2016).
 8. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Ph.D. thesis, Technical University of Munich Advisor: J. 

Schmidhuber (1991).
 9. Hochreiter, S., Bengio, Y., Frasconi, P. & Schmidhuber, J. Gradient flow in recurrent nets: the difficulty of learning long-term 

dependencies. In S. C. Kremer and J. F. Kolen, eds, A Field Guide to Dynamical Recurrent Neural Networks, Wiley-IEEE Press (2001).
 10. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
 11. Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with lstm. Neural Comput. 12, 2451–2471 

(2000).
 12. Längkvist, M., Karlsson, L. & Loutfi, A. Review of unsupervised feature learning and deep learning for time-series modeling. Pattern 

Recognit. Lett. 42, 11–24 (2014).
 13. Fernandez, S., Graves, A. & Schmidhuber, J. Sequence labelling in structured domains with hierarchical recurrent neural networks. 

In The 20th International Joint Conference on Artificial Intelligence, IJCAI07, 774–779 (2007).
 14. Schmidhuber, J. Netzwerkarchitekturen, Zielfunktionen und Kettenregel (Network architectures, objective functions, and chain rule). 

Habilitation thesis, Institut für Informatik,(TUM) (1993).
 15. Cao, W., Wang, X., Ming, Z. & Gao, J. A review on neural networks with random weights. Neurocomputing 275, 278–287 (2018).
 16. Adam, S., Karras, D., Magoulas, G. & Vrahatis, M. Solving the linear interval tolerance problem for weight initialization of neural 

networks. Neural Networks 54, 17–37 (2014).
 17. Timotheou, S. A novel weight initialization method for the random neural network. Neurocomputing 73, 160–168 (2009).
 18. Erhan, D., Manzagol, P., Bengio, Y., Bengio, S. & Vincent, P. The difficulty of training deep architectures and the effect of 

unsupervised pre-training. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), 
Clearwater Beach, Florida, USA, 153–160 (2009).

 19. Romeu, P., Zamora-Martìnez, F., Botella-Rocamora, P. & Pardo, J. Stacked denoising auto-encoders for short-term time series 
forecasting. Artif. Neural Networks: Methods Appl. Bio-/Neuroinformatics 4, 463–486 (2015).

 20. Schmidhuber, J. Learning complex, extended sequences using the principle of history compression. Neural Comput. 4, 234–242 
(1992).

 21. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. ArXiv abs/1503.02531 (2015).
 22. Hinton, G., Osindero, S. & Teh, Y. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006).
 23. Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise training of deep networks. In Proceedings of the 20th 

international conference on Neural Information Processing Systems, Canada, 153–160 (2007).
 24. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks. In Proceeding of the 14th International Conference on 

Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 315–323 (2011).
 25. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A. & Bengio, Y. Maxout networks. In Proceedings of the 30th International 

Conference on Machine Learning, Atlanta, Georgia, USA, 1319–1327 (2013).
 26. Romeu, P., Zamora-Martìnez, F., Botella-Rocamora, P. & Pardo, J. Time-series forecasting of indoor temperature using pre-trained 

deep neural networks. Artif. Neural Networks Mach. Learn. 8131, 451–458 (2013).
 27. Hinton, G. & Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Sci. 313, 504–507 (2006).
 28. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P. Stacked denoising autoencoders: Learning useful representations in 

a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).
 29. Wei, W. Time Series Analysis Univariate and Multivariate Methods, 2 edn (Pearson Education, 2006).
 30. Saikia, P. & Baruah, R. An empirical study on unsupervised pre-training approaches in regression problems. In Proceeding of The 

2018 IEEE Symposium Series on Computational Intelligence (SSCI), 342–349 (2018).
 31. Rocha, M., Cortez, P. & Neves, J. Evolution of neural networks for classification and regression. Neurocomputing 70, 2809–2816 

(2007).
 32. Yaghini, M., Khoshraftar, M. & Fallahi, M. A hybrid algorithm for artificial neural network training. Eng. Appl. Artif. Intell. 26, 

293–301 (2013).
 33. Erhan, D., Bengio, Y., Courville, A., Manzagol, P. & Vincent, P. Why does unsupervised pre-training help deep learning? J. Mach. 

Learn. Res. 11, 625–660 (2010).
 34. Le Paine, T., Khorrami, P., Han, W. & Huang, T. An analysis of unsupervised pre-training in light of recent advances. arXiv preprint 

arXiv 1412, 6597 (2015).
 35. Tang, Z. & wang, D. Knowledge transfer pre-training. Tech. Rep., Research Institute of Information Technology, Tsinghua University 

(2015).
 36. Sarikaya, R., Hinton, G. & Deoras, A. Application of deep belief networks for natural language understanding. IEEE Transactions on 

Audio, Speech, Lang. Process. 22, 778–784 (2014).
 37. Liu, G., Bao, H. & Han, B. A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis. Math. Probl. Eng. 

2018, 1–10 (2018).
 38. Meng, Q., Catchpoole, D., Skillicom, D. & Kennedy, P. Relational autoencoder for feature extraction. In Proceeding of The 

International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 364–371 (2017).
 39. Kuremoto, T., Kimura, S., Kobayashi, K. & Obayashi, M. Time series forecasting using a deep belief network with restricted 

boltzmann machines. Neurocomputing 137, 47–56 (2014).
 40. Malhotra, P., Tv, V., Vig, L., Agarwal, P. & Shro, G. Timenet: Pre-trained deep recurrent neural network for time series classification. 

In Proceedings of 25th European Symposium on Artificial Neural Networks, ESANN, 607–612 (2017).
 41. Wang, s., Hua, G., Hao, G. & Xie, C. A cycle deep belief network model for multivariate time series classification. Math. Probl. Eng. 

2017 (2017).
 42. Lai, G., Chang, W., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. In Proceeding of 

the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, 1–7 (2018).
 43. Wu, J. L. & Chang, P. A prediction system for bike sharing using artificial immune system with regression trees. In Proceeding of The 

4th International Congress on Advanced Applied Informatics, IIAI, Okayama, Japan (2015).
 44. Huang, C. & Kuo, P. A deep cnn-lstm model for particulate matter (pm2.5) forecasting in smart cities. Sensors 18 (2018).

https://doi.org/10.1038/s41598-019-55320-6


1 6SCIENTIFIC REPORTS |         (2019) 9:19038  | https://doi.org/10.1038/s41598-019-55320-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 45. Qi, Y., Li, Q., Karimian, H. & Liu, D. A hybrid model for spatiotemporal forecasting of pm2.5 based on graph convolutional neural 
network and long short-term memory. Sci. Total. Environ. 664, 1–10 (2019).

 46. Cheng, Y., Zhang, H., Liu, Z., Chen, L. & Wang, P. Hybrid algorithm for short-term forecasting of pm2.5 in china. Atmospheric 
Environ. 200, 264–279 (2019).

 47. Zhao, F. & Li, W. A combined model based on feature selection and woa for pm2.5 concentration forecasting. Atmosphere 10 (223) 
(2019).

 48. Sutskever, I. Training recurrent neural networks. Ph.D. thesis, University of Toronto (2012).
 49. Jozefowicz, R., Zaremba, W. & Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd 

International Conference on Machine Learning,France, 2342–2350 (2015).
 50. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International 

Conference on Machine Learning, Atlanta, Georgia, USA, 1310–1318 (2013).
 51. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural 

Networks 5, 157–166 (1994).
 52. Greff, K., Srivastava, R., Koutnk, J., Steunebrink, B. & Schmidhuber, J. Lstm: A search space odyssey. IEEE Transactions on Neural 

Networks Learn. Syst. 28, 2222–2232 (2017).
 53. Bao, W., Yue, J. & Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long short term 

memory. PLoS ONE 12 (2017).
 54. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. In the 27th International Conference on 

Neural Information Processing Systems NIPS-14, Montreal, Canada, vol. 2, 3104–3112 (2014).
 55. Dua, D. & Graff, C. Uci machine learning repository, http://archive.ics.uci.edu/ml (2017).
 56. Fanaee-T, H. & Gama, J. Event labeling combining ensemble detectors and background knowledge. Prog. Artif. Intell. 2, 113–127 

(2013).
 57. Liang, X. et al. Assessing beijing’s pm2.5 pollution: severity, weather impact, apec and winter heating. In Proceedings of the Royal 

Society A Mathematical Physical and Engineering Sciences (2015).
 58. Hyndman, R. & Koehler, A. Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006).
 59. Willmott, C. J. & Matsuura, K. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing 

average model performance. Clim. Res. 30, 79–82 (2005).
 60. Hyndman, R. J. Measuring forecast accuracy. In Business Forecasting: Practical Problems and Solutions, 177–183 (John Wiley and 

Sons, 2016).
 61. Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions 

for vision architectures. In Proceeding of the 30th International Conference on Machine Learning (ICML), Atlanta, Georgia, USA, 
115–123 (2013).

 62. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning 
Representations (ICLR), San Diego, CA, USA (2015).

 63. Chollet, F. et al. Keras, https://github.com/fchollet/keras (2015).

Acknowledgements
The authors acknowledge the Deanship of Scientific Research at King Faisal University Saudi Arabia for the 
financial support under “Nasher” Track (Grant No. “186208”).

Author contributions
Both authors are conceived the study and contributed equally to the design of the proposed model. M. Kotb 
implemented the algorithm and conducted the experiments. A. Sagheer performed analysis on experimental 
settings and results. M. Kotb wrote the first draft of the manuscript. A. Sagheer continued writing the manuscript. 
Both authors discussed and reviewed the results and, accordingly, revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-55320-6
http://archive.ics.uci.edu/ml
https://github.com/fchollet/keras
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems

	Related Work

	State-of-the-art models. 
	Overview of the reference models. 

	Problem and Methodology

	The multivariate time series (MTS) forecasting problem. 
	The long short-term memory (LSTM). 
	The autoencoder (AE). 
	LSTM-based stacked autoencoder (LSTM-SAE). 
	Architecture. 
	Learning. 


	Experimental Settings

	Datasets. 
	The capital bike sharing dataset. 
	The PM2.5 concentration in the air of CHINA dataset. 

	Performance measures. 
	Parameters selection. 

	Experimental Results

	Case study-I: Predicting the hourly total number of rented bikes in the capital bike sharing system. 
	Case study-II: Predicting the hourly PM2.5 concentration in the air of Beijing. 

	Results Analysis and Discussion

	LSTM-SAE vs. DLSTM. 
	LSTM-SAE vs. reference models. 

	Conclusion

	Acknowledgements

	Figure 1 The LSTM block, where are forget, input, and output gates respectively.
	Figure 2 The autoencoder architecture.
	Figure 3 LSTM-based autoencoder architecture.
	Figure 4 The greedy layer-wise pre-training of LSTM-SAE model.
	Figure 5 The architecture of DLSTM recurrent network5.
	Figure 6 Original data vs.
	Figure 7 Original data vs.
	Figure 8 Original data vs.
	Figure 9 Original data vs.
	Table 1 The results of DLSTM5 and LSTM-SAE using dataset of case study-I.
	Table 2 The results of DLSTM5 and LSTM-SAE using data set of case study 2.
	Table 3 The comparison between DLSTM5 and LSTM-SAE in case of 2 layers in both case studies.
	Table 4 The number of epochs needed for the two models to converge in both cases studies.
	Table 5 Comparison of the proposed model with other models using data set of case study-I.
	Table 6 Comparison of the proposed model with other models using data set of case study-II.


